Hamilton Paths in Certain Arithmetic Graphs

Paul A. Russell*

Abstract

For each integer m > 1, consider the graph G,, whose vertex set
is the set N = {0,1,2,...} of natural numbers and whose edges are
the pairs zy withy = z+mory =z—mory = mzory = z/m. Our
aim in this note is to show that, for each m, the graph G, contains
a Hamilton path. This answers a question of Lichiardopol.

For each integer m > 1, consider the graph G, whose vertex set is the set
N={0,1,2,...} of natural numbers and whose edges are the pairs zy with
y=2z+mory=z—mory=mzory=2z/m. Weshow that, for each
m, the graph G, contains a Hamilton path. Here, by ‘Hamilton path’ we
mean a ‘one-way infinite Hamilton path’, i.e. a sequence zg, z;, %3, ... of
vertices of Gy, such that each vertex appears precisely once and, for all 7,
the vertices z; and z;4, are adjacent. We shall use this to answer a question
of Lichiardopol [1] about two-way infinite Hamilton paths in graphs defined
similarly but with vertex set the set Z of integers.

The case m = 1 is trivial so we begin at m = 2. The construction of
the Hamilton path in the graph G is similar in spirit to those used later,
but this case is much easier.

Proposition 1. The graph G2 contains a Hamilton path.

Proof. Our approach is to define inductively a strictly increasing sequence

Zo, Z1, T2, ... of natural numbers with 2o = 0, and show that, for each

i=0,1,2,..., there is a Hamilton path in G3[z;,244] from z; to ziyy;

putting these paths end-to-end gives the required Hamilton path in Gs.
Now, take

o z0=0;
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e =3
e 2;=2x;1+5 (1>2).

Our path in Gz[zg, 2] is simply 0,2,1,3. To show that there is such
a path in Ga[z;, zi41] for i > 1, it suffices to exhibit a Hamilton path in
G2[z, 2z + 5] for odd z > 0; such a path is given by

z,22,22-2,2z—4,... ,2+ 1,22+ 2,22+ 4,2+ 2,2+ 4,2+6,... ,22+5.
O

We next consider the case of even m > 2. The approach is similar to
that used for the graph G, but instead of splitting N up into intervals we
need to use slightly more complicated sets.

Proposition 2. For all even m > 2, the graph G, contains a Hamilton
path.

Proof. Define inductively a strictly increasing sequence zg, z;, %2, ... of
natural numbers by

[ ] 20 = 0;
o z; =m(zi-1 +2) (i 21).

Note that each z; is divisible by m.
Fori=0,1,2,...,let Gs,'.) be the graph

GS:? = G [([zi, Zi41] — mN) U ([mai, mzia] NmN)).

Note that, for all £, the sets V(G(i)) and V(G“"'”) intersect only at mzi41;
and for all ¢ and j with |[i—j| > 1, the sets V(G(')) and V(GY) are disjoint.
Moreover, the union of the sets V(G,,. )(=0,1,2,...)is the whole of N.

Hence it is enough to construct, for each ¢, a Hamilton path in G¥ from
mz; to mz41; putting these paths end-to-end again gives a Hamilton path
in Gy, as required.
So, fix i. Observe that, foreach j =1,2,...,m—1, there is a path
in G from m(z; + j) to m(zi+1 — m + j) whose internal vertices are
precisely those vertices of Gsf.) which are congruent to j (mod m), namely
the path

m(z; +7), i + 5, s +m+ 4,z +2m 44, ..., Tiga —m+ §,m(Tiv —m+ ).

Note that the V(P;) (1 < j < m — 1) partition V(Gs,’;)) except for the
vertices mz;, m(z; + m), m(z; + m+1), m(z; + m+2), ..., m(ziy1 —m),
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mz;41 which are missed. Moreover, the first (last) vertex of P; is adjacent
to the first (last) vertex of Pj4; (1 < j < m—2). Hence it is possible to join
these paths together to make the required Hamilton path in GS,?, namely

mz;, P, m(zi41 —m),m(Zip1 —m —1),... ,m(z; +m),
Pm—l,P;iz, Pm—a, “ee ,Pz—l, mﬂ.l

(where P~ denotes the path obtained by traversing the path P in reverse).
O

This only leaves us to deal with odd m. The construction used in Propo-
sition 2 will not work here as, since m is odd, we would have to finish by
traversing the path P, forwards, and so we would be unable to reach the
point mz;y; at the end of each intermediate path. However, it turns out
that it is possible to adapt the construction by modifying the definition of
our sequence Zg, 1, £2, . .. and changing the points where the intermediate
paths end. This is sufficient to get around the obstruction.

