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Abstract

Given a partial Ky-design (X, P), if z € X is a vertex which occurs
in exactly one block of P, then call z a free vertez. In this paper, a
technique is described for obtaining a cubic embedding of any partial
K;-design with the property that every block in the partial design
contains at least two free vertices.

1 Introduction

Let G be a simple graph. A G-design of order n is a pair (S, B) where
S is the vertex set of K,, and B is a collection of edge-disjoint subgraphs
of Ky, all isomorphic to G, whose edge sets partition the edges of K,. A
partial G-design of order n is a pair (X, P), where X is the vertex set of
K, and P is a collection of edge-disjoint subgraphs of K,, all isomorphic
to G, such that every vertex of K, occurs in at least one copy of G. Thus,
the copies of G in a partial G-design of order n must use all of the vertices
of Ky, but not necessarily all of the edges.

A partial G-design of order n with the property that the unused edges
of K, can be partitioned into copies of G is said to be completable. It
is clear that for almost any simple graph G, not all partial G-designs are
completable. Thus, the problem of embedding partial G-designs arises.
The partial G-design (X, P) is said to be embedded in the G-design (S, B)
if X C S and P C B. Wilson [8] has shown that for any simple graph G, a
partial G-design can always be embedded in some G-design. Unfortunately,
the order of the containing G-design in Wilson’s method is exponentially
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large with respect to the order of the partial G-design. Hence we have the
problem of finding a “small” embedding for an arbitrary partial G-design.

The problem of finding small embeddings for partial G-designs has re-
ceived much attention. Much progress has been made for the case where G
is Cp, the cycle of length m. For example, Lindner (7] has shown that any
partial Cy-design of order n can be embedded in a Cs-design of order at
most 2n + 15. In fact, linear embeddings are known for partial Cy,-designs
for any given m. (See [3], [6].) In contrast to this, the search for even a
polynomial embedding for partial K,,-designs, for any given m > 4, has
been unsuccessful. The closest result of interest to this problem is Hoffman
and Lindner’s 8n + 164/n + 82 embedding for partial (K} \ K3)-designs [2].
While the graph K, \ K differs from K4 by only one edge, Hoffman and
Lindner’s embedding relies heavily on the fact that K4 \ K> is tripartite.
Thus a small embedding for partial K4-designs appears to be beyond the
reach of the current methods.

The aim of this paper is to describe a technique for embedding a very
restricted class of partial Ky-designs. In what follows, where convenient,
we shall refer to a copy of K, as a block of size 4, or simply a block. Given
a partial K4-design (X, P), if z € X is a vertex which occurs in exactly one
block of P, then call z a free vertez. We shall present a cubic embedding
of any partial K4-design with the property that every block contains at
least two free vertices. Note that such a partial K4-design can be formed
by taking any simple graph G, and replacing each edge by a copy of Ky, as
shown in Figure 1.

N\ —

G

Figure 1: Construction of a partial K4-design from the graph G.

Specifically, it will be shown that any partial K4-design of order n with
the property that every block contains at least two free vertices can be
embedded in a K;-design of order at most (n+24)[(n+28)(n+22) +24]/48.
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2 Preliminary Results

A group divisible design of order v and block size 4 (or 4-GDD) is a triple
(V, G, B) where V is a set of size v, G is a partition of V into parts (groups)
of possibly different sizes, and B is a collection of blocks of size 4 such that
every pair of distinct elements of V in different groups occurs together in
exactly one block. If v = a;91 + a292 + ... + asg,, and if there are a;
groups of size g;, ¢ = 1,2,...,8, then the 4-GDD is said to be of type
P R

Example 2.1 The blocks of a 4-GDD of type 3* with groups {0,1,2},
{3,4,5}, {6,7,8}, and {9,10,11}:

{0,316’9}$ {0’41 7710}) {0’5:81 11}:
{1,3,8,10}, {1,4,6,11}, {1,5,7,9},
{2,3,7,11}, {2,4,8,9}, {2,5,6,10}.
a

The following results guarantee the existence of 4-GDDs of certain types.

Lemma 2.2 ([4]) Let t and u be positive integers. Ift = 0 (mod 6), v > 3,
and (t,u) # (6,3) then there ezists a 4-GDD of type t*(t(u — 1)/2)!.

Corollary 2.3 There ezists a 4-GDD of type (12)*™+1(12m)! for all pos-
itive integers m.

