Antimagic labelings of Mőbius grids

Martin Bača

Department of Appl. Mathematics Technical University, Letná 9, 042 00 Košice, Slovak Republic

e-mail: Martin.Baca@tuke.sk

Yuqing Lin and Mirka Miller School of Electrical Eng. and Comp. Science The University of Newcastle, NSW 2308, Australia e-mail: {yqlin, mirka}@cs.newcastle.edu.au

Joseph Ryan
Newcastle Graduate School of Business
The University of Newcastle, NSW 2308, Australia
e-mail: Joe.Ryan@newcastle.edu.au

Abstract

A d-antimagic labeling of a plane graph G=(V,E,F) is a one-to-one mapping taking the vertices, edges and faces onto the integers $1,2,\ldots,|V(G)|+|E(G)|+|F(G)|$ so that the s-sided face weights form an arithmetic progression of difference d. This paper describes d-antimagic labelings for Möbius grids.

1 Introduction

Let G = (V, E, F) be a finite connected plane graph without loops and multiple edges where V(G), E(G) and F(G) are its vertex set, edge set and face set, respectively. General references for graph-theoretic notions are [14] and [15].

A labeling of type (1,1,1) assigns labels from the set $\{1,2,...,|V(G)|+|E(G)|+|F(G)|\}$ to the vertices, edges and faces of plane graph G in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label.

A labeling of type (1, 1, 0) is a bijection from the set $\{1, 2, ..., |V(G)| + |E(G)|\}$ to the vertices and edges of plane graph G.

If we label only vertices (respectively edges, faces) we call such a labeling a vertex (respectively edge, face) labeling and also the labeling is said to be of type (1,0,0) (respectively type (0,1,0), type (0,0,1)).

The weight of a face under a labeling is the sum of the labels (if present) carried by that face and the edges and vertices surrounding it.

A labeling of a plane graph G is called d-antimagic if for every number s the set of s-sided face weights is $W_s = \{a_s, a_s + d, a_s + 2d, ..., a_s + (f_s - 1)d\}$ for some integers a_s and d, $d \ge 0$, where f_s is the number of s-sided faces. We allow different sets W_s for different s.

Somewhat related types of antimagic labelings were defined by Hartsfield and Ringel in [9] and by Bodendiek and Walther in [6].

If d = 0 then Ko-Wei Lih in [11] called such labelings magic (face-magic). Ko-Wei Lih [11] described 0-antimagic labelings of type (1, 1, 0) for wheels, friendship graphs and prisms. 0-antimagic labelings of type (1, 1, 1) for grid and honeycomb are given in [2] and [3].

If d = 1 then d-antimagic labeling is called *consecutive*. Qu [13] and Kathiresan *et al.* [10] studied consecutive labelings for certain classes of plane graphs.

d-antimagic labelings of prisms and generalized Petersen graphs P(n, 2) can be found in [12] and [5]. Additional known results about face-antimagic labelings are given in [7] and [4].

Guy and Harary [8] defined the graph of Mőbius ladder M_k as follows: if $k=2n\geq 6$, then M_k consists of a circuit C_k of length k and the $\frac{k}{2}$ chords joining opposite pairs of vertices of C_k . They also showed that every Mőbius ladder M_k is minimally nonplanar, that is, its crossing number is one. In this paper we shall consider the Mőbius ladder more generally as a graph M_n^m .

Let $I=\{1,2,...,m\}$ and $J=\{1,2,...,n\}$ be index sets. For $n\geq 1$ and $m\geq 1$, let $P_{m+1}\times P_n$ be the Cartesian product of a path P_{m+1} on m+1 vertices with a path P_n on n vertices embedded in the plane. Let vertices $x_{i,j},\ i\in I\cup\{m+1\}$ and $j\in J$ of $P_{m+1}\times P_n$, be labeled so that $x_{i,1}\ x_{i,2}\ x_{i,3}\ ...\ x_{i,n-2}\ x_{i,n-1}\ x_{i,n}$ are vertices of the path $P_n(i)$, $i\in I\cup\{m+1\}$ and $x_{1,j}\ x_{2,j}\ x_{3,j}\ ...\ x_{m-1,j}\ x_{m,j}\ x_{m+1,j}$ are vertices of the path $P_{m+1}(j),\ j\in J$.

