An Efficient Algorithm for Cyclic Edge
Connectivity of Regular Graphs

Dingjun Lou and Wei Wang

Department of Computer Science
Zhongshan University
Guangzhou 510275
People’s Republic of China

Abstract

In this paper, we develop a polynomial time algorithm to deter-
mine the cyclic edge connectivity of a k-regular graph for & > 3.
The time complexity of the algorithm is bounded by O(k*!|V|[®), in
particular, it is O(|V|®) for cubic graphs.

1 Introduction and terminology

Let G be an undirected, finite and connected graph. A cyclic edge cutset
is an edge cutset whose deletion disconnects the graph such that two of
the components contain a cycle respectively. The cyclic edge connectivity
cA\(G) is the minimum cardinality of all the cyclic edge cutsets of G. If no
cyclic edge cutset exists, we say cA(G) = oo.

An edge cutset S can be written as (T, V(G)\T) that means that S
contains all edges from T to V(G)\T. Let C be a cycle of G. An edge ¢
joining two vertices on C such that e & E(C) is called a chord of C. Let
C be a cycle without a chord. Then S = (V(C), V(G)\V(C)) is called the
co-cycle of C.

For the terminology and notation not defined in this paper, the reader is
referred to [1).

The concept of cyclic edge connectivity was introduced by Tait [11] in
the proof of the Four Colour Theorem. Plummer [10] studied the cyclic

ARS COMBINATORIA 77(2005), pp. 311-318

edge connectivity of planar graphs. In [3] and [5], Holton, Lou and Plum-
mer showed the relation between cyclic edge connectivity and n-extendable
graphs. In a paper of Peroche [9], several sorts of connectivity, including
cyclic edge connectivity, and their relation are studied. For a summary of
research in connectivity and edge connectivity, the reader is referred to 8].

It is a long standing unsolved problem whether the cyclic edge connectiv-
ity of a graph is a P-problem; even the case for regular graphs is unknown
until now. In [6], Lou, Teng and Wu gave the first polynomial time algo-
rithm to determine the cyclic edge connectivity of cubic graphs using the
concept of removable edge (see [2]). However, there is an error in [6]. In this
paper, we give an alternative polynomial time algorithm for cubic graphs
to correct the first algorithm. Furthermore, we provide a polynomial time
algorithm to determine the cyclic edge connectivity of k-regular graphs for
k > 3. Although the time complexity of our algorithm is too large for
practical use, this algorithm is the first polynomial time algorithm for the
cyclic edge connectivity of regular graphs.

2 Prelininary results

In this section, we give two results on cyclic edge connectivity. The first
lemma gives an upper bound of cA(G).

Lemma 1. ([9]): If G = (V,E) is a simple graph with |V| = v and
cA(G) # oo, then cA(G) < 3(v — 3) for v > 6 and the bound is sharp.
Equality holds when G = K,,.

Now we give a necessary and sufficient condition for cA(G) # oo for all
k-regular graphs.

Theorem 2: Let G be a connected k-regular graph. Then cA(G) # oo if
and only if ¥(G) > 2g, where g is the girth of G.

Proof. Suppose v(G) > 2g. We shall prove that the co-cycle of a minimum
cycle C of G is a cyclic edge cutset, then cA(G) < (k — 2)g, hence cA(G) #
00.

Now we prove that G —V(C) has a cycle. Suppose not. Then G-V(C) is
a forest. Then k(v—g)—2(v—g—1) < (k—2)g. We have v < 2g-2/(k-2).
But v is an integer. So v < 2g — 1, which contradicts the assumption
v(G) 2 2g.

Suppose ¥(G) < 2g and ¢ # oo. Then G has a cyclic edge cutset S such

312

that G — S has two components C; and C, that both C; and C, have a
cycle. So |V(C})| 2 g and |V(C?)| 2 g, which contradicts the assumption
that v(G) < 2g. ‘ m]

3 Algorithm for the cyclic édge connectivity
of cubic graphs

In this section, we give an efficient algorithm to determine the cyclic edge
connectivity of cubic graphs first. Then we give the proof of correctness of
the algorithm and analyse the time complexity of the algorithm.

Algorithm 1:

1. Use a breadth first search strategy to find a shortest cycle containing v
for each vertex v in G, then we can find the girth g of G; // O(|V|?)

