Magic Squares, Finite Planes and Simple Quasilattices
Jonathan Leech
1. Deriving quasilattices from magic squares and finite planes

Noncommutative generalizations of lattices have been studied for over
fifty years. One of the first to study such objects was the physicist Pascual
Jordan who in the 1950s and early 1960s wrote numerous papers on the subject.
Many types of noncommutative lattices are quasilattices. By definition, a
quasilattice is a set Q together with associative binary operations v and A that
are also idempotent (xvx = x = xAx) and dualize each other in that

xvyvx = x ifandonlyif yaAxvay =y

Given that v and A are associative and idempotent, this is equivalent to the
following absorption identities being satisfied:

XAQVIVY)IAX=Xx=XV(AXAY)VX

Ordinary lattices are quasilattices and so are antilattices - sets with
associative, idempotent binary operations, v and A, satisfying

xvyvz=xvz and XAYAZ = XAZ.

Finite antilattices can be described using rectangular arrays. Suppose we have a
finite set A along with two (usually different) ways of storing its elements in a
rectangular array with each array corresponding to one of the operations. The
join xvy and the meet xAy of x, y € A is the element z in the row of x and the
column of y of the assigned array. For example, let {1, 2, 3, ... , 9} be stored in
the following arrays:

1 23 81 6
M|4 5 6 wW|3 5 7|
7 89 4 9 2

Then 1v6 = 3 while 1A6 = 6. Similarly, 3v2 = 2 while 3A2 = 7. Allowing for
infinite arrays, every antilattice can be described in this way.

In this paper our interest is with simple quasilattices. While simplicity
is defined in the next section, suffice to say here that a simple quasilattice is
either a simple lattice or a simple antilattice. We are especially interested in
uncovering (families of) simple antilattices, and seeing how arrays such as
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magic squares and representations of finite planes can give rise to simple
antilattices.

Recall that a magic square is a square array of distinct numbers where

all rows, columns and the two diagonals have a common magic sum. A classic
instance is the Lo-Shu with a magic sum of 15:

8
3
4

O VN =
N N o

Given a magic square, its derived antilattice arises by letting the given
square be the A-array and letting the v-array be the square array storing the same
numbers entered in their natural ordering. The above antilattice example
illustrates this in the case of the Lo-Shu.

Square arrays also come from finite planes, that is, vector spaces of
dimension 2 over finite fields. For instance, given the field Zs, the plane Zs X Zs
can be represented as the 5x5 array of ordered pairs on the left below, but with
parentheses deleted. Alternatively, one could view these pairs as base 5
representations of integers in base 10. Thus 3,2 represents 325 = 17;0. The
planar array could thus be encoded using the numbers in the right array.

00 L0 20 30 4,0 0 1 2 3 4
01 L1 21 31 4,1 5 6 7 8 9
02 L2 22 32 4,2 10 11 12 13 14
03 L3 23 33 4,3 15 16 17 18 19
(04 1,4 24 34 4,4] 20 21 22 23 24]

In either case, this plane has 25 points and 30 lines, the latter arranged in six
classes of five parallel lines each. The rows of the array consist of all lines of
slope 0, the columns consist of all lines of undefined slope, the main diagonal
plus the four broken descending diagonals yield all five lines of slope 1, and the
counter-diagonal plus all four broken ascending counter-diagonals yield all five
lines of slope 4. In all, between the rows, columns, diagonals and counter-
diagonals, 20 out of 30 lines are accounted for in this way, with only lines of
slopes 2 or 3 left out.

Alternatively, Zs x Zs can be represented by storing the five lines of
slope 1 in the five rows and the five lines of slope 4 in the five columns in the
left array below.
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060 L1 22 33 44 0 6 12 18 24
23 34 40 01 1,2 13 19 20 1 7
41 02 1,3 24 30 21 2 8 14 15}
L4 20 31 42 03 9 10 16 22 3
[ 32 43 04 1,0 21} (17 23 4 5 11]

In the right array, not only do all rows, columns, the main diagonal and the
counter-diagonal sum to 60, but so do all broken diagonals and counter-
diagonals. This makes the right array a pandiagonal magic square. Returning
to the left array, the (broken) diagonals and counter-diagonals are precisely the
lines of slope 3 and 2 respectively. Indeed, the line arrangement of the left array
forces the right array to be pandiagonal. That finite planes can yield
pandiagonal squares is well known. Together, the two representations of this
plane in integer format describe an antilattice induced from a magic square. As
is shown below, both derived antilattices encountered thus far are simple.

For further background on quasilattices and their congruences, see
Laslo and Leech [3]. For more information on noncommutative lattices in
general, see the introductory remarks in Leech [4].

2. Congruences and simple algebras

Quasilattices, and antilattices in particular, are algebras. Recall that a
congruence on an algebra A is any equivalence 0 on its underlying set A that is
consistent with the operations. For a quasilattice @, this means that for all a, b, ¢
€ Q, a 6 b implies avc 6 bvc, cva 0 cvb, anc 0 bac and caa 0 cab. The set of
congruences on Q forms a complete lattice Con(Q). Given 6,, 6, € Con(Q), 9,
v 0, is the equivalence generated from 8, U 0, while 6, A 0, is just 6, N 6,.

