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Abstract

In {4] Fan Chung Graham investigates notion of graph labelings and related band-
width and cutwidth of such labelings when the host graph is a path graph. Motivated
by problems presented in [4] and our investigation of designing efficient virtual path
layouts for communication networks, we investigate in this note labeling methods
on graphs where the host graph is not restricted to a particular kind of graph. In (2]
authors introduced a metric on the set of connected simple graphs of a given order
which represents load on edges of host graph under some restrictions on bandwidth
of such labelings. In communication networks this translates into finding mappings
between guest graph and host graph in a way that minimizes the congestion while
restricting the delay. In this note, we present optimal mappings between special
n-vertex graphs in G, and compute their distances with respect to the metric intro-
duced in {2]. Some open questions are also presented.
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1 Background

Given an undirected graph G = (V, E); recall that a path of length lin G is a sequence
of 1+ 1 distinct vertices p = (vo,v1,--* , 1), wherev; € V fori =0,...,l, and v;u;4) € E
for j =0,...,l — 1 [5]. We define the boundary of p as 8p = {vo, v,} and will denote
the set of all unordered pairs of vertices in G as V x V. For background on practical
problems of virtual path layout in computer networks the reader is referred to [1, 3, 6].
We now present some definitions from [2].

Dehnitmn 1.1. Define P4 to be the set of all paths in G of length at most {, and take
Ul:l pG

Definition 1.2. To each set of paths Q C Pg, associate the path multi-graph Q° =
(V, Eq), where uv € Eq ¢ 3p € Q such that p = {u,v}.
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Definition 1.3. Let G be an undirected graph. For p € P¢ and e € E, let m(p,e)
denote the multiplicity of e in p. For Q C Pg define the congestion of Q at e as m(Q, e) =
> peq ™(p, €). Finally, we define the congestion of Q on G as 76(Q) = max.ce m(Q, ¢).

Definition 1.4. Let G, be the set of all simple, connected, undirected graphs (up to
isomorphism) on n vertices. For each positive integer £ and graphs H, K in G,, the ¢-
embedding thickness of K in H, denoted e’ (H, K), is defined as follows: If there exists
a set Q C P§; such that Q° ~ K then consider Q for which 74(Q) = 2% is minimal, and
set e, (H, K) = z, otherwise set e, (H, K) = oo.

Furthermore, since 74#(Q) < |E[K]| which is at most 2(3;—1)-, it follows that ! (H, K) is
bounded above by 2logn. Thus any fixed real number > 2logn can be used in place of
oo in the above definition.

The embedding thickness of K in H, denoted by e},(H, K), is obtained as above except
that Q C Py; that is, Q is a set of paths of arbitrary lengths.

Remark 1.5. We will write H > K if ¢!, (H,K) = 0 and H >, K when ¢},(H, K) = 0.
Remark 1.6. Note that el (H, K) = 0 implies that there is a set of edge-disjoint paths

Q € P} = E[H] such that Q° ~ K, and so |E[K]| < |E[H]| and K is a connected
spanning subgraph of H.

Remark 1.6 implies:

Lemma 1.7. H > K « K is a connected spanning subgraph of H.

Since P§ C P for 1 < £< ¢, the next lemma follows from Definition 1.4.

Lemma 1.8. VI,I', 1< 2< ¢ impliesVH,K € gn; el (H,K) < e!(H, K).

As a corollary, the relations ¢, £ € Z* form an ascending sequence of binary relations
on G,.

Corollary 1.9. VI,I', 1< €< ¥ impliesVH,K€G,, H> K= H > K.

Since every set of paths Q C ‘P{; is also a subset of P&‘l, we obtain the next lemma.

Lemma 1.10. V&, ¢ >n~1, ef, = ef: , that is, the relations =, are constant.

In [2] authors have shown that the functions {e,}/cz+ satisfy a graded triangle inequality.
Proposition 1.11. For any £),8; € Z%, and any G, H, K € G,,,

e (G, K) < (G, H) + €2(H, K)

The previous Proposition and Lemma 1.10 yield the following result:

Corollary 1.12. If€=1or €2 n—1, then ¢ satisfy the triangle inequality.
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Example 1.13. For an arbitrary I, ef(H, K) in general does not satisfy the triangular
inequality. Let G = K4, K = Py and H = C4 where K, P; and C, represent the complete
graph, the chain and the cycle on 4 vertices. If | = 2 then e2(Py, K4) = 00, €3(P4,C4) = 1
and 63(04,1(4) = 10923.