Lemma 2.4 ([4]) Let t and u be positive integers. Ift =0 (mod 6), u > 4,
and (t,u) # (6,4) then there exists a 4-GDD of type t*.

The existence of K4-designs of certain orders is also needed for our main
result. The following well-known lemma gives the spectrum of K-designs.

Lemma 2.5 ([1]) Let n be a positive integer. There exists a K4-design of
order n if and only ifn =1 or 4 (mod 12).

Let ¥(n) denote the partial Ky-design (X, P) of order n + n(n — 1)
obtained as follows. Let X = Z,U (2%~ x {1,2}) where 2Z» denotes the set
of 2-element subsets of Z,,. For each pair a,b of distinct elements in Zy,
place in P the block {a,b, ({a,b},1), ({a,b},2)}.

Example 2.6 Let X = Z,U (2% x {1,2}), and let P contain the following
blocks.
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{0’ 1‘) ({0’ 1}’ 1)’ ({0’ 1}’ 2)}’
{0,2,({0,2},1), ({0,2},2)},
{0,3,({0,3},1),({0,3},2)},
{1,2,({1,2},1),({1,2},2)},
{1,3,({1,3}, 1), ({1,3},2)},
{2,3,({2,3}, 1), ({2,3},2)}-

{0,111

(f0,112) ({02}2) (0312) ({121.2) (f1.31.2)  ({23).2)

Figure 2: ¥(4).

Clearly, (X, P) = ¥(4). This partial K4-design is shown diagrammati-
cally in Figure 2. Of particular importance to the main result of this paper
is the fact that ¥(4) is completable to a full K4-design of order 16. For let
C contain the following blocks.

{0,({1,2},1),({2,3},1),({1,3}, )},
{0,({1,2},2), ({2,3},2),({1,3},2)},
{1,({0,3},1),({2,3},1),({0,2}, 1)},
{1,({0,3},2), ({2,3},2), ({0, 2}, 2)},
{2,({0,3},1), ({0,1},1), ({1,3},2)},
{2, ({0,3},2), ({0,1},2), ({1,3}, D},
{3,({0,1},1),({1,2}, 1), ({0, 2}, 2)},
{3,({0,1},2), ({1,2},2), ({0, 2}, 1)},
{({0,3},1),({0,1},2),({1,2}, 1), ({2,3},2) },
{({0,3},1),({1,2},2), ({0,2}, 2), ({1,3}, 1)},
{({0,3},2),({0,1},1), ({1,2},2), ({2,3}, 1)},
{({0,3},2),({1,2},1),({0,2}, 1), ({1,3}, 2)},
{({0,1},1),({2,3},2),({0,2}, 1), ({1,3}, 1)},
{({0,1},2),({2,3},1), ({0,2},2), ({1,3}, 2)}-

It is easy to verify that (X, PU C) is a K4-design of order 16. 0
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Lemma 2.7 A partial K4-design of order n with the property that every
block contains at least two free vertices can be embedded in a partial K4-
design isomorphic to ¥(z) for any integer z > n/2.

Proof. Let (X,P) be a partial K -design of order n with the stated
property, and let z be an integer with z > n/2. Define a partition {U, V'}
of X as follows.

(i) For each block B € P, place two free vertices of B in V.
(i) Let U =X\ V.

Figure 3 shows an example of a partial Ks-design with the vertices parti-
tioned in this way.

@ Vertices in U
O Vertices in V

Figure 3: A partial K4-design (X, P) with the vertex set partitioned into
sets U and V.

It is clear that any partial K4-design of order n contains at least n/4
blocks. Consequently, |V| > n/2, and so |U| < n/2 < z. Construct a
partial K4-design (S, B) as follows.

(i) Let X C Sand PC B.
(ii) If [U| < 2, let U’ be a set containing z — |U| new vertices, and let
U'cs.

(iii) For each pair a, b of distinct elements of UUU', if the edge {a, b} does
not occur in any block in P, place two new vertices, z and y, in S,
and place the block {a,b,z,y} in B. (See Figure 4.)

It is easy to see that (S, B) is a partial K4-dwgn isomorphic to ¥(z), which
contains the partial K4-design (X, P). a
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Figure 4: Construction of the partial K;-design (S, B).