On any quasilattice @ a canonical congruence D is defined by a D b if
both avbva = a and bvavb = b in Q; equivalently, a D b if anbaa = a and
baanb = b. The Clifford-McLean Theorem for quasilattices states: (1) D is
the least lattice congruence on Q and (hence) Q/D is the greatest lattice image

of Q. (2) The D-equivalence classes of Q are just its maximal sub-antilattices.
Put briefly: every quasilattice is a lattice of antilattices. There is more.
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By results in [3], Con(Q) is isomorphic to a complete sublattice of the
direct product Con(Q/D) x I1s.,Con(D;s) where {D; 15 e A} is an indexed set of

all maximal sub-antilattices of Q. Since Q/D a lattice, Con(Q/D) is distributive.

Thus, Con(Q) must be distributive [or modular] when all of the Con(D;) are
thus. Even when the Con(D;) are not that well-behaved, they play a significant
role in our understanding of congruence lattices of a quasilattice.

Of special interest in the study of any class of algebras is the
determination of those algebras A that are simple in that Con(A) = {A, V}
where A = {(a, a)|ae A} is the trivial congruence, and V = AxA is the
universal congruence, where A is the set underlying A. In general, a simple
quasi-lattice is either a simple lattice or the simple antilattice. Thus, uncovering
simple antilattices is a worthy ongoing project in the study of quasilattices. In
particular, in this paper we are interested in simple antilattices induced from
magic squares or finite planes. In the case of an antilattice induced from a
magic square, its congruence lattice and hence its potential simplicity is
unaffected by any dihedral variation of the magic square.

To begin, given any pair a, b € A, recall that the principal congruence
O(a,s) is the smallest congruence on A relating a and 5. Clearly: 0,5 = N{0 €
Con(A) | a0 b}. In particular, 8,5 = A precisely whena=»5. Clearly:

Proposition 1. An algebra A is simple if 84 =V all fora# b in its
underlying set . [

For antilattices, this obvious criterion can be simplified. Consider an
antilattice A deter-mined by a pair of rectangular arrays. Let Ry and C, represent
a row and a column of, say, the v-array of A. (Which array is unimportant. But
both Ry and Cy must come from the same array.)

Theorem 2. (Simplicity Criterion for Antilattices) Given an antilattice
A determined by a pair of rectangular arrays, let Ry and C, denote respectively
a row and a column of the v-array. Then A is a simple algebra iff6,, =V for
alla#binRyand all a#bin C, In particular, any given 0, ; must equal V if
A is generated from {a, b} using both v and A.

Proof. The condition is clearly necessary. To see sufficiency, suppose that the
condition holds for row R, and column C, intersecting at element ¢ in the v-
array. Givena # b in A, both cva and cvb lie in Ry, while avc and bve lie in C,.
Since a # b, either cva # cvb in Ry or avc # bvce in C,. Say cva # cvb, so that
Ovacvny = V. But since cva Oy Vb, Oyq o refines 8,y so that 0, = V also.
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Thus 8,4 =V foralla# b € A and A is simple. Since v and A are idempotent,

the sub-algebra {a, b) generated from {a, b} lies in the 0,,;-class of a. The final
statement follows. [

Comment. In the case of a square antilattice determined from a pair of
nXxn arrays, this theorem says that the number of principal congruences needing
to be checked can be reduced from (n* — n%)/2 to just n2— n. Although the check
to see that 0, = V for a # b in either RyXR, or CyXC, can be initially tedious, as
the check continues some random recursion enters the process. Thus, if say 0,
has been shown to equal V and a 6, b is encountered in the check of 6,4, then
one can immediately conclude that 64 = V also holds.

Theorem 2 can be used to establish the following result showing that
simple antilattices of all composite orders greater than 4 exist. Its proof is given
in [3]). (See Theorem 14.)

Theorem 3. Given positive integers mandn withn2m=22andn 2 3,
the antilattice determined by the following pair mxn arrays with distinct entries
is simple. O

TR v In n %2 Yn-1 %

021 022 ..... azn 22 423 azn a31
M85 83 - G | M9 %33 %3n %4

a a . ... a

| ml m2 mn | | m2 am3 amn alnd

Note that the (a)-array is the result of first removing a,, from the (v)-array,
moving all remaining elements forward so that a,, takes the vacated place, ay,
takes the place of a,, and so forth, and finally placing the removed a,, in the
now-vacated lower right corner.

Returning to connections with magic squares, we have:

Example. The antilattice derived from the Lo-Shu is simple.

1 23 8 1 6
V)4 5 6 |3 5 7]
78 9 4 9 2
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Take {1, 2}. From the A-array, it is clear that 6, 9 € (1, 2). But {1, 2, 6, 9}
clearly generates the v-array and thus the algebra. Hence 0, = V. Similar
remarks hold for any other pair a # b in any row or column of either array. [J

These remarks deserve a more precise analysis. Given distinct
elements ¢ and b in a common row (column) of a 3x3 array, the elements ¢ and
d lying in neither the row (column) or the two columns (rows) of @ and b is
called the dual pair. The relationship is symmetrical. Thus {1, 2} and {6, 9}
form dual pairs in the v-array above, but not in the A-array. Any pair of dual
pairs in a 3x3 array generates the entire array under the ambient idempotent
operation. Given two distinct elements in a common row or column of one of
the above arrays, this pair immediately generates its dual pair in the opposite
array. In this sense, these two arrays are complementary 3X3 arrays, so that
any pair of elements lying in a common row or column in either array generates
the entire antilattice which thus is simple.