2. If ¥(G) < 2g, then cA(G) = oo and is returned; // O(1)

3. Use a breadth first search strategy to find all minimal cycles C contain-
ing edge e for each edge e € E(G) such that |V(C)| < 4(logy v + 1). Let
Ce be the set of all such cycles containing e and let F:= U.cg(c)Ce; //
O(IVF)

4. s:=g;// O(1)

5. For any two different cycles C; and C; in F do // O(|V|®)

BEGIN

6. If V(Ci) nV(C;) = 0, then we construct a new graph G’ such that
V(G') = V(G) U {z,y}, where z,y € V(G) and E(G’) = E(G)U{zu|ue
V(C)}U {y |ve V(Ca)}; // O(IVI)

7. Use the algorithm of (7] to find & minimum edge cutset S,, which sep-
arates z and y; // O(|V|?)

8. s:=min{s, S|} // O(1)

END;

9. Then cA(G) = s and is returned. // O(1)

In Step 3, the minimal cycle C containing e is a cycle without chord.
Now we prove the correctness of Algorithm 1.

Theorem 3: Algorithm 1 can find a minimum cyclic edge cutset and hence
can determine cA(G).

Proof. By Theorem 2, if g > v/2, then Algorithm 1 will return eA(G) = o
in Step 2.

Let C be a shortest cycle in G such that |V(C)| = g < v/2. By Theorem
2, the co-cycle S of C is a cyclic edge cutset. So cA(G) £ |S| =g. If

313

cA(G) = g, by Steps 4, 8 and 9, Algorithm 1 will determine that cA(G) =

Now suppose that cA(G) < g—1. Assume S = (V(D,), V(D)) is a min-
imum cyclic edge cutset, where D2 = G — V(D). Then D, and D, have
shortest cycles C; and C, respectively. Let C} = apa; ...a.—1a0 be a short-
est cycle in D;. Notice that C; does not have any chord. Let No(a;) = {a:},
Ni(a:)\C1 = {u | u € V(G), ua; € E(G) and u ¢ V(C1)}, Nr(a:)\C1 =
{u]| v e V(G)\V(C1), d(ai,u) = r, and Iz € N,_(a;)\C}, zu € E(G)}
(r>2,i=0,1,...,c—1). Let My(a;) = No(a:) Uj=; Nj(a:;)\C1.

Suppose (N1(a;)\C1) N (N1(a;)\C1) # @ (for some i # j). Then either
we have a cycle C’ in D; of length less than |V(C};)|, contradicting the
assumption that C, is a shortest cycle in Dy, or [V(C})| £ 4 < 4(logy v+1).

Now suppose that [V/(C})| > 4. Let [V(Cy)| = c. Let G; = G[M_4-1(as)).
Since C) is a shortest cycle in Dy, (GinN D) N (G; N Dy) = 0 (i # 7).
Since |S] € g — 1 and |V(C)| 2 g, the edges of S lie at most g — 1 of
G; (i=0,1,...,c—1). So there is an a; such that G; does not contain
any edges in S. This means that G; C D;. But G, is a tree as C) is a
shortest cycle in Dy. v(G;) =2°+ d’+ 2l 4224 .. +2°/4' = 2¢/4-1 So
2¢/4-1 = y(G;) < v(D1) < ¥(G). Hence ¢ < 4(logy v +1).

By the same reason, the shortest cycle in D, has length at most 4(log, v+

1).

In Step 3 of Algorithm 1, we find all minimal cycles of length at most
4(logov + 1) in G. In Steps 5, 6, and 7, we find a minimum edge cutset
which separates C; in D; and Cs in D,. Hence we can find a cyclic edge
cutset of size |S|. By Step 8, we can determine the cyclic edge connectivity
of G. (]

Now we analyse the time complexity of Algorithm 1.
Theorem 4: The time complexity of Algorithm 1 is bounded by O(|V|8).

Proof. First we notice that, since G is a cubic graph, |E| = 3|V|/2, so
O(|E)) is equal to O(|V]).

In Step 1, it takes O(|E|) time to find a shortest cycle containing a
given vertex v using breadth first search strategy. Step 1 takes totally
O(IV||E|) = O(]V|?) time for all vertices v in V(G).

Now we analyse Step 3. Let e = xy be an edge in E(G).

We define No(z) = {z}, No(y) = {y}; Ni(z) = {u | Fv € No(=z),
uv € E(G)a u & No(y),u # x}$ Nl(y) = {u' I Fv € No(y), v € E(G),

314

u & No(z) U Ni(z),u # y}; Ne(z) = {u | 3v € Nr_i(z), w € E(G),
u ¢ U:;(}Ni(y):u # x}! Nr(y) = {u I Jv € Nr—l(y): w € E(G)9 u g
UZ_oNi(x),u # y} (r > 2). Then |[No(z)| = 2%, |No(y)| = 2°%; |Ny(z)| = 21,
IN(z)} <27, IN- ()| <27 (r 2 2).