Now, for $n \ge 1$, $m \ge 1$, we denote by M_n^m (Mőbius grid) the graph with

$$V(M_n^m) = V(P_{m+1} \times P_n) = \{x_{i,j} : i \in I \cup \{m+1\}, \ j \in J\} \text{ and } E(M_n^m) = \{x_{i,j}x_{i,j+1} : i \in I \cup \{m+1\}, \ j \in J - \{n\}\} \cup \{x_{i,j}x_{i+1,j} : i \in I, j \in J\} \cup \{x_{i,n}x_{m+2-i,1} : i \in I \cup \{m+1\}\}.$$

If we consider the Mőbius grid M_n^m drawn in Euclidean space and not on the Euclidean plane then the face set $F(M_n^m)$ is unambiguous and contains mn 4-sided faces.

In this paper we consider the case when n is odd, $n \ge 3$, $m \ge 1$, and we describe d-antimagic labelings of type (1,1,1) for M_n^m , $d \in \{1,2,4\}$.

2 Upper bounds for d

In this section we provide upper bounds for the parameter d for the vertex labeling and the edge labeling of the Mőbius grid M_n^m .

Theorem 1 For every Möbius grid M_n^m , $n \ge 2$, $m \ge 4$, there does not exist a d-antimagic vertex labeling with $d \ge 5$.

Proof. Suppose that g_1 is a d-antimagic vertex labeling of M_n^m . If the vertices $x_{1,j}$ and $x_{m+1,j}$, $j \in J$, receive labels 1, 2, ..., 2n or, at the other extreme, labels mn-n+1, mn-n+2, ..., mn+n, or anything in between, then

$$2mn(mn+1) + 2n^{2} \le 2\sum_{j=1}^{n} g_{1}(x_{1,j}) + 2\sum_{j=1}^{n} g_{1}(x_{m+1,j}) + 4\sum_{i=2}^{m} \sum_{j=1}^{n} g_{1}(x_{i,j})$$

$$\le 2mn(mn+2n+1) - 2n^{2}. \tag{1}$$

The sum of all the weights of the 4-sided faces in M_n^m is

$$a + (a + d) + (a + 2d) + \dots + a + (mn - 1)d = mna + d \binom{mn}{2}$$
. (2)

The minimum possible weight of a 4-sided face is at least 10.

From (1) and (2) we get the following Diophantine equation

$$2\sum_{j=1}^{n}g_{1}(x_{1,j})+2\sum_{j=1}^{n}g_{1}(x_{m+1,j})+4\sum_{i=2}^{m}\sum_{j=1}^{n}g_{1}(x_{i,j})=mna+d\binom{mn}{2}.$$
(3)

From (3) it follows that if $m \ge 8$, $n \ge 2$ then d < 5.

On the other hand, the maximum weight of a 4-sided face under a dantimagic vertex labeling is no more than

$$\sum_{i=1}^{4} (|V(M_n^m)| + 1 - i) = 4mn + 4n - 6$$

and $a + (|F(M_n^m)| - 1)d \le 4mn + 4n - 6$.

If $m \ge 4$ and $n \ge 2$, then d < 5.

Theorem 2 For every graph M_n^m , $n \ge 2$, $m \ge 4$, there is no d-antimagic edge labeling with $d \ge 9$.

Proof. Suppose that g_2 is a d-antimagic edge labeling of M_n^m . Under the edge labeling g_2 , the edges $x_{1,j}x_{1,j+1}$, $x_{m+1,j}x_{m+1,j+1}$, $j \in J - \{n\}$ and $x_{1,n}x_{m+1,1}$, $x_{m+1,n}x_{1,1}$ can receive the smallest labels 1, 2, ..., 2n or, at the other extreme, the largest labels 2mn - n + 1, 2mn - n + 2, ..., 2mn + n, or anything in between.

The sum of all the edge labels used to calculate the weights of the 4-sided faces is equal to

$$2mn(2mn+1) + n^{2} \leq \sum_{j=1}^{n-1} g_{2}(x_{1,j}x_{1,j+1}) + \sum_{j=1}^{n-1} g_{2}(x_{m+1,j}x_{m+1,j+1})$$

$$+g_{2}(x_{1,n}x_{m+1,1}) + g_{2}(x_{m+1,n}x_{1,1}) + 2\sum_{i=2}^{m} \sum_{j=1}^{n-1} g_{2}(x_{i,j}x_{i,j+1})$$

$$+2\sum_{i=1}^{m} \sum_{j=1}^{n} g_{2}(x_{i,j}x_{i+1,j}) + 2\sum_{i=2}^{m} g_{2}(x_{i,n}x_{m+2-i,1})$$

$$\leq 2mn(2mn+2n+1) - n^{2}. \tag{4}$$

Combining (2) and (4), we get an inequality and by direct computation we deduce that if $m \ge 8$, $n \ge 2$ then d < 9.