What can be said in general about congruences on an antilattice?

Given a rectangular array A, a cartesian partition of A is a partition P
that is induced in cartesian fashion from a partition of the rows and a partition of
abcde

the columns of A. For example, a cartesian partitionof | f g b i j|is

O PR
[k 1 m[x d

Given such a partition P, an equivalence 7 on A is given by a P b iff

k'l mno

a and b lie in the same P-class. Such an equivalence is called a cartesian

equivalence on A. From semigroup theory, and the study of rectangular bands
in particular, the congruences on an array that are consistent with a single
operation (using just one of v or A) are precisely its cartesian equivalences.
Thus:

Proposition 4. Given an antilattice A, its congruences arise from pairs
g cartesian partitions of its two arrays sharing the same equivalence classes.
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1 3 4 6 3 2 13
5 5 10 11 8
Bample. Mg 0 1n 12 WDy 6 7 1
13 14 15 16 15 14 1

The magic square on the right appears in Albrecht Diirer’s Melancholia. This
antilattice is rich in congruences. Its congruences besides A and V, as classified

by their corresponding partitions, are:

al « [l, 2v 3! 4! 3, 14’ 15, 16 I 5, 6, 7, 8, 9, 10, 11, 12]
o, A [1,4,5,8,9,12,13,16 | 2,3,6,7,10,11, 14, 15]
o, © (1,4,13,16] 2,3,14,15] 5,8,9,12| 6,7, 10, 11}
B, - [1,2,13, 14] 3,4,15, 16| 5.6,9,10| 7.8, 11, 12]
B, - [1,3,13,15] 2,4,14,16] 5,7,9,11] 6,8, 10, 12]
" “ (1,4,5,8] 2,3,6,7] 9, 12, 13, 16] 10, 11, 14, 15]
Y, “ (1,4,9,12] 2,3,10,11] 5, 8,13,16] 6,7, 14, 15]
8 - 11,132, 1413, 154, 1615,916,10/7,11]8, 12)
5, o [1,412,315,816,7]9, 12|10, 11113, 16| 14, 15]
en < [1,13]2,14]3,15]4,16]5]9|6]10|7]11]8]12]
£ - il13l2]141311514]1615,9(6,10]7, 1118, 12]
€ - .4121315,8l61719, 12110111113, 16| 14| 15]
En - il4l2,3151816,719/12] 10, 11]13] 16| 14, 15)
Con(A) is as follows: v
oy o,
o : [0 273 :
By B, Y1 Y2
3 3,
€y € & €2
A.
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Since a copy of ‘N arises as a sublattice (say {a,5, 8y, &, 8,, A}), the full

congruence lattice is not modular, much less distributive. Its order 15, however,
should be contrasted to 225, the order of the lattice of all distinct cartesian
partitions of a 4 X 4 array. [J

3. Antilattices induced from 3 X 3 and 4 X 4 magic squares.
The Lo-Shu is one of infinitely many possible 3x3 magic squares that

can arise if we agree to store integers besides 1 - 9. Others include the following
two squares:

71 8% 17 252 171 363
5 59 113 373 262 151}
101 29 47 161 353 272

The magic square on the left consists entirely of primes, with a magic sum of
177, the least possible such sum for any magic square of primes. (Magic
squares of primes is a significant topic among magic square enthusiasts.) The
magic square on the right consists of 3-digit palindromes. It turns out that all
three magic squares induce simple antilattices. Is this true for all 3 x 3 magic
squares? To answer this, we begin with the following result on complementary
pairs of arrays.

Proposition 5. Given 3x3 arrays, A and A’, each storing the same 9
distinct elements, the following assertions are equivalent:

1. A and A’ form a complimentary pair of 3x3 arrays.

2. Iftwo distinct elements are either row-related or column-related in
either array, they are unrelated in either sense in the other array.

3. The rows [columns] in A either all become (extended) diagonals in
A’ or all become extended counterdiagonals in A’; similar
remarks hold in passing from A’ to A.

Proof. Clearly (1) implies (2). For the converse, observe that the status of (2) is

unchanged if either array undergoes row or columns interchanged! Thus, we
assume (2) in the case where elements a and b lie in a common row of A, as in
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abc a f x

d e f| Assertion (2) implies that A’ has either form [i b y|or

g R i ] uvw

a i x a f h

f b y| Applying (2) further, A’ must be either | i b d | or its transpose
lu v w] e g ¢

a i e

f b g In either case we have a complementary pair of arrays. Similarly,

h d c]
assuming a and b lie in the same column of A, (2) forces A’ to be a
complementary array. Likewise, if @ and b are row-[column-] related in A’, then
(2) forces A to be a complementary to A’. Thus, (1) and (2) are equivalent.
Clearly (3) implies (1) and (2). Given the latter, every row/column in either

array must be an (extended) [counter]diagonal in the other array. But this can
only happen if (3) holds. [J

We are ready to state our main results about antilattices induced from
3%3 magic squares.

a b c

Theorem 6. Given a 3x3 array A =|d e f| consisting of nine

g hi
distinct positive integers in their natural (increasing) order and a 3 x 3 magic
square A’ storing the same integers, then either A and A’ are complementary or

b i ¢ 311 4

else A’ is a dihedral variationof | f e d | (|7 6 5 |isa minimal instance
g ah 8 19

of the latter.)