3 The main embedding result

Theorem 3.1 A partial K4-design of order n with the property that every
block contains at least two free vertices can be embedded in a K4-design of
order at most

5+ 20)[(n + 28)(n +22) + 24].

Proof. Let (X,P) be a partial K4-design of order n with the stated
property, and let m be the smallest positive integer such that 12m+4 > n/2.
By Lemma 2.7, (X, P) can be embedded in a partial K4-design isomorphic
to ¥(12m + 4). Thus it is sufficient to show that for any positive integer
m, it is possible to construct a “small” K4-design which contains a partial
K 4-design isomorphic to ¥(12m + 4).

Let Y be a set of size 12m + 4, and let (Y, {Hq,...,H;—1}) be a K-
design of order 12m + 4, where ¢ = (3m + 1)(4m + 1). We shall construct
a Ky-design (S, B) of order 12(2m + 1)(3m + 1)(dm + 1) + 12m + 4 where
S =(Z¢ X Zam+1 X Z12) UY and B contains the blocks from the following
K ;-decompositions.

(1) For each i € Z;, if H; = {a,b,c,d} place a K4-design of order 16 on
H; U{(4,0,k) | k € Z;2} which includes the following blocks.
@) {a,b,(i,0,0),(:,0,1)},
(ii) {a,¢,(3,0,2),(40,3)},
(iii) {a,d,(i,0,4),(,0,5)},
(iv) {b,¢(4,0,6), (30,7},
v) {b4,(,0,8),(0,9)}, and
(vi) {e4d,(4,0,10),(%,0,11)}.
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Notice that this collection of blocks is isomorphic to ¥(4), which was
shown to be completable in Example 2.6. Thus, the desired K,-design
certainly exists. Furthermore, it is clear that combining blocks (i) to
(vi) for all ¢ € Z, results in a partial K,-design isomorphic to ¥(12m +
4), as required.

(2) Foreach i € Zy,j € Zam41\ {0}, place a K,-decomposition of K6\ K4
on H; U {(3,5,k) | k € Z12} with the four vertices of H; in the hole.

(3) For each i € Z,, place a 4-GDD of type 122™+1(12m)! on (Y \ H;) U
{(i,3,%) | § € Zamya, k € Zy2} with groups {(i, 4, k) | k € Z12} for each
J € Z3am41, and one group Y \ H;. (See Corollary 2.3.)

(4) Place a 4-GDD of type (12(2m + 1))t on S \ Y with groups
{(3,3,k) | § € Zamy41, k € 215} for each i € Z;. (See Lemma 2.4.)

[e@es®e - 0ue)r

(0,0,0) (0,2m, 0) (3,0,0) (,2m,0) (£-1,0,0) (t—1,2m,0)
e o ) o o ° o o °
o o o e o ® e o [ ]
e & "o ... e @ ""e o o "o

o O e o o o e o
(0,0,11) (0,2m,11) (5,0,11) (i,2m,11) (t—1,0,11) (t-1,2m,11)

Figure 5: The vertex set S.

It is natural to think of the vertices of S being arranged as shown
in Figure 5, where each block H;,i € Z;, is associated with a “cluster”
of 2m + 1 columns of 12 vertices. With this arrangement, the following
observations can be made.

(i) For each i € Z, the type (1) and (2) decompositions use the six edges
of H;, all edges between the vertices of H; and the vertices of the
associated cluster, and all edges between vertices of the same column
in each column of the cluster.

(i) For each i € Zy, the type (3) decompositions use all edges between
Y'\ H; and the vertices of the associated cluster, and all edges between
vertices in distinct columns of the cluster.

(iii) The type (4) decomposition uses all edges between vertices in distinct
clusters.
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It now follows that (S, B) is indeed a K4-design of order
12(2m + 1)(3m + 1)(dm + 1) + 12m + 4.

Finally, since m was as small as possible subject to 12m+4 > n/2, we have
12m +4 < n/2 + 12, and so m < n/24 + 2/3. It follows that the order of
(S, B) is at most

5+ 20+ 28)(n + 22) + 24]

This completes the proof. ]

4 Concluding remarks

The class of partial K,-designs for which this embedding is applicable is
indeed very restricted. A closely related problem which remains open is
to find a small embedding for the class of partial K4-designs in which
every block contains at least one free vertex. It can be shown that a
solution to this problem implies the existence of a small embedding of
an arbitrary partial Steiner triple system into a resolvable Steiner triple
system. (See [5].)
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