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Abstract

A Halin graph is a plane graph [ = TUC, where T is a tree with no
vertex of degree two and at least one vertex of degree three or more,
and C is a cycle connecting the pendant vertices of T in the cyclic
order determined by the drawing of T. In this paper we determine
the list chromatic number, the list chromatic index, and the list total
chromatic number (except when A = 3) of all Halin graphs, where
A denotes the maximum degrec of /.

Keoy words. list coloring, Halin graph

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges unlcss otherwisc stated. A plane graph is a particular drawing in the
Euclidean plane of a certain planar graph. For a graph G, we denote its
vertex set, edge set, order, maximum degree, and minimum degree by V(G),
E(G), |G|, A(G), and é(G), respectively. Let dg(v) denote the degree of v
in G.

A proper k-coloring of a graph G is a mapping ¢ from V(G) to the
set of colors {1,2,...,k} such that ¢(x) # ¢(y) for every edge zy of G.
We say that G is k-colorable il it has a proper k-coloring. The chromatic
number x(G) is the smallest integer k such that G is k-colorable. We
make the convention that adjacent or incident elements receive diflerent
colors for all coloring notions discussed in this paper. A mapping L is said
to be an assignment lor the graph G if it assigns a list L(v) of possible
colors to each vertex v of G. If G has a coloring ¢ such that ¢(v) € L(v)
for all vertices v, we say that G is L-colorable or ¢ is an L-coloring of
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G. A graph G is k-choosable if it is L-colorable for every assignment L
satisfying |L(v)| = k for all vertices v. The list chromatic number x.(G),
also known as the choice number, of G is the smallest k such that G is
k-choosable. We can define analogous notions such as edge k-colorability,
edge k-choosability, the chromatic index x’(G), and the list chromatic index
x2(G) when colorings of E(G) are taken into consideration. If we consider
colorings of V(G) U E(G), we can define further analogous notions such as
totally k-colorable, totally k-choosable, the total chromatic number x"(G),
and the list total chromatic number x}(G).

Conjecture 1 If G is a multigraph, then x3(G) = x'(G).

This is the well-known List-Edge-Coloring Conjecture and was pro-
posed independently by Vizing, by Gupta, by Albertson and Collins, and
by Bollobés and Harris (sce [6, 9]). It has been proved for a few special
cases, such as bipartite multigraphs (5], complete graphs of odd order (7],
multicircuits [17], line-perfect multigraphs [15], and planar graphs G with
A(G) =12 [2].

Conjecture 2 If G is a mulligraph, then x3;(G) = x"(G).

Borodin, Kostochka and Woodall [2] proposed this conjecture which
is also known as the List-Total-Coloring Conjecture. They proved the fol-
lowing results: (i) x7(G) < |2A(G)] + 2 for any multigraph G. (ii)
X7 (G) < A(G) + 2 for a bipartite multigraph G. (iii) x7(G) = A(G) + 1
if G is a planar graph with A(G) > 12. Juvan, Mohar and Skrekovki [10]
also independently proposed Conjecture 2 and confirmed it for multigraphs
with maximum degree 2. Kostochka and Woodall proved the conjecture
for multicircuits of orders 3, 4, 5, and a wide class of even orders in [11] .
They finally established the conjecture for all multicircuits in [12, 13]. (A
mullictrcuit is a multigraph whose underlying simple graph is a circuit.)

The purpose of this paper is to study three choosability notions for
Halin graphs. A Halin graph is a plane graph H = TUC, where T is a
tree with no vertex of degree two and at least one vertex of degree three or
more, and C is a cycle connecting the pendant vertices of T in the cyclic
order determined by the drawing of T. By convention, we draw the tree
T inside the cycle C. Vertices (or edges) of C are called outer vertices (or
edges) of H and vertices of H — C are called inner vertices of H. A Halin
graph H is called a wheel if H contains only one inner vertex. If we delete
an outer edge from a wheel, the remaining graph is called a fan. The reader
is referred to [14] and [18] for results on colorings of Halin graphs.