Proof. Using a dihedral replacement of A’ if need be, distinct >y >0 and 0. >
B + v exist such that:

1 1 1 -110 01-1
AA=al 1 1|+p 1 0-1|+y|-1 0 1
1 1 1 0-1 1 1-1 0O

83



o-p oa+B+y o-y
=|la+PB-v o oa-p+y|

o+y o-pB-v o+p

Clearlya = 0.— f —y and b = 0. — . What is the next smallest element? If it is
o - ¥, then the ascending sequence

o0-B-y <a-B<a-y<a-f+y<a<o+f-vy
<oa+y<o+f<a+P+y

must occur. In this case we have the displayed array. Otherwise, we must have:

a-B-y<o-B<o-B+y<a-y<a<oa+y
<oa+P-y<a+PB<a+P+y
yielding an array complementary to A. O

This theorem has the following consequences:

Corollary 7. Given the arrays A and A’ of the prior theorem, the
induced antilattice A is simple if and only if A and A’ are complementary.
Otherwise, Con(A) is a 3-element chain.

Proof. In the complementary case, any pair of distinct elements generates A,
which thus is simple. Otherwise, a single nontrivial, proper congruence is given
by the partition {a, b, ¢, g, b, i|d, e, f}. O

Corollary 8. All antilattices induced from 3 X 3 magic squares are
congruence distributive. []

We next consider antilattices induced from 4 X 4 magic squares that
store 1 - 16. While just one 3x3 magic square stores 1 - 9 (with eight dihedral
variations), 880 essentially distinct magic squares store 1 to 16. A list of all 880
squares was given by Bernard Frénicle de Bessy in a posthumous 1693
publication. A mathematical analysis was given in the 1983 paper of Dame
Kathleen Ollerenshaw and Sir Hermann Bondi [5]. Thanks to the following
observation, these 880 cases decompose into 220 classes of 4.

Lemma 9. Given a 4 X 4 magic square A, let squares B, C and D be induced
Jrom A by simultaneous row and column permutations determined by (2 3), (1
2)(34) and (1 3 4 2) respectively. Then A - D are all magic squares, but none
are dihedrally equivalent. Moreover all four squares induce the same
antilattice. [1



Thus one can get by checking the leading array in each row of four
squares in the Ollerenshaw-Bondi list. Among these, the nonsimple cases are
easily spotted, thanks to a theorem about semimagic squares (all rows and
columns add up to 34). In its statement, the index of a congruence p counts its
number of congruence classes.

Theorem 10. If a semi-magic square A storing 1 — 16 induces a
nonsimple antilattice A, then A has a maximal congruence | of index 2 whose
corresponding congruence class partition is either

Mg ={1-4,13-16|5-12})
or
nc=1{1,4,5,8,9,12,13,16|2,3,6,7, 10, 11, 14, 15}

where g and T ¢ are outer/inner partitions splitting rows[columns] 1 & 4
against rows[columns] 2 & 3 in the standard array.

Example. Consider the following magic squares in the Ollerenshaw-
Bondi listing:

1 7 12 14 1 4 15 14 1 16 6 11
1016 3 5 1316 3 2 13 4 10 7
) &) 25) .
159 6 4 12 9 6 7 12 5 15 2
8§ 213 11 8§ 510 11 8§ 9 3 14

Square (1) induces a simple antilattice because 1 - 4 lie in distinct rows and
columns (denying mg) and 1, 5, 9, 13 lie in distinct rows and columns (denying
7ic). By contrast both 7ty and ® work for (9), while . works, but not ntg, for
square (25). Thus both (9) and (25) are nonsimple. [J

In any case, a quick survey of the 220 leading squares in the
Ollerenshaw-Bondi list yields:

Theorem 11. Of the 880 magic squares storing 1 — 16, 416 cases yield
simple antilattices and 464 yield nonsimple algebras, giving a breakdown of
47.27% to 52.73%.

Caveat. In the Ollerenshaw-Bondi list, the arrays actually store 0 — 15,
instead of 1 - 16, and do so in base 4 notation.

Proof of Theorem 10. (All arrays in this proof are identified to within
row and column permutations.)
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All possible cartesian partitions of a 4x4 square with distinct elements
can only have indices among the following: 1, 2, 3, 4. 6, 8, 9, 12, 16. Thus if A
is nonsimple, the index |u| of its maximal proper congruence i must lie among
2,3,4,6,8,9, 12

If |u| = 2, then any cartesian partition of the standard array is one of
four cases: one row and three rows, or one column and three columns, or two
rows and two rows, or two columns and two columns. The first two cases are
impossible when A is included, as no row or column in the standard array has
the magic sum of 34. In the final cases, the sum of each pair of rows or columns
must be 2 x 34 = 68. This occurs only for {row 1 U row 4 | row 2 U row 3} or
{column 1 U column 4 | column 2 U column 3}, just as stated.

|| = 3 is impossible in the antilattice context since that would mean a
row or column in the standard array would sum to 34 (because it would appear
as a row or column in A), which is impossible.