Proposition 3. For all odd m, the graph G, has a Hemilton path.

Proof. For convenience, we shall assume initially that m > 5. This time we

inductively define our strictly increasing sequence zg, z1, 2, ... by
® g = 0;
® T; = 2m;

e 23 =m(m + 3);
o z; =m(zi2+1) (1 23).

Note that each z; is divisible by m.
Foreachi=0,1,2,..., let G be the graph

G = Gm [([%i, zi41] = mN) U ([mai, mzi41 — m] NmN)] .

Note that the sets V(GY) (i =0,1,2,...) form a partition of N.

We shall construct a Hamilton path in G which for i =0 goes from 0
to m(m+2), and for ¢ > 0 goes from m(z;+1 — m) to mz; = z;42 —m; note
that these are genuinely distinct vertices of GY) as ZTip1 > & +m for all 4.
Moreover, the last vertex of the path we shall define in Gs,';) will be adjacent
to the first vertex of the path in GV 50 it will indeed be possible to join
them together to make a Hamilton path in G,.

Consider first the case i = 0. Foreach j =1, 2, ..., m — 1, consider the
path Q; given by jm, j, m +j, m(m+ j). The Q; are vertex-disjoint paths
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in ng), and, for each j =1, 2, ..., m —2, the first (last) vertex of the path
Q; is adjacent to the first (last) vertex of the path @;41. It is then easy to
see that we may take as our Hamilton path in G’S,e) the path

03 Qlamza Qm—h f_nl_.z: Qm—3:-°- )Q41 Q;ls Q2'

Now fix ¢ > 1. Similarly to the case of even m, for each j
(1 £ j £ m-=1) we have a path P; in GY) from m(z; + j) to
m(z;41 — m + j) whose internal vertices are precisely those vertices
of GY) which are congruent to j (mod m). Here, the vertex sets
V(P;) 1 £ j £ m — 1) partition V(GS,?) except for the vertices
mz;, m(z; + m), m(z; + m+ 1), m(z; + m+2), ..., m(zi4 —m).

Again, the first (last) vertex of P; is adjacent to the first (last) vertex
of Pjy; (1 £ j £ m —2) and so again it is possible to join these paths
together to make the required Hamilton path in G'S,i), namely

m(zip1 —m),m(Tiy1 —m—1),... ,m(z; + m),
Pm—l’P;£2’PM—3a"' :Pl_limmi'

This only leaves us to consider the case m = 3. The above construction
fails only because z3 = z2+3. So if we can construct a Hamilton path from
0 to 3z in the graph Gs [([0, 23] — 3N) U ([0, 323 — 3] N 3N)] then we can
put this path together with the paths constructed above for ¢ > 3 to make
our Hamilton path in G3. But what we need is simply a Hamilton path
from 0 to 54 in Gs [[0,21) U {24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}],
for which we may take

0,3,1,4,7,10,13, 16,19, 57, 60, 20, 17, 14, 11, 8,5, 2,6, 9, 12, 15, 18, 21,
24,27, 30, 33, 36, 39, 42, 45, 48, 51, 54.

O

So we have now constructed a Hamilton path in G,, for each positive
integer m.

Lichiardopol [1] asked if the graph Gm(Z), defined similarly but with
vertex set the set Z of integers, contained a Hamilton path.

We note first that it is clear that G,,(Z) cannot contain a one-way
infinite Hamilton path. For suppose that there were such a path, say
Zg, %1, Z2, ---. Then the set

A={z;:i €Nz >0,z;4; <0}

would be infinite; but it would also have to be a subset of the finite set
{1,2,...,m}, a contradiction.
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However, turning to the more interesting question of whether Gy (Z)
contains a two-way infinite Hamilton path, we observe that our construction
answers this question positively. Indeed, since our one-way infinite path in
Gy, starts at 0, we may put together two copies of it to form a two-way
infinite path in G (Z).
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