Halin graphs possess some fairly intcresting properties. It is easy to
construct 3-regular Halin graphs with no non-trivial automorphisms. Halin
graphs are 3-connected, but none of their proper subgraphs are [8].
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In this paper, we will characterize the list chromatic number and the
list chromatic index of Halin graphs, and determine the list total chromatic
number of a Halin graph H when A(/) # 3. In particular, Conjecture 1
holds for a Halin graph H, so does Conjecture 2 when A(H) # 3.

2 Preliminaries

Let H = TUC be a Halin graph. Then every vertex of V(C) is adjacent
to exactly one vertex in V(H) \ V(C), and every edge of E(C) is adjacent
to exactly two edges in E(H) \ E(C). Since H is a minimally 3-connected
plane graph, we have A(H) > §(H) = 3. A graph is k-degenerale if each of
its induced subgraphs contains a vertex of degree at most k. It is casy to
see by induction that a k-degencrate graph is (k + 1)-choosable. An inner
vertex u of a Halin graph I is called special if it is a neighbor of a unique
inner vertex. Let vy,vs,...,v, denote the neighbors of 2 on C. If H is
not a whecl, then {u,v),vs,...,vx} induces a fan. Proofs of the following
Lemmas 1 to 7 cither are straightforward or appcared clsewhere.

Lemma 1 Fvery Halin graph is 3-degenerale.

Lemma 2 If a Halin graph H is nol a wheel, then il conlains at least two
special inner verlices.

Lemma 3 ([1]) Every Halin graph Il conlains cycles of all lengths k,
3 <k < |H|, excepl for one possible even value of k. In particular, I is a
Hamiltonian graph.

Lemma 4 ([4, 10, 16]) Let C, be a cycle of length n. Then
ifn=0 d2);
@ xeC)=xC) =1 5 FnZ0 tmed
O) xC =@ ={ 5 InZ0 el

Lemma 5 Let C be a cycle of length n. Let L be an assignment thal
satisfies |L(u)| = 2 (or |L(e)| = 2) for cach vertex u (or edge ¢) and L(u') #
L") (or L(e') # L(e")) for some pair of conseculive verlices v’ and u”
(or edges ¢’ and e”.) Then C is L-colorable (or edge L-colorable.)

Lemma 6 Let T be a tree with A(T) 2 2. Then
(a) xe(T)=x(T)=2;
(b) xe(T) =x'(T) = A(T);
() xZ(T)=x"(T)=A(T)+1.
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Lemma 7 ([3]) Every d-regular edge d-colorable plane graph is edge d-
choosable.

The next lemma is a technical one whose straightforward proof needs
detailed case analyses. This lemma is essential in establishing Theorem 11.

Lemma 8 Let K denote a graph obtained by adding an edge uv to a 4-cycle
uzvyu. Let L be an assignment for V(K) U E(K) that satisfies |L(x)| =
|L(y)| = |L(u)| = |L(uz)| = |L{uy)| = 3, |L(vz)| = |L(w)| = |L{vy)| = 4,
and |L(v)| = 5. If L(u) # L(uz) and L(u) # L(uy), then K is totally

L-colorable.

Proof. We are going to construct a total L-coloring of K in cach possible
case (up to symmetry.) We use nonncgalive integers to denote colors in
L. When no ambiguities arise, we usc { = o to indicate that elements of
K appearing in the expression ¢ are colored with the color a. Let L'(2)
denote the shortened list for z when all colors that have already been used
on elements adjacent or incident to z are deleted from L(z). An m-set
means a set with m clements.

Casc 1. L(z)N L(uv) # 0 or L(y) N L(uv) # @: We may assume that
L(z) N L(uv) # @ without loss of generality.