[4| = 4 is possible. But in this case, the quotient algebra A/u would
have order 4 and thus be nonsimple by [3] Proposition 13. Hence p was not
really maximal after all.

|u| = 6 is also possible with the cartesian partition of the standard array

[1x2] [1x2] [1x1] [1x3]

having either template [l X 2] [1 X 2] or template [1 X l] [l X 3] ora

[2x2] [2x2] [2x1] [2x3]

transpose. In any of these cases, the two bottom cells would still be adjacent in
the cartesian partition of the magic square, thus inducing a congruence of index
two.

Similarly for the remaining indices of 8, 9 and 12, congruences with
these indices are always refined by a properly larger congruence of index 2, thus
returning us to the |u| =2 case. U

Example. Pandiagonal magic squares first appear in the 4x4 case. In
considering pandiagonal magic squares in general, two such squares of the same
dimension are equivalent if either is obtained from the other using a
combination of dihedral operations, along with cyclic permutations of the rows
and/or the columns. Any given pandiagonal square storing 1 through 16 is thus
one of 8 X 4 x 4 = 128 equivalent pandiagonal magic squares. In the 4x4 case,
48 dihedrally distinct pandiagonal squares exist, all being equivalent to exactly
one of the following three pandiagonal magic squares:
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1 8 10 15 1 8 11 14 1 14 4 15

12 13 3 6 12 13 2 7 g8 11 5 10
7 2 16 9 6 3 16 9 13 2 16 3|
1411 5 4 15 10 5. 4 2 7 9 6

The first two pandiagonal magic arrays induce simple antilattices; but the
antilattice induced by the third array does not. In fact, its congruence structure
is precisely that of the Diirer example since the Diirer square and the third
pandiagonal square are equivalent under row and column interchanges. Indeed,
the

4 15 14 1
5 10 11

third square is column equivalent to 16 3 which is row
9 6 7 12

equivalent to Diirer’s square. [J

4. Simple antilattices over finite planes

Finite affine planes are fruitful sources of both simple antilattices and
magic squares. We begin with a finite plane construction of simple antilattices
that generalizes an earlier result given by the author and Gratiela Laslo. (See [3]
Theorem 15.).

Construction. Let F be a finite field of order p” for p a prime and pick
p# v in F* = F\{0}. On the affine plane P=F X F set (a, b) v (¢, d) = (¢, b),
the point on the line of slope 0 through (a, ) and the line of undefined slope
through (c, d). Let (a, b) A (c, d) be the point on the line of slope u through (a,
b) and the line of slope v through (c, d), that is:

n-v n-v

Such an algebra is called the affine antilattice on P with parameters p and v. It
is indeed an anti-lattice with L- and R-classes for v and A consisting of lines of
slopes 0, o, | and v.

(a,b)/\(c,d) =£ua—b—vc+d’ uva—vb—uvc+p.d].

Theorem 12. Given a finite field F with p # v inF¥, the affine
antilattice on P with parameters W and v is simple if either W(p— V) or -vi(p -
V) is a multiplicative generator of F*.

87



Proof. That both operations form rectangular band operations is easily checked.
We show that if 8 = p(p — v) generates F¥, then (P, v, A) is generated by any
pair of distinct points, and thus is simple. To see this, observe that scalar
multiplication and vector addition distribute over v and A in that both

k(a, b) v k(c, d) = k[(a, b) v (c, d)]
@b+ ENvicd+EnN =abvidl+ef)

and

with similar identities holding for A. Thus in showing that all of P is generated
from any two distinct points, we may assume that one of the points is (0, 0). If
(a, b) is the other point, then from (a, 0) = (0, 0)v(a, b) and (0, b) = (a, b)v(0, 0)
we may assume the given nonzero point lies on either the x-axis, consisting of
pairs (x, 0), or on the y-axis consisting of pairs (0, y). From (y/( p - v), 0) = (0,
0)v[(0, 0)A(O, ¥)], we may suppose further that the given pair of points is (0, 0)
and (a, 0) on the x-axis. But {(0, 0), (a, 0)} is the scalar a times {(0, 0), (1, 0)}.
Hence {(0, 0), (a, 0)), the subset of P generated from {(0, 0), (a, 0)} is the scalar
a times the subset ((0, 0), (1, 0)). We show that the latter is P from which it
follows that {(0, 0), (a, 0)) = P also.

First observe that (0, 0) v [(1, 0) A (0, 0)] = (3, 0). Repeatedly applying
0, 0) v [ __ A (0, 0)] yields all points of the form (8", 0). By our assumption on
§, the entire x-axis lies in {(0, 0), (1, 0)). From [(a, 0) A (0, 0)] v (0, 0) = (O,
wva/(p - v)), it follows that the y-axis also lies in ((0,0), (1,0)). Hence all (a, b)
=(0, b) v (a, 0) lie in ((0, 0), (1, 0)) and the latter must be P.

The case when -v/(u - v) generates F* is shown similarly, but by using
the identity:

0,0) v [(0,0) A (c,0)] = (-ve/(n-v),0). O

Corollary 13. Simple affine antilattices exist for all prime power
orders of the form p** except for 2%.

Proof. This follows from the previous theorem and the fact that the group F* is
cyclic. O

B nor —¥

p-v p-v

Not until Z, can parameters be found such that neither
generates F*. But even here the antilattice must be simple.
%
Theorem 14. For p an odd prime and allp v e Z P the affine
antilattice on P = Z, X Z, with parameters \ and v is simple.

