Embedding a restricted class of partial K_4 -designs

Peter Jenkins
Centre for Discrete Mathematics and Computing,
Department of Mathematics,
The University of Queensland,
Queensland 4072,
AUSTRALIA

Abstract

Given a partial K_4 -design (X, P), if $x \in X$ is a vertex which occurs in exactly one block of P, then call x a free vertex. In this paper, a technique is described for obtaining a cubic embedding of any partial K_4 -design with the property that every block in the partial design contains at least two free vertices.

1 Introduction

Let G be a simple graph. A G-design of order n is a pair (S,B) where S is the vertex set of K_n , and B is a collection of edge-disjoint subgraphs of K_n , all isomorphic to G, whose edge sets partition the edges of K_n . A partial G-design of order n is a pair (X,P), where X is the vertex set of K_n , and P is a collection of edge-disjoint subgraphs of K_n , all isomorphic to G, such that every vertex of K_n occurs in at least one copy of G. Thus, the copies of G in a partial G-design of order n must use all of the vertices of K_n , but not necessarily all of the edges.

A partial G-design of order n with the property that the unused edges of K_n can be partitioned into copies of G is said to be *completable*. It is clear that for almost any simple graph G, not all partial G-designs are completable. Thus, the problem of embedding partial G-designs arises. The partial G-design (X, P) is said to be *embedded* in the G-design (S, B) if $X \subseteq S$ and $P \subseteq B$. Wilson [8] has shown that for any simple graph G, a partial G-design can always be embedded in some G-design. Unfortunately, the order of the containing G-design in Wilson's method is exponentially

large with respect to the order of the partial G-design. Hence we have the problem of finding a "small" embedding for an arbitrary partial G-design.

The problem of finding small embeddings for partial G-designs has received much attention. Much progress has been made for the case where G is C_m , the cycle of length m. For example, Lindner [7] has shown that any partial C_4 -design of order n can be embedded in a C_4 -design of order at most 2n+15. In fact, linear embeddings are known for partial C_m -designs for any given m. (See [3], [6].) In contrast to this, the search for even a polynomial embedding for partial K_m -designs, for any given $m \geq 4$, has been unsuccessful. The closest result of interest to this problem is Hoffman and Lindner's $8n+16\sqrt{n}+82$ embedding for partial $(K_4 \setminus K_2)$ -designs [2]. While the graph $K_4 \setminus K_2$ differs from K_4 by only one edge, Hoffman and Lindner's embedding relies heavily on the fact that $K_4 \setminus K_2$ is tripartite. Thus a small embedding for partial K_4 -designs appears to be beyond the reach of the current methods.

The aim of this paper is to describe a technique for embedding a very restricted class of partial K_4 -designs. In what follows, where convenient, we shall refer to a copy of K_4 as a block of size 4, or simply a block. Given a partial K_4 -design (X, P), if $x \in X$ is a vertex which occurs in exactly one block of P, then call x a free vertex. We shall present a cubic embedding of any partial K_4 -design with the property that every block contains at least two free vertices. Note that such a partial K_4 -design can be formed by taking any simple graph G, and replacing each edge by a copy of K_4 , as shown in Figure 1.

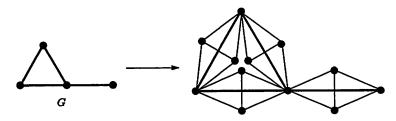


Figure 1: Construction of a partial K_4 -design from the graph G.

Specifically, it will be shown that any partial K_4 -design of order n with the property that every block contains at least two free vertices can be embedded in a K_4 -design of order at most (n+24)[(n+28)(n+22)+24]/48.

2 Preliminary Results

A group divisible design of order v and block size 4 (or 4-GDD) is a triple $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ where \mathcal{V} is a set of size v, \mathcal{G} is a partition of \mathcal{V} into parts (groups) of possibly different sizes, and \mathcal{B} is a collection of blocks of size 4 such that every pair of distinct elements of \mathcal{V} in different groups occurs together in exactly one block. If $v = a_1 g_1 + a_2 g_2 + \ldots + a_s g_s$, and if there are a_i groups of size g_i , $i = 1, 2, \ldots, s$, then the 4-GDD is said to be of type $g_1^{a_1} g_2^{a_2} \cdots g_s^{a_s}$.