We may choose colors so that (z,uv) = 1, uz = 2, and (since L(u) #
L(uy)) v = 3, uy = 4, and y = ¢,. Il v,z and vy cannot be properly
colored from their shortened lists L', then L'(vy) € L'(v) = L/(vx) and
|L’(v)| = 2. In this case we may assume that L(v) = {1,3,5,6,¢,}, L{vz) =
{1,2,5,6}, L(vy) C {1,4,5,6,¢,}, and ¢, ¢ {1,3,4,5,6}, so that L'(vy) C
L'(v) = L'(vz) = {5,6}. Without loss ol gencrality, we may supposc
5 € L(vy). Il L(y) # {3,4,¢}, then we recolor y with some color in
L{y)\ {8,4,¢y} to make L'(v) # L'(vz), and the required L-coloring can
then be completed. Similarly, if L{u) € {1,2,3,4,¢,} then we can recolor
u to make L'(v) # L'(vz). If there exists a € L(uy) \ {1, 2,3,4}, we lct
uy = a and y = 4 to make L'(v) # L'(vz). So we may assume

Ly) = {3,4,¢}, L(u) C{1,2,3,4,}, and L(uy) C {1,2,3,4}. (%)

First let vy = 5. There remain three subcasces to consider.

Subcasc 1.1. 2 € L(uy) and 4 € L(uz).

We let (uy,vz) = 2, (uz,y) =1, and v = 6.

Subcase 1.2. 4 ¢ L(ux).

Il L(uz) # {1,2,3}, we can recolor uz with some color in L(uz) \
{1,2,3,4} and set vz = 2 and v = 6. So we may assume L(uz) = {1, 2, 3}.
If 2 or ¢, € L(u), then (regardless of whether or not ¢, = 2) let u = 2 or
¢y, vz = 2, (uz,y) = 3, and v = 6. So we may assume L(u) = {1, 3,4} by
(x). 1f 3 € L(uy), let (v,uy) = 3, u = 4, and vz = 6. So we furthermore
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assume L{uy) = {1,2,4} by (x). Now let (uy,vz) = 2, (uz,y) = 3, u =>4,
and v = 6.

Subcase 1.3. 41 € L(ux) and 2 ¢ L(uy).

Then L(uy) = {1, 3,4} by (x). If 4 € L(u), let (v,uy) => 3, u =4, and
vz = 6. Il ¢ € L(u)\{1,2,3},let (v,2y) = 3, u = ¢, y =4, and vz = 6.
So we assume L(u) = {1,2,3} by (x). Now let (u,vx) = 2, (uy,v) = 3,
and (uz,y) = 4.

Case 2. L(z)N L(y) # ® and (L(z) U L(y)) N L{uwv) =

We may start with the following assignments: (z, y) = 1, uzr = i,
u = j, and uy = k. Let L(y) = {1,2,3} and L(w) = {4,5,6,7}. In view
of symmetry, we only consider the following cascs.

Subcase 2.1. {i,j,k} C L(uv).

We remove the color 1 from z and y, Lhen color uv, vz, vy, v, z, and ¥
in succession.

Subcase 2.2. {i,7,k} N L(uv) =

We color vz, vy, v, and uv in succession.

Subcase 2.3. |{i,7,k} N L(uv)| = 1.

Subcase 2.3.1. j =4 and i,k ¢ L(uv).

The shortened lists will satisfly |L'(w)] > 3, |L/(wv)| = 3, |L'(vz)| > 2,
and |L/(vy)| 2 2. If L’ (v) # L’(uv), we color vz, vy, uv, and v in succession.
If L'(v) = L'(wv), it is easy to sce L(v) = {1,4,5,6,7}. Since 4,5,6,7 ¢
L(z)U L{y), we may recolor z and y, respectively, with some color diflerent
from 1 to make L'(v) = {1,5,6,7}. Finally I/(v) # L'(uv).

Subcasc 2.3.2. i=4 and j,k ¢ L(uv).

