Hamilton Paths in Certain Arithmetic Graphs

Paul A. Russell*†

Abstract

For each integer $m \ge 1$, consider the graph G_m whose vertex set is the set $\mathbb{N} = \{0, 1, 2, \dots\}$ of natural numbers and whose edges are the pairs xy with y = x + m or y = x - m or y = mx or y = x/m. Our aim in this note is to show that, for each m, the graph G_m contains a Hamilton path. This answers a question of Lichiardopol.

For each integer $m \geq 1$, consider the graph G_m whose vertex set is the set $\mathbb{N} = \{0, 1, 2, \ldots\}$ of natural numbers and whose edges are the pairs xy with y = x + m or y = x - m or y = mx or y = x/m. We show that, for each m, the graph G_m contains a Hamilton path. Here, by 'Hamilton path' we mean a 'one-way infinite Hamilton path', i.e. a sequence x_0, x_1, x_2, \ldots of vertices of G_m such that each vertex appears precisely once and, for all i, the vertices x_i and x_{i+1} are adjacent. We shall use this to answer a question of Lichiardopol [1] about two-way infinite Hamilton paths in graphs defined similarly but with vertex set the set \mathbb{Z} of integers.

The case m=1 is trivial so we begin at m=2. The construction of the Hamilton path in the graph G_2 is similar in spirit to those used later, but this case is much easier.

Proposition 1. The graph G_2 contains a Hamilton path.

Proof. Our approach is to define inductively a strictly increasing sequence x_0, x_1, x_2, \ldots of natural numbers with $x_0 = 0$, and show that, for each $i = 0, 1, 2, \ldots$, there is a Hamilton path in $G_2[x_i, x_{i+1}]$ from x_i to x_{i+1} ; putting these paths end-to-end gives the required Hamilton path in G_2 .

Now, take

• $x_0 = 0$;

^{*}Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England.

[†]P.A.Russell@dpmms.cam.ac.uk

•
$$x_1 = 3$$
;

•
$$x_i = 2x_{i-1} + 5 \ (i \ge 2)$$
.

Our path in $G_2[x_0, x_1]$ is simply 0,2,1,3. To show that there is such a path in $G_2[x_i, x_{i+1}]$ for $i \geq 1$, it suffices to exhibit a Hamilton path in $G_2[x, 2x + 5]$ for odd x > 0; such a path is given by

$$x, 2x, 2x-2, 2x-4, \ldots, x+1, 2x+2, 2x+4, x+2, x+4, x+6, \ldots, 2x+5.$$

We next consider the case of even m > 2. The approach is similar to that used for the graph G_2 , but instead of splitting N up into intervals we need to use slightly more complicated sets.

Proposition 2. For all even m > 2, the graph G_m contains a Hamilton path.

Proof. Define inductively a strictly increasing sequence x_0, x_1, x_2, \ldots of natural numbers by

- $x_0 = 0$;
- $x_i = m(x_{i-1} + 2) \ (i \ge 1)$.

Note that each x_i is divisible by m.

For $i = 0, 1, 2, \ldots$, let $G_m^{(i)}$ be the graph

$$G_m^{(i)} = G_m [([x_i, x_{i+1}] - m\mathbb{N}) \cup ([mx_i, mx_{i+1}] \cap m\mathbb{N})].$$

Note that, for all i, the sets $V(G_m^{(i)})$ and $V(G_m^{(i+1)})$ intersect only at mx_{i+1} ; and for all i and j with |i-j| > 1, the sets $V(G_m^{(i)})$ and $V(G_m^{(j)})$ are disjoint. Moreover, the union of the sets $V(G_m^{(i)})$ $(i=0,1,2,\ldots)$ is the whole of \mathbb{N} . Hence it is enough to construct, for each i, a Hamilton path in $G_m^{(i)}$ from mx_i to mx_{i+1} ; putting these paths end-to-end again gives a Hamilton path in G_m as required.

So, fix i. Observe that, for each j = 1, 2, ..., m-1, there is a path P_j in $G_m^{(i)}$ from $m(x_i + j)$ to $m(x_{i+1} - m + j)$ whose internal vertices are precisely those vertices of $G_m^{(i)}$ which are congruent to $j \pmod{m}$, namely the path

$$m(x_i+j), x_i+j, x_i+m+j, x_i+2m+j, \ldots, x_{i+1}-m+j, m(x_{i+1}-m+j).$$

Note that the $V(P_j)$ $(1 \leq j \leq m-1)$ partition $V(G_m^{(i)})$ except for the vertices mx_i , $m(x_i+m)$, $m(x_i+m+1)$, $m(x_i+m+2)$, ..., $m(x_{i+1}-m)$,

 mx_{i+1} which are missed. Moreover, the first (last) vertex of P_j is adjacent to the first (last) vertex of P_{j+1} ($1 \le j \le m-2$). Hence it is possible to join these paths together to make the required Hamilton path in $G_m^{(i)}$, namely

$$mx_i, P_1, m(x_{i+1} - m), m(x_{i+1} - m - 1), \dots, m(x_i + m),$$

 $P_{m-1}, P_{m-2}^{-1}, P_{m-3}, \dots, P_2^{-1}, mx_{i+1}$

(where P^{-1} denotes the path obtained by traversing the path P in reverse).