Under a d-antimagic edge labeling g_2 , the maximum 4-sided face weight is no more than

$$\sum_{i=1}^{4} (|E(M_n^m)| + 1 - i) = 8mn + 4n - 6$$

and from the inequality $a + (|F(M_n^m)| - 1)d \le 8mn + 4n - 6$ we get that if $m \ge 4$, $n \ge 2$, then d < 9, which completes the proof.

Applying Theorem 1, Theorem 2 and the fact that under d-antimagic face labeling $F(M_n^m) \to \{1, 2, ..., |F(M_n^m)|\}$ the parameter d is no more than 1, we obtain the following theorem.

Theorem 3 Let M_n^m , $n \geq 2$, $m \geq 4$, be a Mőbius grid which admits d_1 -antimagic vertex labeling g_1 , d_2 -antimagic edge labeling g_2 and 1-antimagic face labeling g_3 , $d_1 \geq 0$, $d_2 \geq 0$. If the labelings g_1 , $|V(M_n^m)| + g_2$ and $|V(M_n^m)| + |E(M_n^m)| + g_3$ combine to a d-antimagic labeling of type (1, 1, 1) then the parameter $d \leq 13$.

3 The results

We have proved [1] that if n is odd, $n \ge 3$ and $m \ge 1$, then the Mőbius grid M_n^m has a magic (0-antimagic) labeling of type (1,1,1).

In this paper we shall prove that for n odd, $n \ge 3$ and $m \ge 1$, the graph M_n^m is d-antimagic of type (1,1,1) for d=1,2,4.

If n is odd, $n \geq 3$ and $m \geq 1$, we construct a vertex labeling g_4 and an edge labeling g_5 of M_n^m in the following way.

$$g_4(x_{i,j}) =$$

$$\left\{ \begin{array}{l} (m+1)\frac{j-1}{2} + \frac{i+1}{2} \\ (m+1)\frac{j}{2} + \frac{2-i}{2} \\ \frac{m+1}{2}(2n-j+2) - \frac{m}{2} + \frac{1-i}{2} \\ \frac{m+1}{2}(2n-j+1) + \frac{1-i}{2} \\ (m+1)(n+\frac{1-j}{2}) + \frac{i-m}{2} \\ \frac{m+1}{2}(2n-j) + \frac{i}{2} \end{array} \right.$$

if i and j are odd, $m \ge 1$ if i and j are even, $m \ge 1$ if i is odd, j is even and m is even if i is odd, j is even and m is odd if i is even, j is odd and m is even if i is even, j is odd and m is odd.

$$g_5(x_{i,n}x_{m+2-i,1}) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd, } m \ge 1\\ (m+1)n + \frac{i-m}{2} & \text{if } i \text{ is even and } m \text{ is even}\\ (m+1)n + \frac{i-m-1}{2} & \text{if } i \text{ is even and } m \text{ is odd.} \end{cases}$$

$$g_5(x_{i,j}x_{i+1,j}) =$$

$$\left\{ \begin{array}{ll} (m+1)n+\frac{n+1}{2}(m-i)+\frac{j+1}{2} & \text{if } j \text{ is odd, } i \in I, \ m \geq 1 \\ 2mn+n-\frac{n-1}{2}i+\frac{j}{2} & \text{if } j \text{ is even, } i \in I, \ m \geq 1. \end{array} \right.$$

If m is even then

$$g_5(x_{i,j}x_{i,j+1}) = \begin{cases} (m+1)\frac{n-j}{2} + \frac{i+1}{2} & \text{if } i \text{ and } j \text{ are odd} \\ (m+1)\frac{n-j+1}{2} + \frac{i-m}{2} & \text{if } i \text{ and } j \text{ are even} \\ (m+1)\frac{n+j}{2} + \frac{i-m}{2} & \text{if } i \text{ is even and } j \text{ is odd} \\ (m+1)\frac{n+j-1}{2} + \frac{i+1}{2} & \text{if } i \text{ is odd and } j \text{ is even.} \end{cases}$$

If m is odd then

$$g_5(x_{i,j}x_{i,j+1}) = \left\{ \begin{array}{ll} \frac{m+1}{2}(n-j) + \frac{i+1}{2} & \text{if i is odd and $j \in J - \{n\}$} \\ \frac{m+1}{2}(n+j-1) + \frac{i}{2} & \text{if i is even and $j \in J - \{n\}$.} \end{array} \right.$$

Theorem 4 For n odd, $n \geq 3$ and $m \geq 1$, the M_n^m has a 0-antimagic vertex labeling.