If w,vz,vy, and uwv cannot be properly colored from their shortened
lists L', then L'(vz), L'(vy) C L'(v) = I/(w) = {5,6,7}. It follows that
L(v) = {1,4,5,6,7}. If 1 € L(vz), we color vz with 1 and recolor z with
some color ¢z € L(z) \ {1,5}. Since ¢z € L(v), we may color vy, uv, and
v in succession. So suppose 1 ¢ L(vz). I [L(y) N {7, k}] < 1, we recolor =
with some color in L(z) \ {1, 5} and y with some color in L(y) \ {1,4, k},
alterward let » = 1, and finally color vy, vz, and uv in succession. Now
assume |L{y) N {7,k}| = 2. Without loss of gencrality, suppose j = 2,
k = 3, and hence L{») = {1,2,5,6,7}. I L(vz) # L(uv), we color vz
with some color in L{vz) \ L(uv), then color vy, v, and uv in succession.
Thercfore let L(vz) = {4,5, 6,7}, and similarly L(vy) C {1,3,5,6,7}. First
erase the color 1 from z. If 1 € L(uy), then let (v,uy) = 1, y = 3, and
color vy, vz, uv, and z in succession. So supposc 1 € L(uy). If there exists
B € L{uy)\ {2,3,4}, let uy = B, y = 3, v = 1, and color vy, uv, vz, and z
in succession. Hence let L(uy) = {2,3,4}. Il 3 € L(uzx), then let uz = 3,
(vz,uy) = 4, = 1, and color vy, v, and uw in succession. Therclore let
3 & L(uz). If there exists v € L(uz) \ {1,2,4}, we nced to handle two
cascs. When v € L(v), let (v,uz) = %, £ = 1, and color vy, vz, and uwv
in succession. When v ¢ L(v), implying v ¢ L(uv), let uz = v, z = 1,
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and color vy, vz,v, and uv in succession. Finally, if L(uz) = {1,2,4}, let
uz = 1, vz = 4, and color vy, v, uv, and z in succession.

Subcase 2.4. |{i,7,k} N L{uv)| = 2.

Subcase 2.4.1. 7 =4, k=5,and 1 #6,7.

Remove the color 1 from z and y. Il i ¢ L(z), we color vz, uv, vy, v, z,
and y in succession. If i € L(z), we color vz with some color in L(vz)\ L(z),
then color wwv, vy, v, x, and y in succession.

Subcase 2.4.2. i=4,k=>5,and j #6,7.

If 6 or 7 € L(u), we recolor u with 6 or 7, then the problem can
be reduced to Subcase 2.1. Thus assume 6,7 ¢ L(u). Let either 4 or 5
belong to L(u), say 4 € L(u). If L{uz) # {1,4,5}, we let v = 4 and
uz = a € L(ux)\ {1,4,5}. Afterward, the problem is reduced to Subcase
2.1 il a € {6,7} and to Subcasc 2.4.1 otherwisc. So assume L(uz) =
{1,4,5}. If L{uy) # {1,4,5}, we color u with 4, ux with 5, and uy with
a color in L(uy) \ {1,4,5}. Again, thc problem is reduced to Subcasc
2.1 or Subcase 24.1. So supposc L(uy) = {1,4,5}. Il 4 € L(vz), we
let (uy,vz) = 4 and uz = 5. The shorlened lists satisly |L'(uv)| = 2,
|L'(v)| > 2, and |L'(vy)| > 2. If I/(v) = I/(vy) = L'(uwv) = {6,7}, we
let wv = 5, v = 6, vy = 7, uz = 1, and rccolor z with some color in
L(z)\{1,7}. Otherwise, the required coloring can be established. Therefore
assume 4,5 ¢ L(vz) U L{vy). Now let uwv = 6. It suffices to consider the
case when L'(v) = L'(vz) = L'(vy) = {a, b}, implying L(v) = {1, 6,j, a,b},
L(vz) = L(vy) = {1,6,a,b}, and j # a,b. If 7 ¢ {a,b}, we let uv = 7,
v=6,vr=a, and vy = b. {7 € {a,b}, lct v = 7, vy = 1, then color
y with a color in {2,3}\ {7} and vz with a color in {a, b} \ {7}. Hence we
assume 4,5 ¢ L(u).

Let us crase the color 7 from u. Note that the partly shortened lists
satisly |L'(vz)| > 2, |I/(vy)| = 2, and I/(uv) = {6,7}. If at most onc of
L'(vz) and L'(vy) is identical to L'(wv), we color vz, vy, uv,v, and u in
succession. So assumc L'(vz) = L'(vy) = I/(uv) = {6,7}. It follows that
L(vz) = {1,4,6,7} and L(vy) = {1,5,6,7}. If there exists a € L(u)\ L(y),
welet u= o, uv=>6,vx= 7 vy=1,v=B€ Lw\{1,6,7,a}, then
color y with a color in L(y) \ {1,8}. So we may assume L(z) = L(u) =
L(y) = {1,2,3}. In this case, let (u,vy) =1, (z,y) = 2, vz = 6, wv = 7,
and color v with a color in L(v)\ {1,2,6,7}.