Example 2.1 The blocks of a 4-GDD of type 3^4 with groups $\{0, 1, 2\}$, $\{3, 4, 5\}$, $\{6, 7, 8\}$, and $\{9, 10, 11\}$:

$$\{0,3,6,9\}, \{0,4,7,10\}, \{0,5,8,11\}, \{1,3,8,10\}, \{1,4,6,11\}, \{1,5,7,9\}, \{2,3,7,11\}, \{2,4,8,9\}, \{2,5,6,10\}.$$

The following results guarantee the existence of 4-GDDs of certain types.

Lemma 2.2 ([4]) Let t and u be positive integers. If $t \equiv 0 \pmod{6}$, $u \geq 3$, and $(t, u) \neq (6, 3)$ then there exists a 4-GDD of type $t^u(t(u-1)/2)^1$.

Corollary 2.3 There exists a 4-GDD of type $(12)^{2m+1}(12m)^1$ for all positive integers m.

Lemma 2.4 ([4]) Let t and u be positive integers. If $t \equiv 0 \pmod{6}$, $u \geq 4$, and $(t, u) \neq (6, 4)$ then there exists a 4-GDD of type t^u .

The existence of K_4 -designs of certain orders is also needed for our main result. The following well-known lemma gives the spectrum of K_4 -designs.

Lemma 2.5 ([1]) Let n be a positive integer. There exists a K_4 -design of order n if and only if $n \equiv 1$ or $4 \pmod{12}$.

Let $\Psi(n)$ denote the partial K_4 -design (X,P) of order n+n(n-1) obtained as follows. Let $X=\mathbb{Z}_n\cup(2^{\mathbb{Z}_n}\times\{1,2\})$ where $2^{\mathbb{Z}_n}$ denotes the set of 2-element subsets of \mathbb{Z}_n . For each pair a,b of distinct elements in \mathbb{Z}_n , place in P the block $\{a,b,(\{a,b\},1),(\{a,b\},2)\}$.

Example 2.6 Let $X = \mathbb{Z}_4 \cup (2^{\mathbb{Z}_4} \times \{1, 2\})$, and let P contain the following blocks.

```
{0,1,({0,1},1),({0,1},2)},

{0,2,({0,2},1),({0,2},2)},

{0,3,({0,3},1),({0,3},2)},

{1,2,({1,2},1),({1,2},2)},

{1,3,({1,3},1),({1,3},2)},

{2,3,({2,3},1),({2,3},2)}.
```

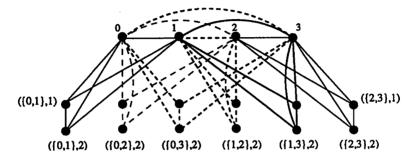


Figure 2: $\Psi(4)$.

Clearly, $(X, P) = \Psi(4)$. This partial K_4 -design is shown diagrammatically in Figure 2. Of particular importance to the main result of this paper is the fact that $\Psi(4)$ is completable to a full K_4 -design of order 16. For let C contain the following blocks.

```
 \{0, (\{1,2\},1), (\{2,3\},1), (\{1,3\},1)\}, \\ \{0, (\{1,2\},2), (\{2,3\},2), (\{1,3\},2)\}, \\ \{1, (\{0,3\},1), (\{2,3\},1), (\{0,2\},1)\}, \\ \{1, (\{0,3\},2), (\{2,3\},2), (\{0,2\},2)\}, \\ \{2, (\{0,3\},1), (\{0,1\},1), (\{1,3\},2)\}, \\ \{2, (\{0,3\},2), (\{0,1\},2), (\{1,3\},1)\}, \\ \{3, (\{0,1\},1), (\{1,2\},1), (\{0,2\},2)\}, \\ \{3, (\{0,1\},2), (\{1,2\},2), (\{0,2\},1)\}, \\ \{(\{0,3\},1), (\{0,1\},2), (\{1,2\},1), (\{2,3\},2)\}, \\ \{(\{0,3\},2), (\{0,1\},1), (\{1,2\},2), (\{2,3\},1)\}, \\ \{(\{0,3\},2), (\{1,2\},1), (\{0,2\},1), (\{1,3\},2)\}, \\ \{(\{0,1\},1), (\{2,3\},2), (\{0,2\},1), (\{1,3\},1)\}, \\ \{(\{0,1\},2), (\{2,3\},1), (\{0,2\},2), (\{1,3\},2)\}.
```

It is easy to verify that $(X, P \cup C)$ is a K_4 -design of order 16.