Proof. Label the vertices of M_n^m by the labeling g_4 . It is easy to verify that the vertex labeling g_4 uses each integer $1, 2, \ldots, |V(M_n^m)|$ exactly once. By direct computation we obtain that the common weight for all the 4-sided faces is 2n(m+1)+3 if m is even and 2n(m+1)+2 if m is odd.

Theorem 5 For n odd, $n \geq 3$ and $m \geq 1$, the M_n^m has a 1-antimagic edge labeling.

Proof.

The labeling g_5 is a bijection from $E(M_n^m)$ onto the set $\{1, 2, \ldots, |E(M_n^m)|\}$. If m is even then the set of weights of the 4-sided faces of M_n^m consists of the consecutive integers $\frac{7mn}{2} + 3n + 3, \frac{7mn}{2} + 3n + 4, \ldots, \frac{7mn}{2} + 3n + m + 2, \frac{7mn}{2} + 3n + m + 1, \frac{9mn}{2} + 3n + 1$.

If m is odd then the set of weights of the 4-sided faces of M_n^m receive the consecutive integers $\frac{7mn+5}{2}+3n, \frac{7mn+5}{2}+3n+1, \ldots, \frac{7mn+5}{2}+3n+m-1, \frac{7mn+5}{2}+3n+m, \ldots, \frac{9mn+5}{2}+3n-2, \frac{9mn+5}{2}+3n-1.$

Theorem 6 If n is odd, $n \ge 3$ and $m \ge 1$, then the Möbius grid M_n^m has a 2-antimagic labeling of type (1,1,1).

Proof.

Label the vertices and the edges of M_n^m by g_4 and $|V(M_n^m)| + g_5$, respectively. From Theorem 4 and Theorem 5, it follows that the obtained labeling successively assumes values $1, 2, \ldots, |V(M_n^m)| + |E(M_n^m)|$ and the weights of the 4-sided faces constitute an arithmetic sequence of difference 1.

If we complete the face labeling with values in the set $\{|V(M_n^m)| + |E(M_n^m)| + 1, |V(M_n^m)| + |E(M_n^m)| + 2, ..., |V(M_n^m)| + |E(M_n^m)| + |F(M_n^m)| \}$ then the resulting labeling of type (1, 1, 1) can be

- (i) 0-antimagic with the common weight for all the 4-sided faces equal to $\frac{27mn}{2} + 11n + 6$ (if m is even) or $\frac{27mn+9}{2} + 11n$ (if m is odd) or
- (ii) 2-antimagic with the weights of the 4-sided faces in the set $\{w: w = \frac{25mn}{2} + 11n + 6 + k, 1 \le k \le mn, m \text{ even}\}$ or in the set $\{w: w = \frac{25mn+5}{2} + 11n + 2 + k, 1 \le k \le mn, m \text{ odd}\}$.

Theorem 7 If n is odd, $n \ge 3$ and $m \ge 1$ then the Möbius grid M_n^m has an 1-antimagic labeling of type (1,1,1).

Proof.

Let us distinguish two cases.

Case 1. If m is odd.

Label the vertices of M_n^m by the labeling g_4 and the edges by the labeling $|V(M_n^m)|+g_5$. We obtain a labeling of type (1,1,0) and from Theorem 4 and Theorem 5, it follows that the set of the weights of the 4-sided faces is equal to $W = \{\frac{19mn+7}{2} + 9n + 1, \frac{19mn+7}{2} + 9n + 2, \frac{19mn+7}{2} + 9n + 3, \dots, \frac{19mn+7}{2} + 9n + mn - 1, \frac{19mn+7}{2} + 9n + mn\}$. Denote by $w_k = \frac{19mn+7}{2} + 9n + k$, $k = 1, 2, \dots, mn$, the elements of the set W.