Proof. Again, we need only show that (0, 0) and (1, 0) generate P. Consider
what can be generated by repeated application of fx, y) = (0, 0) v (x A y). We
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immediately obtain (u/(n + w), 0) and (W/(u + =), 0), where t denotes -v. In
general, all x-coordinates of the form p(u, ®)/(u + ®)*, where p(l, ) is any sub-
polynomial of (i + )", arise from repeated application of f{x, y). In particular,
fork=p-1,(u + nyY' =1and0, 1p*x, 2u*n, ..., (p - 1) u*’n are x-
coordinates of f-generated vectors. But these are precisely the p distinct
multiples of u*n and hence are all of Z,. Thus (0,0),(1,0),...,(p-1,0)isin
the generated set. But the latter occupy distinct rows and columns in the A-array
and so collectively generate all of Pviavand A. [

Not until Fy can a nonsimple affine antilattice be defined on P (by
using b = 2 and v = 1). In the case of Theorem 14, where F = Z,, the A-arrays
of affine antilattices over P yield examples of pandiagonal matrices, provided p

*
> 5, thus allowing = 4 slopes in Z p: To do so, however, one may need to

interchange rows or columns (leaving the antilattice structure unchanged). As
is, the A-array is at least semimagical if we let its coordinate pairs denote
integers, base p from 0 through p? - 1, with rows and columns all summing to

P -2,

Example. Consider the A-arrays below for P = Zs X Z; in the case
where L = 1 and v = 4. Considered as integers base 5, all rows and columns
have a sum of 220, base 5, or 60, base 10.

(@ 00 11 22 33 44 (b) 00 11 22 33 44

14 20 31 42 03 23 34 40 01 12

23 34 40 01 12 41 02 13 24 30

32 43 04 10 21 14 20 31 42 03

41 02 13 24 30 32 43 04 10 21
h=l=k a=0B=o h=1,k=2 a=3, =2

() 00 I1 22 33 44 (d 00 22 44 11 33

32 43 04 10 21 14 31 03 20 03

14 20 31 42 03 23 40 12 34 01

41 02 13 24 30 32 04 21 43 10

23 34 40 01 12 41 13 30 02 24
h=1,k=3 o= 2,p=3 h=2k=1a=2, B=3
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In (a), the descending diagonals consist of lines of slope 0, while all ascending
diagonals consist of lines of undefined slope. Hence the corresponding
numerical diagonals do not share the same sum of 220;. As one goes across the
rows from left to right, the entries are all incremented by & = +1 in the x-
coordinate; and as one goes down the columns from top to bottom, the entries
are also incremented by & = +1 in the x-coordinate.

What happens if we change this scheme by choosing & and k values
between 1 and p — 1 such that & # + k? This would require only row switches
and column switches. The result would create diagonals also sharing the same
magic sum. In terms of the coordinates, the descending diagonals would consist
of lines of slope a = (h — k)/(h + k) and the ascending diagonals would consist of
all lines of inverse slope B = (h + k)/(h — k) and the corresponding numerical
array would be a pandiagonal magic square. Several such cases are given in (b)

-(@. 0

Two further comments: Any simple antilattice constructed from an
affine plane Z, X Z, using slopes u, v € (1,2, 3, ..., p — 1} is also induced from
any of the pandiagonal magic squares themselves induced from this affine
situation. Secondly, and once again, constructing pandiagonal magic squares
from finite planes is a well-known process. In this regard, the paper makes no
claim of novelty.

5. Simple antilattices from some classic magic squares

In 1693, Simon de la Loubére gave the following rule for constructing
magic squares for any cdd order n:

De la Loubére’s Rule. Place 00 in the middle of the first row. In
ascending (broken) diagonal fashion place in order the remaining 01 through
0,n-1. Beneath O,n-1 place 10 and again in ascending diagonal fashion place
11 through 1,n-1. Beneath 1,n—1 place 20, and repeat the process until an
entire nxn array is filled. The resulting array, is a magic square of odd order n
storing 0 through n*~1 in base n.

The array to the right is the n = 5 case in base 5 notation storing 0 - 24.

00 01 02 03 04 31 43 00 12 24
10 11 12 13 14 42 04 11 23 30
m{20 21 22 23 24 W03 10 22 34 41
30 31 32 33 34 14 21 33 40 02
(40 41 42 43 44 (20 32 44 01 13]
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Theorem 15. The magic squares of odd order given by De la
Loubére’s rule together with their corresponding standard array yield simple
antilattices precisely when the order is prime.

Proof. Suppose that x @ y where x #y. By Theorem 2, we may assume that x
and y either lie in a common row or in a common column of the v-array. If x
and y are in the same column, then their meets yield 0-related elements u and v
in distinct columns of the v-array. From {u, v, uvv, vwu} we gain a pair of
distinct 0-related elements lying in a common row of the v-array .

Thus at the outset we may assume that x 0 y with x and y distinct
elements in a common row of the v-array. If the order of the magic square is p
=2n + 1 (and the order of the algebra is p?), then n0 v x and n0 v y must be
distinct -related elements in the middle row of the v-array, say ni and nj. But
ni and nj are also lie the main ascending diagonal of the A-array and from them
we can generate via AX, Y)=niv (X A Y), all n, itmk where k=j-i Ifpis
prime, the main ascending diagonal in the A-array must lie in a common 0-class.
Since this diagonal generates the entire algebra, 6 = V.