This only leaves us to deal with odd m. The construction used in Proposition 2 will not work here as, since m is odd, we would have to finish by traversing the path P_2 forwards, and so we would be unable to reach the point mx_{i+1} at the end of each intermediate path. However, it turns out that it is possible to adapt the construction by modifying the definition of our sequence x_0, x_1, x_2, \ldots and changing the points where the intermediate paths end. This is sufficient to get around the obstruction.

Proposition 3. For all odd m, the graph G_m has a Hamilton path.

Proof. For convenience, we shall assume initially that $m \geq 5$. This time we inductively define our strictly increasing sequence x_0, x_1, x_2, \ldots by

- $x_0 = 0$;
- $x_1 = 2m$;
- $x_2 = m(m+3)$;
- $x_i = m(x_{i-2} + 1) \ (i \ge 3)$.

Note that each x_i is divisible by m.

For each $i = 0, 1, 2, \ldots$, let $G_m^{(i)}$ be the graph

$$G_m^{(i)} = G_m \left[\left(\left[x_i, x_{i+1} \right] - m \mathbb{N} \right) \cup \left(\left[m x_i, m x_{i+1} - m \right] \cap m \mathbb{N} \right) \right].$$

Note that the sets $V(G_m^{(i)})$ (i = 0, 1, 2, ...) form a partition of N.

We shall construct a Hamilton path in $G_m^{(i)}$ which for i=0 goes from 0 to m(m+2), and for i>0 goes from $m(x_{i+1}-m)$ to $mx_i=x_{i+2}-m$; note that these are genuinely distinct vertices of $G_m^{(i)}$ as $x_{i+1}>x_i+m$ for all i. Moreover, the last vertex of the path we shall define in $G_m^{(i)}$ will be adjacent to the first vertex of the path in $G_m^{(i+1)}$ so it will indeed be possible to join them together to make a Hamilton path in G_m .

Consider first the case i = 0. For each j = 1, 2, ..., m-1, consider the path Q_j given by jm, j, m+j, m(m+j). The Q_j are vertex-disjoint paths

in $G_m^{(0)}$, and, for each $j=1, 2, \ldots, m-2$, the first (last) vertex of the path Q_j is adjacent to the first (last) vertex of the path Q_{j+1} . It is then easy to see that we may take as our Hamilton path in $G_m^{(0)}$ the path

$$0, Q_1, m^2, Q_{m-1}, Q_{m-2}^{-1}, Q_{m-3}, \ldots, Q_4, Q_3^{-1}, Q_2.$$

Now fix $i \geq 1$. Similarly to the case of even m, for each j $(1 \leq j \leq m-1)$ we have a path P_j in $G_m^{(i)}$ from $m(x_i+j)$ to $m(x_{i+1}-m+j)$ whose internal vertices are precisely those vertices of $G_m^{(i)}$ which are congruent to $j \pmod{m}$. Here, the vertex sets $V(P_j)$ $(1 \leq j \leq m-1)$ partition $V(G_m^{(i)})$ except for the vertices mx_i , $m(x_i+m)$, $m(x_i+m+1)$, $m(x_i+m+2)$, ..., $m(x_{i+1}-m)$.

Again, the first (last) vertex of P_j is adjacent to the first (last) vertex of P_{j+1} ($1 \le j \le m-2$) and so again it is possible to join these paths together to make the required Hamilton path in $G_m^{(i)}$, namely

$$m(x_{i+1}-m), m(x_{i+1}-m-1), \ldots, m(x_i+m),$$

 $P_{m-1}, P_{m-2}^{-1}, P_{m-3}, \ldots, P_1^{-1}, mx_i.$

This only leaves us to consider the case m=3. The above construction fails only because $x_3=x_2+3$. So if we can construct a Hamilton path from 0 to $3x_2$ in the graph $G_3[([0,x_3]-3\mathbb{N})\cup([0,3x_3-3]\cap3\mathbb{N})]$ then we can put this path together with the paths constructed above for $i\geq 3$ to make our Hamilton path in G_3 . But what we need is simply a Hamilton path from 0 to 54 in $G_3[[0,21]\cup\{24,27,30,33,36,39,42,45,48,51,54,57,60\}]$, for which we may take

So we have now constructed a Hamilton path in G_m for each positive integer m.

Lichiardopol [1] asked if the graph $G_m(\mathbb{Z})$, defined similarly but with vertex set the set \mathbb{Z} of integers, contained a Hamilton path.

We note first that it is clear that $G_m(\mathbb{Z})$ cannot contain a one-way infinite Hamilton path. For suppose that there were such a path, say x_0, x_1, x_2, \ldots Then the set

$$A=\{x_i:i\in\mathbb{N},x_i>0,x_{i+1}\leq 0\}$$

would be infinite; but it would also have to be a subset of the finite set $\{1, 2, ..., m\}$, a contradiction.

However, turning to the more interesting question of whether $G_m(\mathbb{Z})$ contains a two-way infinite Hamilton path, we observe that our construction answers this question positively. Indeed, since our one-way infinite path in G_m starts at 0, we may put together two copies of it to form a two-way infinite path in $G_m(\mathbb{Z})$.

Acknowledgements

I would like to thank Dr I. Leader for commenting on earlier drafts of this note.

References

[1] N. Lichiardopol, Problem 7 in Problems from the Nineteenth British Combinatorial Conference (2003) (edited by P.J. Cameron).