Define the face labeling $g_6: F(M_n^m) \to \{|V(M_n^m)| + |E(M_n^m)| + 1, |V(M_n^m)| + |E(M_n^m)| + 2, \dots, |V(M_n^m)| + |E(M_n^m)| + |F(M_n^m)| \}$ such that for $1 \le k \le mn$

$$g_6(f_k) = \begin{cases} |V(M_n^m)| + |E(M_n^m)| + \frac{mn+2-k}{2} & \text{if } k \text{ is odd} \\ |V(M_n^m)| + |E(M_n^m)| + mn + 1 - \frac{k}{2} & \text{if } k \text{ is even} \end{cases}.$$

Now, we label the faces of M_n^m by the labeling g_6 in such a way that the face label $g_6(f_k)$ is given to the 4-sided face which has weight w_k , for all $1 \le k \le mn$. It is easy to verify that under the resulting labeling of type (1,1,1), the set of weights of the 4-sided faces is equal to

$$\{w_k + g_6(f_k) : 1 \le k \le mn\} = \{|V(M_n^m)| + |E(M_n^m)| + 10mn + 9n + 5, |V(M_n^m)| + |E(M_n^m)| + 10mn + 9n + 6, \dots, |V(M_n^m)| + |E(M_n^m)| + 11mn + 9n + 4\}.$$

Case 2. If m is even.

Label the vertices and edges of M_n^m as follows.

$$\begin{split} g_7(x_{i,j}) &= 2g_4(x_{i,j}) & \text{for } i \in I \cup \{m+1\} \text{ and } j \in J. \\ g_8(x_{i,n}x_{m+2-i,1}) &= 2g_5(x_{i,n}x_{m+2-i,1}) - 1 & \text{for } i \in I \cup \{m+1\}. \\ g_8(x_{i,j}x_{i,j+1}) &= 2g_5(x_{i,j}x_{i,j+1}) - 1 & \text{for } i \in I \cup \{m+1\} \text{ and } j \in J - \{n\}. \\ g_8(x_{i,j}x_{i+1,j}) &= 3mn + n(2-i) + j & \text{for } i \in I \text{ and } j \in J. \end{split}$$

From Theorem 4, we know that the vertex labeling g_4 is 0-antimagic with common weight 2n(m+1)+3. Under the labeling g_7 , the common weight for all the 4-sided faces is 4n(m+1)+6. It can be seen that the labelings g_7 and g_8 combine to give a labeling of type (1,1,0) and weights of the 4-sided faces form two sets

$$W = \{w_i : w_i = 7mn + 6n - m + 1 + 2i, 1 \le i \le m\}$$
 and

$$U = \{u_k : u_k = 6mn + 6n + m + 1 + 2k, 1 \le k \le m(n-1)\}$$

i.e., the weights of the 4-sided faces constitute two arithmetic progressions with difference 2.

Define two sets of labels on the faces

$$g_9: F_1(M_n^m) \to \{|V(M_n^m)| + |E(M_n^m)| + 1, |V(M_n^m)| + |E(M_n^m)| + 2, \dots, |V(M_n^m)| + |E(M_n^m)| + m\}$$
 and

$$g_{10}: F_2(M_n^m) \to \{|V(M_n^m)| + |E(M_n^m)| + m + 1, |V(M_n^m)| + |E(M_n^m)| + m + 2, \dots, |V(M_n^m)| + |E(M_n^m)| + |F(M_n^m)|\}$$

as follows:

$$F_1(M_n^m) \cup F_2(M_n^m) = F(M_n^m)$$

$$g_9(f_i) = |V(M_n^m)| + |E(M_n^m)| + m + 1 - i$$
 for $f_i \in F_1(M_n^m)$ and $1 \le i \le m$

$$g_{10}(f_k) = |V(M_n^m)| + |E(M_n^m)| + |F(M_n^m)| + 1 - k$$
 for $f_k \in F_2(M_n^m)$ and $1 \le k \le m(n-1)$.

Label the faces of M_n^m by the labelings g_9 and g_{10} so that the face label $g_9(f_i)$ $(g_{10}(f_k))$ is assigned to the 4-sided face with w_i (u_k) for all $1 \le i \le m$ $(1 \le k \le m(n-1))$.