Case 3. L(z)N L(y) = L(z) N L(uwv) = L(y) N L{uw) = 0.

Let L(z) = {0,1,2}, L(uv) = {3,4,5,6}, and L(y) = {7,8,9}. We first
color ux, u, and uy with 7, 7, and k, respectively. In fact, we only need to
consider the following cases.

Subcasc 3.1. {i,7,k} C L(uv).

We color uv, vz, vy, v, z, and ¥ in succession.

Subcase 3.2. {i,j,k} N L(uv) =40.
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Assume j ¢ L(z) (otherwise, j ¢ L(y).) Color z with a € L(z) \ {¢}
and y with B € L(y) \ {7, k}. Then |L'(uv)| = 4. I all lists L'(v), L'(vz),
and L’(vy) are identical to a 2-set, we recolor z with some color in L{z) \
{7, @} to make them not entircly identical. Thus a proper coloring can be
constructed.

Subcase 3.3. |L(uv)N {3, 7,k}| =2.

First assume that 7 = 3, k = 4, and ¢ # 5,6. It suffices to color
vz (using a color in L{vz) \ L(z) when i € L(z)), uv,vy,v,z, and y in
succession. Next assume that i =3, k =4, and j # 5,6. I{ j ¢ L(z)U L(y),
we color vz, uv, vy,v, z, and y in succession. So we may assume j = 0. If
0 € L(vz), we let vz = 0, then color vy, uv,v,z, and y in succession. If
0 ¢ L(vz), we color vz with some color in /(vz) \ {1, 2,3}, then color uv,
vy, v, z, and ¥ in succession.

Subcasc 3.4. |L(uv) N {i, j,k}| = 1.

Subcase 3.4.1. j=3and i,k ¢ L(uw).

If i ¢ L(z) and k ¢ L(y), we color vz, vy, uv,v,z, and ¥ in succession.
If i€ L(z) and k ¢ L(y), we first color vz with some color in L{vz) \ L(z),
then color vy, uv, v, z, and y in succession. Finally supposci € L(z) and k €
L(y). Il there are a € L{vz)\ L(z) and B € L(vy)\ L(y) such that o # B, we
color vz with a and vy with 8. Then we color uv, v, z, and 3 in succession.
Otherwise, we should have L(vz) = {0,1, 2, 8} and L(vy) = {7,8,9, 8}. Let
z=>a€ {0,1,2}\ {i}, vz = b€ {0,1,2}\ {i,a}, y = c € {7,8,9}\ {k},
and vy = d € {7,8,9}\ {k,c}. Il L(v) # {3,a,b,¢,d}, we can further color
v and wv in succession. If L{v) = {3, a,b, ¢,d}, we color v with b, vz with
B, and uv with some color in {4,5,6}\ {8}.

Subcasc 3.4.2. i=3and j,k ¢ L(uv).

At first, we assume j ¢ L(z). Let y = a € L(y)\ {j,k} and vy =
b e L(wy)\ {a, k}. If v, vz, uv, and z cannot be properly colored from their
shortened lists L', then we suppose, without loss of generality, L'(v) =
L'(uv) = L'(vz) = {5,6} and |L'(z)| = 3. This implics that b = 4, L(v) =
{4,5,6,4a,7}, and L(vz) = {3,4,5,6}. If at most one of 7 and k belongs to
L(y), we recolor y with some color in L{y) \ {a, 7, k} so that L'(v), L'(uv),
and L’(vz) are not entirely identical. So supposc j =7,k =8,anda = 9.
If there is a € L(uz)\ {3,7,8}, we let. uz = o, uv = 3, and z = 0.
When a € {4,9}, further let vz = 5 and v = 6. When o ¢ {4,9}, let
vz = B € {5,6}\ {«} and color » with some color in {5,6} \ {#}. Thus
suppose L(ux) = {3,7,8}. Let uzx = 7. If there is ¢ € L(u) N L(uv),
we may recolor u with ¢ so that the problem is reduced to Subcase 3.4.1.
Otherwisc, we color u with some color in L(u) \ {7,8} so that the problem
is reduced to Subcase 3.2.