Lemma 2.7 A partial K_4 -design of order n with the property that every block contains at least two free vertices can be embedded in a partial K_4 -design isomorphic to $\Psi(z)$ for any integer $z \ge n/2$.

Proof. Let (X, P) be a partial K_4 -design of order n with the stated property, and let z be an integer with $z \ge n/2$. Define a partition $\{U, V\}$ of X as follows.

- (i) For each block $B \in P$, place two free vertices of B in V.
- (ii) Let $U = X \setminus V$.

Figure 3 shows an example of a partial K_4 -design with the vertices partitioned in this way.

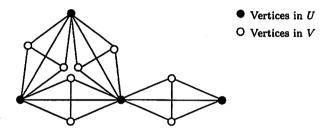


Figure 3: A partial K_4 -design (X, P) with the vertex set partitioned into sets U and V.

It is clear that any partial K_4 -design of order n contains at least n/4 blocks. Consequently, $|V| \ge n/2$, and so $|U| \le n/2 \le z$. Construct a partial K_4 -design (S,B) as follows.

- (i) Let $X \subseteq S$ and $P \subseteq B$.
- (ii) If |U| < z, let U' be a set containing z |U| new vertices, and let $U' \subseteq S$.
- (iii) For each pair a, b of distinct elements of $U \cup U'$, if the edge $\{a, b\}$ does not occur in any block in P, place two new vertices, x and y, in S, and place the block $\{a, b, x, y\}$ in B. (See Figure 4.)

It is easy to see that (S,B) is a partial K_4 -design isomorphic to $\Psi(z)$, which contains the partial K_4 -design (X,P).

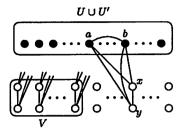


Figure 4: Construction of the partial K_4 -design (S, B).

3 The main embedding result

Theorem 3.1 A partial K_4 -design of order n with the property that every block contains at least two free vertices can be embedded in a K_4 -design of order at most

$$\frac{1}{48}(n+24)[(n+28)(n+22)+24].$$

Proof. Let (X, P) be a partial K_4 -design of order n with the stated property, and let m be the smallest positive integer such that $12m+4 \ge n/2$. By Lemma 2.7, (X, P) can be embedded in a partial K_4 -design isomorphic to $\Psi(12m+4)$. Thus it is sufficient to show that for any positive integer m, it is possible to construct a "small" K_4 -design which contains a partial K_4 -design isomorphic to $\Psi(12m+4)$.

Let Y be a set of size 12m+4, and let $(Y, \{H_0, \ldots, H_{t-1}\})$ be a K_4 -design of order 12m+4, where t=(3m+1)(4m+1). We shall construct a K_4 -design (S,B) of order 12(2m+1)(3m+1)(4m+1)+12m+4 where $S=(\mathbb{Z}_t\times\mathbb{Z}_{2m+1}\times\mathbb{Z}_{12})\cup Y$ and B contains the blocks from the following K_4 -decompositions.

- (1) For each $i \in \mathbb{Z}_t$, if $H_i = \{a, b, c, d\}$ place a K_4 -design of order 16 on $H_i \cup \{(i, 0, k) \mid k \in \mathbb{Z}_{12}\}$ which includes the following blocks.
 - (i) $\{a, b, (i, 0, 0), (i, 0, 1)\},\$
 - (ii) $\{a, c, (i, 0, 2), (i, 0, 3)\},\$
 - (iii) $\{a,d,(i,0,4),(i,0,5)\},\$
 - (iv) $\{b, c, (i, 0, 6), (i, 0, 7)\},\$
 - (v) $\{b, d, (i, 0, 8), (i, 0, 9)\}$, and
 - (vi) $\{c, d, (i, 0, 10), (i, 0, 11)\}.$

Notice that this collection of blocks is isomorphic to $\Psi(4)$, which was shown to be completable in Example 2.6. Thus, the desired K_4 -design certainly exists. Furthermore, it is clear that combining blocks (i) to (vi) for all $i \in \mathbb{Z}_t$ results in a partial K_4 -design isomorphic to $\Psi(12m+4)$, as required.