If p is composite, say p = ab with 1 < a, b < p, then define an
equivalence o by ij a kl if both i = k (mod a) and j=! (mod a). That o is a v-
congruence is clear. In the case of A, observe that in the A-array any horizontal
or vertical displacement of a positions from any starting position yields an o-
related element. Conversely, any pair of a-related elements are connected by a
sequence of such displacements. Thus given x & y and « o v, the A-columns of x
A u and y A v, being the A-columns of # and v, differ in their position by a
multiple of a. Likewise the A-rows of x A u and y A v, being the A-rows of x and
¥, differ in their position by a multiple of a. It follows that x A u &y A v so that
o is a A-congruence also. Clearly o is neither Aor V. [J

A variation of de la Loubere's rule had been given previously by
Claude Gaspar Bachet de Méziriac, the same individual who 1621 published the
edition of Diophantus’ Arithmetica of which Fermat owned a copy.

Bachet de Méziriac’s Rule. Place 00 directly above the middle
position of an nxn array. In ascending (broken) diagonal fashion place. in
order, the remaining 01 through 0,n—1. Next, place 10 two rows directly above
0,n-1. In ascending (broken) diagonal fashion place, in order, 11 through
1,n-1. Next, place 20 two rows directly above 1,n-1. Repeat the process until
an entire nxn array is filled. The resulting array, is a magic square storing 0
through n’~1 in base n.

Theorem 16. The magic squares of odd order given by Bachet de

Méziriac’s rule induce simple antilattices precisely when the order is prime.
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00 01 02 03 04 05 06 63 20 54 11 45 02 36
10 11 12 13 14 15 16 26 53 10 44 01 35 62
20 21 22 23 24 25 26 52 16 43 00 34 61 25
30 31 32 33 34 35 36 15 42 06 33 60 24 51
40 41 42 43 44 45 46 41 05 32 66 23 50 14
50 51 52 53 54 55 56 04 31 65 22 56 13 40
60 61 62 63 64 65 66 | 130 64 21 S5 12 46 03]

(Standard v-array for 0 - 48, base 7) (de Méziriac array for 0 — 48, base 7)

Proof. Suppose first that p is prime with p = 2n + 1 and let © be a congruence
with x 6 y where x # y. As with the previous theorem, things may be reduced to
the case where x = ni and y = nj in the middle row of the v-array and the
ascending diagonal of the A-array. If F(X, Y) =n0 v (X A Y), then F(ni, nj) = n
(i + j)/2 in the same O-class as ni = n0 v ni. (Here (i + j)/2 is calculated in Z,.)
Since n0, nl, ... , n p-1 generates the algebra, simplicity follows if we can show
that from ni and nj one can F-generate the entire n” v-row. This is equivalent to
showing that from any two i #j in Z,, all of Z, is generated via the function f{x,
¥) = (x+y)2. Let S be the set of all numbers in Z, thus generated. If 0 € S,
then S must be closed under addition and thus is a nontrivial subgroup of Z,.
Since Z, is simple as a group, this forces S = Z,. Indeed RO, (x + y)/2) = (x +
V4, RO, (x + y)/4) = (x + y)/8, etc. Hence all (x + y)/2° lie in S. Since some
power of 2 equals 1 in Z,, we get x +y € S so that S is as claimed. Otherwise,
suppose 0 ¢ S. From fix + k, y + k) = fix, y) + k, the general case can be shifted
to the O-case, so that no matter what pair i, j is given, the f~generated set is all of
Z,.

’ If p is composite, say p = ab with 1 < a, b < p, then define an
equivalence o by ij a &l if both i = k (mod a) and j = (mod @). The argument
that o is a congruence is identical to that in the case involving de la Loubére’s

rule. (J

6. A gallery of select examples.

The minimum consecutive prime pandiagonal magic square of order 6
displayed below stores the 36 consecutive primes from 67 through 251 and also
induces a simple antilattice.
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Replacing each prime number in the array by the integer from 1 through 49
representing its position among the other entries under the natural ordering, we
obtain the pandiagonal magic square displayed to the left below. Subtracting 1
from each entry, we obtain a pandiagonal magic square with entries from 0 to
48. Writing each number in base 7 notation, we obtain the square to the right.
Interpreting these entries as point-pairs on the finite plane, Z, X Z,, the rows of
this sqpare are the lines of slope 4; the columns are the lines of slope 2; the
ascending diagonals are the lines of slope 6; and the descending diagonals are
the lines of slope 1. By Theorem 14, all of the isomorphic antilattices induced

67
139
241
73
199

[ 211

193
233

97

167

103
137

71 251
181
89
131 229
227 101
197 79

113
191

109 239
157 107
163 149
151 179
127 173
223 83

Next, consider the 7xX7 pandiagonal magic square of prime numbers:

11
6397
3881

839
9311
5387
1801

3851
827

9281
5381
1777
131

6379

9257 1747 6481

5501

71

1759 6361

101
6367
3821
821

3797
941

9239
5471

3779
911
9227
5441
1741
47

- from these pandiagonal arrays must be simple.