The labelings g_7 , g_8 and g_9 , g_{10} combine to a labeling of type (1,1,1) and, under this labeling, the set of weights of the 4-sided faces is equal to

$$\begin{split} \{w_i + g_9(f_i) : 1 \leq i \leq m\} \cup \{u_k + g_{10}(f_k) : 1 \leq k \leq m(n-1)\} = \\ \{|V(M_n^m)| + |E(M_n^m)| + 7mn + 6n + 3, |V(M_n^m)| + |E(M_n^m)| + 7mn + 6n + 4, \dots, |V(M_n^m)| + |E(M_n^m)| + 7mn + 6n + m + 2\} \cup \\ \{|V(M_n^m)| + |E(M_n^m)| + 7mn + 6n + m + 3, |V(M_n^m)| + |E(M_n^m)| + 7mn + 6n + m + 4, \dots, |V(M_n^m)| + |E(M_n^m)| + |F(M_n^m)| + 7mn + 6n + 2\}. \end{split}$$

Thus M_n^m has a 1-antimagic labeling of type (1, 1, 1).

Theorem 8 If n is odd, $n \ge 3$ and $m \ge 1$, then the Möbius grid M_n^m has a 4-antimagic labeling of type (1,1,1).

Proof.

Define the new labelings g_{11} and g_{12} in such a way that

$$g_{11}(u) = 2g_4(u) - 1$$
 for every vertex $u \in V(M_n^m)$ and

$$g_{12}(e) = 2g_5(e)$$
 for every edge $e \in E(M_n^m)$.

The labeling g_{11} uses the values $1, 3, 5, \ldots, 2mn + 2n - 1$ and the labeling g_{12} uses the values $2, 4, 6, \ldots, 4mn + 2n$.

From Theorem 4, it follows that under the labeling g_{11} all the 4-sided faces have the same weight. In light of Theorem 5, we can see that under the labeling g_{12} the weights of the 4-sided faces constitute an arithmetic progression of difference 2.

Now, we label the vertices and the edges of M_n^m by g_{11} and g_{12} , respectively. We are able to arrange the face values 2mn + 2n + 1, 2mn + 2n + 3, 2mn + 2n + 5, ..., 4mn + 2n - 3, 4mn + 2n - 1 to the faces of M_n^m in such a way that the resulting labeling is a labeling of type (1, 1, 1) and

- (i) the weights of all the 4-sided faces are the same or
- (ii) the weights of all the 4-sided faces constitute an arithmetic sequence of difference 4.

Thus we arrive at the desired result.

4 Conclusion

In this paper, we have studied d-antimagic labelings for Möbius grid M_n^m . We have shown that for $n \geq 3$ (n odd), $m \geq 1$ and $d \in \{0, 1, 2, 4\}$ there exist d-antimagic labelings of type (1, 1, 1).

We conclude with the following open problem.

Open Problem 1 Find other possible values of the parameter d and corresponding d-antimagic labelings of type (1,1,1) for M_n^m .

References

- [1] M. Bača, On magic labelings of Mőbius ladders. J. Franklin Inst. 326 (1989) 885-888.
- [2] M. Bača, On magic labelings of grid graphs. Ars Combin. 33 (1992) 295-299.
- [3] M. Bača, On magic labelings of honeycomb. Discrete Math. 105 (1992) 305-311.
- [4] M. Bača, J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Survey of certain valuations of graphs. *Discuss Math. Graph Theory* 20 (2000) 219-229.
- [5] M. Bača, S. Jendrol, M. Miller and J. Ryan, Antimagic labelings of generalized Petersen graphs. Ars Combin. to appear.
- [6] R. Bodendiek and G. Walther, On number theoretical methods in graph labelings. Res. Exp. Math. 21 (1995) 3-25.
- [7] J. Gallian, A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 5 (2000) #DS6.
- [8] R.K. Guy and F. Harary, On the Möbius ladders. Research Paper 2 (1966), The University of Calgary.
- [9] N. Hartsfield and G. Ringel, Pearls in Graph Theory. Academic Press, Boston - San Diego - New York - London, 1990.
- [10] KM. Kathiresan, S. Muthuvel and V.N. Nagasubbu, Consecutive labelings for two classes of plane graphs. *Utilitas Math.* 55 (1999) 237-241.
- [11] Ko-Wei Lih, On magic and consecutive labelings of plane graphs. *Utilitas Math.* 24 (1983) 165-197.
- [12] Y. Lin, Slamin, M. Bača and M. Miller, On d-antimagic labelings of prisms. Ars Combin. to appear.
- [13] A.J. Qu, On complementary consecutive labelings of octahedral. Ars Combin. 51 (1999) 287-294.
- [14] W.D. Wallis, Magic Graphs. Birkháuser, Boston Basel -Berlin, 2001.
- [15] D.B. West, An Introduction to Graph Theory. Prentice Hall, 1996.