- (2) For each $i \in \mathbb{Z}_t, j \in \mathbb{Z}_{2m+1} \setminus \{0\}$, place a K_4 -decomposition of $K_{16} \setminus K_4$ on $H_i \cup \{(i, j, k) \mid k \in \mathbb{Z}_{12}\}$ with the four vertices of H_i in the hole.
- (3) For each $i \in \mathbb{Z}_t$, place a 4-GDD of type $12^{2m+1}(12m)^1$ on $(Y \setminus H_i) \cup \{(i,j,k) \mid j \in \mathbb{Z}_{2m+1}, k \in \mathbb{Z}_{12}\}$ with groups $\{(i,j,k) \mid k \in \mathbb{Z}_{12}\}$ for each $j \in \mathbb{Z}_{2m+1}$, and one group $Y \setminus H_i$. (See Corollary 2.3.)
- (4) Place a 4-GDD of type $(12(2m+1))^t$ on $S \setminus Y$ with groups $\{(i,j,k) \mid j \in \mathbb{Z}_{2m+1}, k \in \mathbb{Z}_{12}\}$ for each $i \in \mathbb{Z}_t$. (See Lemma 2.4.)



Figure 5: The vertex set S.

It is natural to think of the vertices of S being arranged as shown in Figure 5, where each block $H_i, i \in \mathbb{Z}_t$, is associated with a "cluster" of 2m+1 columns of 12 vertices. With this arrangement, the following observations can be made.

- (i) For each $i \in \mathbb{Z}_t$, the type (1) and (2) decompositions use the six edges of H_i , all edges between the vertices of H_i and the vertices of the associated cluster, and all edges between vertices of the same column in each column of the cluster.
- (ii) For each $i \in \mathbb{Z}_t$, the type (3) decompositions use all edges between $Y \setminus H_i$ and the vertices of the associated cluster, and all edges between vertices in distinct columns of the cluster.
- (iii) The type (4) decomposition uses all edges between vertices in distinct clusters.

It now follows that (S, B) is indeed a K_4 -design of order

$$12(2m+1)(3m+1)(4m+1)+12m+4.$$

Finally, since m was as small as possible subject to $12m+4 \ge n/2$, we have $12m+4 \le n/2+12$, and so $m \le n/24+2/3$. It follows that the order of (S, B) is at most

$$\frac{1}{48}(n+24)[(n+28)(n+22)+24].$$

This completes the proof.

4 Concluding remarks

The class of partial K_4 -designs for which this embedding is applicable is indeed very restricted. A closely related problem which remains open is to find a small embedding for the class of partial K_4 -designs in which every block contains at least *one* free vertex. It can be shown that a solution to this problem implies the existence of a small embedding of an arbitrary partial Steiner triple system into a resolvable Steiner triple system. (See [5].)

References

- [1] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
- [2] D.G. Hoffman and C.C. Lindner, A partial $K_4 \setminus e$ -design of order n can be embedded in a $K_4 \setminus e$ -design of order at most $8n + 16\sqrt{n} + 82$, Australas. J. Combin. (to appear).
- [3] D.G. Hoffman, C.C. Lindner and C.A. Rodger, A partial 2k-cycle system of order n can be embedded in a 2k-cycle system of order $kn + c(k), k \ge 3$, where c(k) is a function of k, Discrete Math. 261 (2003), no. 1-3, 325-336.
- [4] D.L. Kreher and D.R. Stinson, Small group-divisible designs with block size four, J. Statist. Plann. Inference 58 (1997), 111-118.
- [5] C.C. Lindner, Embedding block designs into resolvable block designs, Ars Combin. 1 (1976), 215-219.

- [6] C.C. Lindner and C.A. Rodger, A partial m = (2k+1)-cycle system of order n can be embedded in an m-cycle system of order (2n+1)m, Discrete Math. 117 (1993), 151-159.
- [7] C.C. Lindner, A partial 4-cycle system of order n can be embedded in a 4-cycle system of order $\leq 2n+15$, Bull Inst. Combin. Appl. 37 (2003), 88-93.
- [8] R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer. 15 (1976), 647-659.