Since, in Step 3, we find all minimal cycles C containing e for the given
edge e such that |V(C)| < 4(logy ¥+ 1) = ¢, notice that C does not contain
any chord and every edge from Uffl_lN,-(:c) to Ufﬁ%'lN,-(y) corresponds
to a different cycle containing e, also notice that, if there is an edge from
N.(z) to Ufi%_lN,-(y), then |Ny,1(z)] is less than 27*! by one, since G is
a cubic graph, the number of such cycles is at most 2 x 2¢/2~1 = 2¢/2 =
22(loga v+1) = 42 = O(|V'|2). For each e € E(G), there are at most O(|V|?)
minimal cycles of length at most 4(log, v + 1) containing e. There are at

most O(|V|?|E|) = O(|V|?) such cycles in F for all edges in E(G).

In Step 5, the FOR loop is for each combination of two different cycles
in F. So the loop repeats O(|V|€) times. Step 6 takes O(|V]) time to test
V(C1)NV(C2) = 0 and to construct G'.

By (7], Step 7 takes O(|V||E|) = O(|V|?) time to find a minimum edge
cutset Szy. So the loop of Steps 5, 6, 7, and 8 takes totally O(|V'|®) time.

Hence the whole algorithm takes O(|V|®) time. a

4 Algorithm for cyclic edge connectivity of
k-regular graphs

In the following, we give an efficient algorithm to determine the cyclic edge
connectivity of k-regular graphs. The idea is the same as Algorithm 1. We
write these two algorithms separately for the ease of understanding.

Algorithm 2:

1. Use a breadth first search strategy to find a shortest cycle containing v
for each vertex v in G, then we can find the girth g of G; // O(k|V|?)

2. If v(G) < 2g, then cA(G) = oo and is returned; // O(1)

3. Use a breadth first search strategy to find all minimal cycles C con-
taining edge e for each edge e € E(G) such that |V(C)| < 4(log,_, v + 2).
Let C. be the set of all such cycles containing e and let F = U, E@)Ce; [/
O(kS|V?) '

4. si=(k-2)g; // O(1)

5. For any two different cycles C; and C; in F do // O(k'°|V|®)

BEGIN

315

6. If V(C1) N V(C2) = 0, then we construct a new graph G’ such that
V(G') = V(G) U {z,y}, where z,y ¢ V(G), and E(G’) contains all edges
in E(G), for each vertex u on Cy, we put (k — 2) multiple edges between z
and u, and for each vertex v on Cz, we put (k — 2) multiple edges between
y and v; // O(|V])

7. Use the algorithm of [7] to find a minimum edge cutset Sz, which sep-
arates z and y; // O(k|V|?)

8. si=min{s,|Szyl}; // OQ)

END;

9. Then cA\(G) = s and is returned; // O(1)

Now we prove the correctness of Algorithm 2.

Theorem 5: Algorithm 2 can find a minimum cyclic edge cutset and hence
can determine cA(G).

Proof. By Theorem 2, if g > v/2, then Algorithm 2 will give answer that
¢\ = oo in Step 2.

Now suppose g < v/2. Let C be a shortest cycle in G such that [V(C)| =
g < v/2. By Theorem 2, the co-cycle S of C is a cyclic edge cutset. So
cA(G) £ |S] = (k-2)g. If c\(G) = (k—2)g, by Steps 4, 8, and 9, Algorithm
2 will determine that cA(G) = (k — 2)g.

Now suppose that cA(G) £ (k — 2)g — 1. Assume S = (V(D,),V (D7)
is a minimum cyclic edge cutset, where D, = G — V(D;). Then D, and
- Dy have shortest cycles C; and C» respectively. Let C) = aga;...a.-1a0
be a shortest cycle in D;. Notice that C; does not have any chord. Let
No(a:) = {a;} and let a;1,a:2,...,a:k—2 be the vertices in N(a;)\V(C1).
Let Ni(ai;)\C1 = {aij}, Ne(ai;)\C1 = {u | u € V(G)\V(Cy), d(as5,u) =
r =1, and 3z € Nr_1(ai;)\C1,zu € E(G)} (r > 2). Let M(a;;) =
No(a:) Uy Ni(ai;)\Ch.

Suppose (N1(ai;)\C1) N (N1(apg)\C1) # 0 for some i # p or j # q. Then
either we have a cycle C’ in D, of length less than |V (C})|, contradicting the
assumption that C) is a shortest cycle in Dy, or |V(C1)| <4 < 4(logy_; v+
2).

Now suppose that |V(C})| > 4. Let |V(C1)| = cand G;; = G[M,/4-1(as;5)].
Since C is a shortest cycle in Dy, (G;; N D1)N(GpgN D)) =0 (i #por
j # q). Since |S| < (k—2)g—1 and |[V(C)| 2 g, the edges of S lie in at most
(k-2)g—10fG;ij (:=1,2,...,c=1;7=1,2,...,k—2). So there is an a;;
such that G;; = G[M,/4—1(ai;)] does not contain any edge in S. This means
that Gi; C D;. But G;; is a tree as C is a shortest cycle in D;. So v(Gij) =
1+ (k=104 (k-1 +...+ (k=12 =1+ [(k-1)/4"1 -1)/(k-2).