1
39
28
10
48
30
19

27 46

9 35
47 17

29 6
18 37

7 26
38 8

16 42
5 24
36 13
25 4
14 33
45 15
34 4

12
43
32
21
3
41
23

31
20
2
40
22
11
49

93

00
53
36
12
65
41
24

881
9221
5417
1861
29
6451

3767

35 63
11 46

64 22
40 05
23 s1

06 34
52 10

5399
1831
17
6421
3761
857
9341 |

21 56
04 32
50 15
33 61
16 4
62 20
45 03

14
60
43
26
02
55
31

42
25
01
54
30
13
66




" Consider next the 9 x 9 nested magic square of Frénicle de Bessy. Its
nested magic squares have magic sums of 369, 287, 205 and 123 forming a
descending arithmetical sequence with the main square inducing a simple
antilattice.

16 81 79 78 77 13 12 11 2
76 28 65 62 61 26 27 18 6
75 23 36 53 51 35 30 59 7
74 24 50 40 45 38 32 S8 8
9 25 33 39 41 43 49 57 73
10 60 34 44 37 42 48 22 72
14 63 52 29 31 47 46 19 68
15 64 17 20 21 56 55 54 67
(80 1 3 4 5 69 70 71 66

The antilattice induced from the following 13 x 13 nested magic square
of primes is also simple. The status of all five antilattices induced from its five
properly nested magic subarrays is unchecked.

1153 8923 1093 9127 1327 9277 1063 9133 9611 1693 991 8887 8353
9967 8161 3253 2857 6823 2143 4447 8821 8713 8317 3001 3271 907
1831 8167 4093 7561 3631 3457 7573 3907 7411 3967 7333 2707 9043
9907 7687 7237 6367 4597 4723 6577 4513 4831 6451 3637 3187 967
1723 7753 2347 4603 5527 4993 5641 6073 4951 6271 8527 3121 9151
9421 2293 6763 4663 4657 9007 1861 5443 6217 6211 4111 8581 1453
2011 2683 6871 6547 5227 1873 5437 9001 5647 4327 4003 8191 8863
9403 8761 3877 4783 5851 5431 9013 1867 5023 6091 6997 2113 1471
1531 2137 7177 6673 5923 5881 5233 4801 5347 4201 3697 8737 9343
9643 2251 7027 4423 6277 6151 4297 6361 6943 4507 3847 8623 1231
1783 2311 3451 3313 7243 7417 3301 6067 3463 6907 6781 8563 9091
9787 7603 7621 8017 4051 8731 6427 2053 2161 2557 7873 2713 1087
2421 1961 9781 1747 9547 1597 9811 1741 1213 9181 9883 1987 9721
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This example and all others in this section are taken from Clifford
Pickover’s recent book [6). With the exception of the second example, the
simplicity in each case is checked using the tedious, but accessible method of
Theorem 2. In doing so one can often strategize to some extent, depending on
the precise layout of the square being considered.

As we have seen, not every magic square induces a simple antilattice.
Nearly all of Benjamin Franklin’s magic squares fail to induce simple
antilattices. These squares are typically of the form 4n x 4n and one can often
spot a nontrivial congruence almost right away. Consider the Franklin square on
the left below that has been partitioned in half. The left cell contains the
contents of rows 1,2, 7 and 8 of the standard array to the right storing 1 — 64 in
their natural order. The right cell of the Franklin square contains the contents of
the four middle rows of the standard array.

52 61 4 13|20 29 36 45 1 2 3 4 5 6 7 8
14 32 62 51|46 35 30 19 9 10 11 12 13 14 15 16
53 60 S5 1221 28 37 4 7 18 19 20 21 22 23 24

11 6 59 54|43 38 27 22 25 26 27 28 29 30 31 32
55 58 7 1023 26 39 42 33 34 35 36 37 38 39 40
9 8 57 56|41 40 25 24 41 42 43 44 45 46 47 48
50 63 2 15f18 31 34 47 49 50 51 52 53 54 55 56
[16 1 64 49|48 33 32 17 57 58 59 60 61 62 63 64 ]

L. - L

The same simple pattern can be detected in Franklin’s 16 x 16 “most magical of
any magical square ever made.” (See [6] page 151. This square is also easily
found in an internet search.) One scans the right half of the square to see that 1
— 64 and 193 — 256 never occur in this region. These squares provide further
instances of outer/inner partitions leading to congruences.

We conclude this section, and the paper, with several open problems.

Our discussion of the 4 x 4 case considered only normal magic squares
storing 1 — 16. Are there criteria for inducing simple antilattices from abnormal
4 x 4 magic squares as in the 3 x 3 case?

Using a computer, in 1973 Richard Schroeppel showed there exist
275,305,224 essentially distinct 5 X 5 magic squares storing 1 - 25. While the
growth of the normal magic square count as the dimensions increase is
staggering, this need not prohibit relatively simple tests for [non-]Jsimplicity
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from arising in the normal 5 x 5 case or even in higher dimensions. Thus,
computer-assisted determinations of precisely what happens in the 5 X 5 and
higher cases may be possible.

In Section 5 we recalled two classic magic square constructions and
determined which cases of each induced simple antilattices. Many other
constructions have been found. For each construction one can seek necessary
and sufficient conditions for the constructed magic square to induce a simple
antilattice.

One can also ask similar questions about when induced antilattices
have distributive (or modular) congruence lattices. We saw that congruence
lattices are distributive for all 3 X 3 magic squares.

Theorem 12 gives a sufficient, but not necessary, condition that affine
antilattices over finite fields be simple. A necessary and sufficient condition
would be nice.
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