Definition 1.14. For any graphs H, K in G,, and a positive integer £ we define their
£-distance and distance, respectively, as follows:

df;(H:K) = efx(HvK)'*'ef:(KvH)
do(H,K) = ei(H,K)+ e (K, H).

Note that d%(H, K) may be infinity—for example, when £ = 1 and K is a proper connected
spanning subgraph of H.

Remark 1.15. d%(H, K) is symmetric.
The well-known fact that “If H is a subgraph of K, and K is a subgraph of H then

H ~ K" can be extended to the relations ¢, V€ € Z*, as shown in the next result which
the authors proved in [2].

Theorem 1.16. V2 € Z*,VH,K € G,,, H »¢ K and K =, H together imply H ~ K.

Remark 1.17. Thus Theorem 1.16 implies that V£ € Z*, VH, K € G,, d4(H,K) =0 &
Hx~K.

Remark 1.18. For an arbitrary I, Example 1.13 shows that d%(H, K) in general does not
satisfy the triangular inequality.

The next result now follows from Corollary 1.12, Remark 1.15 and Remark 1.17:
Theorem.1.19. Whenéf=1o0oré2n-1, df, is a metric on G,.

While (Gn,d2) is a totally disconnected metric space that embodies the classical notion
of graph isomorphism, (G,,d%) is a connected metric space for £ > n — 1.

We say that a bijection a : V(K) — V(H) is optimal for mapping graph K onto H if
the set of paths Q* in H between {a(u),a(v)}|(x,v) € E(K)} satisfying (Q*)° ~ K is
such that 74 (Q") is minimal. We call such set of paths as optimal set of paths in H for
a given K.

2 Distance between special graphs in G,
Let Ky, Sn,Cn, Pn € Gy be the complete graph, the star, the cycle, and the chain on n
vertices.

Proposition 2.1. dj(Pyn, Kn) =log([3)[%])
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Proof. Since P, is a subgraph of K,, lemma 1.7 implies e},(K,, P,) = 0. To compute
e} (Pn, Ky), by Definition 1.4 it suffices to find a set of paths @ C Pp, such that Q° ~ K,
and 7p,(Q) is minimal. Let P, consist of vertices vy,...,vn, with edges vv;41, 1 =
1,...,n = 1; then a path between v; and v;, (i < j) is just the subchain of P, induced
by the vertices v;, vi41,...,vj-1,v;; we denote this subchain as F; ;. Since Q° ~ K, it
follows that Q must be the set {P;; | 1 <i < j € n} C Pp,. Observe that 7p,(Q) =
l%] I'%'I, so e, (Pn, Kp) = l°82(|."§] f-’%]) Finally, d;,(Pn, Kn) = e (Pn, Kn)+en{Pn, Kp) =
loga(L31131)- m]

Proposition 2.2. d}(Sp, Kpn) = logy(n - 1)

Proof. Since Sy, is a subgraph of K, lemma 1.7 implies e},(Ky,S,) = 0. To compute
€n(Sn, Kn), we find a set of paths Q C Ps, such that Q° ~ K, and 75,(Q) is minimal.
Let S,, consists of vertices vy,...,vn-1, with edges (vo,v;),i=1,...,n —1, then a path
between v; and v;, (i < j) is of the form (v;,vp,v;) if 4, j # 0, and is an edge of the form
v;vp Or You; when j = 0 or i = 0, respectively. Since Q° > K, it follows that

@ = {{vi,v0,v;) | 0 # i < j # 0} U {(vi,v0) | i # 0} U {(vo,v5) | 5 # 0}

Since there are (n — 1) paths connecting a vertex v; to all other (n — 1) vertices, all
these paths contain the edge wov;. Hence the congestion on the edge v,v; is (n — 1),
which means that 75,(Q) = n - 1, s0 €],(Sn, Kn) = logy(n — 1) Finally, d},(Sn, Kpn) =
e:‘(sm Kn) + e:;(Pm Ku) = 1032(7" -1). o

Proposition 2.3. d;(Sn,Ps) =1+ log2([%])

Proof. Let S, consist of vertices vy, ...,vn—1, with edges (vp,%),i=1,...,n—1, and
take P, to consist of vertices v,,...,v,, with edges (vi,vi41),i=1,...,n—=1.