Now assume j € L(z). In view of the previous argument, we may
suppose L(u) = L(z) = {0,1,2}. Weletv = a € L)\L(u),y = be L)\
{k,a}, vy = c € L(vy) \ {a,b,k}, and vz = d € L(vz)\ {3,a,c}. Il there
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exists a € {4,5,6} \ {a,c,d}, let uv = a, then color properly u and z. So
suppose {a, ¢, d} = {4,5,6}. Now let uv = c and vy = e € L(vy)\ {4, 5, 6}.
If e = b, we urther recolor y with some color in L(y) \ {e,k}. If e = k,
we need to recolor uy with some color in L(uy) \ {b,e}. Let k’ denote the
color of uy after possible recoloring. We color u with 8 € L(u) \ {k'}, and
z with some color in L(z)\ {8,d}. m]

3 Main Results

Theorem 9 For a Halin graph 11, we have

3, olherwise.

xe(H) = { 4, if Il is a wheel of cven order,

Proof. Let I = TUC where C is the cycle ujusg - - - u,uy. Since H contains
at least onc 3-face, x¢(H) > x(/) = 3. On the other hand, x¢(H) < 4
since H is 3-degenerate by Lemma 1.

If I is a wheel of even order, then xe(//) > x(II) = 4. Thus x(/1) = 1.

Now suppose that /7 is not a wheel of even order. Let L be an arbitrary
assignment for H such that |L(u)] = 3 for cach u» € V(JI). By Lemma 6,
T — V(C) has an L-coloring ¢. Define an assignment L’ of C by L'(v) =
L(v) \ {¢(w)} for every v € V(C), where w is the inner vertex adjacent
to v. Thus |L'(v)] > 2 for all v € V(C). Suppose that C is not L'-
colorable. By Lemmas 4 and 5, |C| is odd and all new lists arc equal to the
same 2-set. By Lemma 2, H contains a special inner vertex u. Without
loss of generality, let y, w1, up, ..., ux be the neighbors of u, where y is an
inner vertex. Note that g, is not a ncighbor of u. We recolor u with
some color in L(u) \ {¢(u), #(y)}. Alter this change, |L'(ux)| > 2 and
L'(uk) # I'(ukq1). So C can be properly colored by Lemma 5 and H is
L-~colorable. ]

Theorem 10 If H is a HHalin graph, then x (1) = x'(/I) = A(H).

Proof. Let the given Halin graph be expressed as i = T U C, where ©C
is the cycle uiuy - - - uzuy. It suffices to prove xp(/1) < A(JT). Let L be an
assignment satislying |L(e)| = A(J]) for cach edge e of /1. We are going to
show that /1 is edge L-colorable.

If A(H) = 3, then H is a 3-regular 3-connccted plane graph. By
Lemma 3, H is a Hamiltonian graph. It follows that /I is edge 3-colorablc.
By Lemma 7, H is cdge L-colorable.

Suppose A(H) > 4. By Lemma 6, T has an cdge /~coloring ¢. For
every e € [5(C), define the new list L/(e) = L{e) \ {¢(e1), ¢(e2)}, where e,
and ey are edges of T that arc adjacent to e. Thus |L'(e)] =2 A(/) -2 >



2. Suppose that C is not edge L’-colorable. By Lemmas 4 and 5, |C] is
odd and L’(e) = {a,b} for every cdge e of C. In this case we must have
A(H) = 4. By Lemma 2, I contains a special inner vertex u. Without
loss of generality, let y,uq,u9,...,ux be the neighbors of u, where y is
an inner vertex. Thus uujug forms a 3-face of /. Supposc ¢(uu) = ¢
and ¢(uuz) = ca. Thus L(ujug) = {a,b,c1,e2}, ¢1 € L(unui), and c2 €
L(ugug). Erase ¢; from uu; and ¢ from uus. Now there are at least
two colors available for each of uu; and uwus. We color un, with a new
color o different from ¢;, then color uug properly. We then modily L’
accordingly. Hence |L'(unu1)| 2 2 and L'(upu1) # L'(un—1u,). In fact, if
|L' (upuy)| = 2, then ¢; € L'(upuy) \ L'(2n—1un). By Lemma 5, C is edge
L’-colorable. Consequently, /1 is edge I-colorable. ‘ [m}

Theorem 11 If H is a Halin graph with A(11) > 4, then xj/ (1) = x"(1I) =
A(H)+1.