316

Then v(G) > v(D;) > v(Gi) = 1+ [(k —1)¥/4"1 - 1)/(k - 2). So
¢ < Al0g_y (K —2)(v = 1)+ 1) +1] < 4llog,_; v +2).

In Step 3 of Algorithm 2, we find all minimal cycles of length at most
4[log;_, v+ 2) in G. In Steps 5, 6, and 7, we find a minimum edge cutset
which separates C; in D; and Cs in D,. Hence we can find a cyclic edge
cutset of size |S|. By Step 8, we can determine the cyclic edge connectivity
of G. a

Now we analyse the time complexity of Algorithm 2.
Theorem 6: The time complexity of Algorithm 2 is bounded by O(k!|V|?).

Proof. In Step 1, we use breadth first search strategy to find a shortest
cycle containing v for a given vertex v takes O(|E|) time. For all vertices
v in V(G), Step 1 takes O(|V||E|) time. Since G is a k-regular graph,
|E| = k|V|/2. Hence O(|V||E]) = O(k|V]?).

Step 2 takes O(1) time.

Now we analyse Step 3. Let e = zy be an edge in E(G). We define
No(z) = {z}, No(y) = {y}, Ni(z) = {u | Jv € No(z),uwv € E(G),u &
No(y),u # =}, Ni(y) = {u| Jv € No(v), uv € E(G),u ¢ No(z)UN; (), u #
v} Ne(2) = {u | v € Nroy(z), v € E(G),u & U5 Ni(y),u # z},
N, (y) = {u I Fv € N, —l(y)auv € E(G)au ¢ Ut:ON (z),u # y} (T‘ 2 2)
Then |No(z)| = (k - 1)°, |[No(y)l = (k — 1)°, [Ni(z)| = (k= 1)1, [N1 ()| <
(k= 1) INr(z) < (k= 1)7, [N:()l < (k= 1)".

Since, in Step 3, we find all minimal cycles C containing e for the given
edge e such that |V(C)| < 4(logi_, v + 2) = ¢, notice that C' does not
contain any chord and every edge from U2 Ny(z) to U2 N;(y) cor-
responds to a different cycle containing e, also notice-that, if there is an
edge from N,(z) to Ufﬁ% ' Ni(y), then |N,,(z)| is less than (k — 1)7*! by
one, since G is k-regular, the number of such cycles is at most (k — 1)(k —
1)::/2— = (k- 1)c/2 (k 1)2(log,,_, v+2) _ (k — 1)4 2 _ O(k4|V|2) For
all edges in E(G), there are at most O(k*|V|?|E|) = O(k%|V|?) such cycles
in F.

In Step 5, the FOR loop is for each combination of two different cycles
in F. So the loop repeats O(k'°|V|¢) times. Step 6 takes O(|V|) time to
test V(C1)NV(C;) =0 and construct G’.

By [7], Step 7 takes O(|V||E|) = O(k|V|?) time to find a minimum edge
cutset Szy. So the loop of Steps 5, 6, 7, and 8 takes totally O(k!!|V[?)
time.

317

Hence the algorithm takes O(k!|V[®) time. o

Acknowledgement. The work of this paper was supported by thé Na-
tional Science Foundation of China. '

‘References

[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications,
MacMillan Press, London (1976).

[2] D.A. Holton, B. Jackson, A. Saito and N.C. Wormald, Removable
edges in 3-connected graphs, J. Graph Theory 14 (1990), 465-473.

(3] D.A. Holton, Dingjun Lou and M.D. Plummer, On the 2-extendability
of planar graphs, Discrete Math. 96 (1991), 81-99.

[4] J.E. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected
components, SIAM J. Computing 2:3 (1973), 135-158.

[5] Dingjun Lou and D.A. Holton, Lower bound of cyclic edge connectivity
for n-extendability of regular graphs, Discrete Math. 112 (1993), 139-
150.

[6] Dingjun Lou, Lihua Teng and Xiangjun Wu, A polynomial algorithm
for cyclic edge connectivity of cubic graphs, Australas. J. Combin. 24
(2001), 247-259.

[7] H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multi-
graphs and capacitated graphs, SIAM J. Discrete Math. 5 (1992), 54—
66.

[8] O.R. Oellermann, Connectivity and edge-connectivity in graphs: A
survey, Congress. Numer. 116 (1996), 231-252.

[9] B. Peroche, On several sorts of connectivity, Discrete Math. 46 (1983),
267-277.

[10] M.D. Plummer, On the cyclic connectivity of planar graphs, in: Y.
Alavi, D.R. Lick and A.T. White eds., Graph Theory and Applications,
Springer-Verlag, Berlin (1972), 235-242.

[11] R.G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburg
10 (1880), 501-503.

318