To compute e},(Sn, Ps), it suffices to find a set of paths Q C Ps, such that Q° ~ P, and
75, (Q) is minimal. Take
Q = {(vi,v0, %1 | i =1,...70— 2} U {(vn-1, %)}

Now it is easy to check that 75,(Q) = 2, and Q° = P,,, which implies that e}(Sy, P,) <
log22 = 1. On the other hand, e},(S,,P,) cannot be < 1 since this would mean
en(Sn, Ps) = 0, and then lemma 1.7 would imply that P, is a subgraph of S,, a contra-
diction. Thus, e},(Sn, Pp) = 1.

To compute €},(Pn, Sn), by Definition 1.4, it suffices to find a set of paths R C Pp, such
that R° ~ S, and 7p,(R) is minimal. We note that the path between v; and vj, (i < j)
is just the subchain of P, induced by the vertices v, vit1,...,v;-1,v;; we denote this
subchains as P; ;. First, if R is such a set of paths for which R°® ~ S, it must be that

R={P,nl|i=1,...,ni#m}

for some m € {1,...,n}. Observe that 7p, (R) is minimized when m = [}], and that for
the resulting set of paths R, 7p,(R) = [3]. Thus, e;(Pn,Sn) = log,(|3]).

Finally, d;,(Sn, Pa) = €5,(Sn, Pa) + €5(Pn, Sn) = 1 +logz(| 2)). 0
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Proposition 2.4. di(P,,Cp)=1

Proof. Since P, is a subgraph of C,, lemma 1.7 implies e},(Cn,P,) = 0. If P, con-
sists of vertices v1,...,vn, with edges (v;,vi41), i = 1,...,n — 1, take Q C Pp_ to
be {(vi,vi41) | i = 1,...,n — 1} U {(v1,v2,...,vn)}. Then it is easy to check that
Q° ~ C, and 7p,(Q) < 2, so €},(Pn,Cn) € 1. On the other hand, e} (P,,C,) can-
not be < 1 since this would mean e},(P,,Cn) = 0, and then lemma 1.7 would im-
ply that C, is a subgraph of P,, a contradiction. Thus, e}(P,,C,) = 1, and so
A5 (PnyCr) = €5(Pn,Cp) + €4(Cn, Pa) = 1. O

Proposition 2.5. dj(Sn,Cn) =1+ logy([272])

Proof. Let S, consist of vertices vp,...,Un-1 With edges (vo,%:), i = 1,...,n—1 and
take C,, to consist of vertices vy,...,v,, with edges (vy,vn) and (vi,v;), Ji — j| = 1 for
i,je{l...,n}.

To compute e;,(Sn,Cy), by Definition 1.4, it suffices for find a set of paths @ C Ps, such
that Q° ~ C, and 75, (Q) is minimal. Take

Q = {(vi,v0,vi11) | i=1,...7 = 1} U {(vn-1, %), (vo,v1)}

Now it is easy to check that 75,(Q) =2, and Q° =~ Cl,, which implies that e,(S,,Cr) <
loge2 = 1. On the other hand, e%(S,,C,) cannot be < 1 since this would mean
€;,(Sp,Cn) =0, and then lemma 1.7 would imply that C, is a subgraph of Sy, a contra-
diction. Thus e},(S»,Cp) = 1.

To compute ej,(Chr, Sn) , it suffices for find a set of paths Q C Pc, such that Q° ~ S,
and 7¢, (Q) is minimal. Take

Q= {(v1,v2,...,v_1,0) | i =2,3,...,[n/2]}
U {(vl.v,._l,v,._g,...,v_,-+1,v_,-) I] = [n/2] +1,...,n— 1}

Now it is easy to check that 7¢ (Q) = [(n—1)/2], and Q° ~ S,, which implies that
€n(Cn,Sn) < logy([252]). On the other hand, e},(Cn, S,) must be at least this large, by

the following pigeonhole argument: Suppose i : S, — Q° is an isomorphism. Let z def

i(vp); then z = yi € Cy, for some k € {1,...,n}. But then m(Q,el) + m(Q,e2) =n -1,
where €1 = (U(k—1)mod n,Uk) 80d €2 = (Vk, Uk+1)mod n). It follows that 7¢,(Q) > [252].
Hence €},(Cn, Sn) = loga([25]).