Proof. l.ct the given Halin graph be expressed as [/ = TUC, where C is
the cycle wyug - - - upuy. It suffices 1o prove x; (/1) < A(/)+1. Let I be an
assignment for /1 salisfying |L(z)| = A(/)+1 for every z € V(IT)U E(IT).
We are going to show that /] is totally I-colorable.

Suppose A(H) > 5. By Lemma 6, T has a total [~coloring. Let ¢ be
a coloring obtained from a total L-coloring of T by uncoloring the pendant
vertices. Since every element 2z € V(C)U E(C) is adjacent or incident to
two colored elements of T (cither two edges or one edge and one vertex), x
has at least [our available colors to choose from. It follows from Lemma 4
that ¢ can be extended to C.

Now suppose A(H) = 1. Il /I is a wheel of order 5, then (by using
Lemma 8 as in the last paragraph of this proof) it is casy Lo prove that
Xy (H) = 5. Otherwise, H contains a special inner vertex » by Lemma 2.
Withoul loss of generality, let y,u), ua, . .., uk, 2 < k < 3, be the neighbors
of u, where y is an inner vertex.

Il & = 2, then dy(u) = 3 and uwujug forms a 3-face of /1. Let ¢ be a
coloring obtained from a total L-coloring of T (which exists by Lemma 6)
by uncoloring u, uwuy, uug, and all pendant vertices. Each ¢ € V(C)U E(C)
has at least three available colors to choose from. Since every path is totally
3-list colorable, we extend ¢ to (V(C)U E(C))\ {1, uz,n1u2}. Now every
vertex or edge on the 3-cycle uujusu has al least three available colors to
choose fromn. By Lemma 4, it can be properly colored.

If £ = 3, then {u,uy,uz,u3} induces a fan K of order 4. Let ¢ be a
coloring obtained from a total [~coloring of T {which exists by Lemma 6)
by uncoloring w, uu,, uuy, nug, and all pendant vertices. Then we extend
¢ to (V(CYU L(CN)\ {1, ug, ug, uyuz, ugug}. Let z be a vertex or an edge
of K. From the list L(z), we remove all ¢(z), where z € V() E(IT)
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is adjacent or incident to z. Denote this modificd assignment of K by L'.
Then |L'(ug)| =5, |L'(t)] =4 for L € {uug, uiug, ugua}, and |L'(s)| > 3 for
s € {u,u,us, uuy,uug}. Without loss ol gencrality, we may assume that
|L'(t)| = 4 for all ¢ considered and |I/(s)| = 3 for all s considered (otherwise
we can scleet their subsets having such property.) If L'(u) = L'(uug), we
change ¢(uzuq) to some color which is dilferent from its three adjacent or
incident colors. When this final modification is done, |L'(uvua)] = 3 and
L'(uu3) # L'(u). If L'(v) = L'(uu,), we have a similar recoloring. Thus
we may suppose L'(uu;) # I/(u). By Lemma 8, K is totally L’-colorable.
Conscquently, H is totally L-colorable. O

Remarks. Zhang, Liu, Wang, and Li [18] proved that x” (/1) = A(IT) + 1
for every Halin graph I with A(/T) > 4. Theorem 11 establishes the
stronger result for the list total chromatic number.

For a Halin graph /1 with A(H) = 3, we actually have 4 < xy(H) < 5.
This follows from a result of Juvan, Mohar, and Skrckovski [10] which states
that every graph G is totally 5-list colorable if A(G) < 3. Note that the
complete graph K4 and the complement /7 of a 6-cycle are 3-regular Halin
graphs having x;(K4) = 5 and x”(H) = 4. Il Conjecture 2 is true, we have
xg(H) = 4.

Finally, we note that our prools of Theorems 9 to 11 actually provide
polynomial-time algorithms for finding those list, colorings.
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