In conclusion, d;,(Sn, Pn) = €,(Sn, Pn) + €5 (Pa, Sn) = 1+ logy ([ 252]). (]

logy (252 if n is odd.
Proposition 2.6. d;(chn)={ gz% g ) if

log, :‘!28-_2). +13)+ 1) if n is even.
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Proof. Take C,, to consist of vertices vp,...,Us—1, With edges (vi,v;), |i — j| = 1 and
(vn-1,%0) for i,j € {0,1...,n — 1}. Since Cy is a subgraph of K,,, lemma 1.7 implies
e}, (K, Cn) = 0. To compute e},(Cn, K»), by Definition 1.4, it suffices to find a set of
paths Q C P¢, such that Q° ~ K,, and 7¢, (Q) is minimal.

Case I: n is odd. Take

. n
Q = {(viav(i+l)mod ns- -« s Y(i+d) mod n) |z=01"'ln_ l.d= 11"~$|.§J}

Then Q° ~ K, and for any edge e € E[C,), m(Q,¢€) = !-3,1 i= Q)=
Since Q° ~ K
it follows e,(Cn, K») < log, ( 1) ............ (%)

Further, since in Cy, there are n pairs of points at distances 1,2,:-, “—;l respectively, it
follows that the number of edges of C,, used to form paths in Q° such that Q° =~ K, is

n—l) _n(n?-1)

2’7 8

Since C,, has exactly n edges, it follows by pigeon hole principal that at least one of the
2

edges should be used at least 3"—8’—12 times. Therefore e},(Cn, Ky) 2 log, ( ), and

so from (i) above we get €},(Cn,Kn) = logg( ) Since e},(K,,Cy) = 0 it follows

dn(Cny Kn) = €;,(Kn, Cn) + €1(Cn, K») = log, (—r)

1424+

Case II: n is even. Take Q = Q; U Q2 U @3, where
. o "
Ql = {(viov(i+l)mod ny- -y Y(itd) mod n) I i=0,...,n—1; d= 1»|(§ - 1)}
.. n .
Q2 = {(vis Vis+1) mod nv+ -+ Ui+ ) mod n) | 0 S i < 5 i even }
., N,
Q3 = {(i,¥(i-1) mod n+ Y(i-2) mod ns- - - Y(i=F)mod n) | 0 < i € Pk odd }

Then Q° = K, and for any edge e € E[Cp], m(Q,€) = m(Q1,€) + m(Q2,€) + m(Q3,¢€),
where m(Qh,¢e) = E,_-llz = l"—"—al and m(Q2,€) + m(Qs,€) < |3] +1. So 7¢,(Q) <

.’i“s-_zl.'.l‘]-'.l, and therefore en(Cn‘Kn) logz (M + l4J + l) ..................... (z:
Further when 7 is even there are n pairs of points at distances 1,2, -- “'2 respectively
and 3 points at distance 3.

Therefore in order to connect all pairs we need paths of the total length at least

n-2,.n (nn-2) n
n(1+2+~-~+—2-)+-4——n(—-8—+z)
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Since there are only n edges in Cy,, at least one of the edges should be used at least
(22=2) 1| 2].11) times. This shows that e}(Cn, Kn) > log, (J—l" 222+ 2]+ 1) ......... (i

From (i) and (ii) we get e%(Ch, Ky) = log, (-'5"8—42 + 2]+ 1) and hence d,(Cy, Ky) =
log, (252 + 3] +1). .

Figure 1: The distances between P,,Cp, Sy, and K,, in (G,,d}).

Remark 2.7. The calculations of the previous results 2.1-2.6 are summarized in figure 1
using an undirected graph whose vertices are the points P,,Cy, S,, K, € G and whose
edges are weighted by the distance between its endpoints in (G,,d;,). In the above figure
a is given by Proposition 2.6.

Open Questions

(1) If s¢ for any G € G, denotes a selected subset of k vertices of a graph G, then is it
possible to find an optimal map ¢ from V(G) into V(H) such that ¢(sg) = sg?

(2) If f; and f» are optimal maps for (Hy, K1) and (Hz, K2) in G, and G, respectively,
then is f; x f an optimal map for (H; x Hz, K1 x K3) in Gpnp?

(3) Given a graph G and a natural number 7, can we find a graph H possessing a special
property (e.g. Hamilton, Euler) with d}(G, H) < logan?
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