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Abstract. For a balanced incomplete block (BIB) de-
sign, the following problem is considered: Find s dif-
ferent incidence matrices of the BIB design such that
(i) for 1 <t < s—1, sums of any ¢ different incidence
matrices yield BIB designs and (ii) the sum of all s dif-
ferent incidence matrices becomes a matrix all of whose
elements are one. In this paper, we show general re-
sults and present four series of such BIB designs with
examples of other three BIB designs.
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1. Introduction

A balanced incomplete block (BIB) design is a system with
v points and b blocks each containing k different points, each
point appearing in r different blocks and any two different points
appearing in exactly A blocks (see Colbourn and Dinitz [1]).
This is denoted by BIBD(v,b,7,k,)). Let N = (n;;) be the
v X b incidence matrix of the BIB design, where n;; = 1 or 0,
for all 4, 7, according as the ith point occurs in the jth block or
otherwise. Hence the incidence matrix IN satisfies the following
condition:

l.nj=0o0r1forali(=1,2,..,v) and j (=1,2,..,b).
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2. Y0 nj=rforali=12,..v.
3. 2};1 Ny = k for all j =1,2, ,b
4. Y8 myng; = A for all 4,4’ (i #4)=1,2,...,v.

Now the present problem can be stated as follows. Does a
BIBD(v, b, 7, k,A) have s different incidence matrices N1, N,
..., N4 such that

(1) for1 <t <s-1 Ny+Ny+---+ Ny is the inci-
dence matrix of a BIB design for any distinct 4,12, ..., %
€ {1,2,...,s}, and

(2) iy Ni = J, where J is a v x b matrix whose elements
are all 17 '

Because of (2) we necessarily have s = v/k = b/r. If the con-
dition (1) becomes free, then this includes a problem of decom-
posing the matrix J into a sum of different incidence matrices
each of which yields a BIB design with the same parameters.

In this paper we provide general results, four series for some
s and three examples of BIB designs for s = 4, 5.

2. Statements

When s = 2, any self-complementary BIB design (i.e., v =
2k) gives a complete answer to the present problem. In this case
the conditions (1) and (2) in Section 1 coincide.

When s = 3, the conditions (1) and (2) are equivalent, be-
cause of a relation of the complementation of designs in the both
conditions. When s > 4 the conditions (1) and (2) make sense
independently.

Now we present three series of BIB designs that solve the
present problem. Let a Galois field GF(p") = {0,1,z,z?,...,
zP"~2}, where z is a primitive element of GF(p"), p is a prime
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and n is a positive integer. Consider the following array:

z z? z3 e gpi-l
z? z? z* oz
n_1 n_y n_1 n_y_
(21) sz =T =t .. gEl
:L.p"—l z mz e xp"—?

Then we can obtain p™ — 1 initial blocks, by taking any p (= k,
say) columns exclusively in the array (2.1) with p™ — 1 columns,
for example,

{z,2?,...,2"},

{z?,2%,..., 2"},

{zF"- Y, z,..., 2P P2},

which, after development, can be shown to yield a BIBD(v =
ptb=p*p" - 1),r = p(p" — 1),k = p, A = p(p — 1)), because
among differences arising from elements in the initial blocks each
of non-zero elements of GF(p™) occurs p(p — 1) times and other
parameters are obvious. The iteration of this procedure of tak-
ing other p columns shows the existence of p"~! — 1 different
incidence matrices, N1, N, ..., N,_, where s = p®~1. Further-
more, a design with the last incidence matrix N, has p™ — 1 ini-
tial blocks consisting of elements in the remaining p— 1 columns
of the array and an additional element 0. Thus the procedure of
taking disjoint choices of p columns (and lastly p—1 columns) in
(2.1) to form each IN; shows that any sum of IN,’s yields a BIB
design. Hence it can be shown that the s constructed incidence
matrices N1, Ny, ..., N satisfy the conditions (1) and (2) as in
Section 1.

Next, when p is an odd prime the procedure mentioned above
can be improved in the sense of having less numbers of blocks.
That is, by considering the first (p™ —1)/2 rows only of (2.1) and
taking the same procedure as before, we can get a BIBD(v = p",
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b=p"(p" - 1)/2,r = p(p" - 1)/2,k = p, A = p(p— 1) /2), whose
s (= p™!) different incidence matrices are shown to satisfy the
conditions (1) and (2).

Thus we have obtained the following two series that give an
answer to the present problem.

Series 1: For a prime p and a positive integer n > 2, a BIBD(v =

phb=p"(p" —1),r =p(p" — 1),k = p, A = p(p — 1)) solves the
problem.

Series 2: For an odd prime p and a positive integer n > 2,

a BIBD(v = p*,b = p"(p" — 1)/2,r = p(p" — 1)/2, k D,
A = p(p — 1)/2) solves the problem.

For example, when p = 3, Series 2 gives a BIBD(v = 3%,
b= 3°3" — 1)/2,r = 3(3" — 1)/2,k = 3,A = 3), in which
s (= 3"1) incidence matrices satisfying the conditions (1) and
(2) are given by

N, : initial blocks {z,z?, 2%}, {z?, 23,24}, ..., {ng_l,

3"-1 3n-
R BRI

N, : initial blocks {z*, z°, z°}, {z®, %, 2},. ,{xL';l"“",

3"-1 3n-1
m—rH :L'_2_+5}

N,: initia.l blocks {z3"~2,2%" 1,0}, {z*"-1,z,0},...,
{a:g%:}"2,1;‘3":i__1‘1,0},

In the array (2.1), similarly to the construction of Series 2, by
taking any p"~! columns exclusively, we can get a BIBD(v = p*,

b=p* (" - 1)/2,r =p" (0"~ 1)/2, k=p" ", A=p" (o™~
1)/2), whose p initial blocks are given, for example, by

{z’ x L ,xp n }7 {xp"—1+l) xpn_1+2) b | x2pn_l }) AR |
{x(z’-l)p" 2P 0}
Yooy ,0}.

By the iteration of this procedure, we can form p incidence ma-
trices satisfying the conditions (1) and (2). Hence, as the third
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series, we can present the following.

Series 3: For an odd prime p and a positive integer n > 2, a
BIBD(v = p",b = p"(p" — 1)/2, r = p"'(p" — 1)/2,k = p*},
A =p"~1(p"~! — 1)/2) solves the problem.

A BIBD(v,b,7,k, )) is said to be resolvable if its b blocks
can be grouped into r resolution sets of v/k (= s, say) blocks
each such that every treatment appears in each resolution set
precisely once.

For the present problem, we will show a general result with
s = 3 for a class of resolvable BIB designs.

Theorem 2.1. Any resolvable BIBD(v = 3k, b,r, k, A) has three
incidence matrices satisfying the conditions (1) and (2) in Sec-
tion 1.

Proof. Suppose that a resolvable BIBD(v = 3k,b = 3r,7,k, )
with the incidence matrix IN; (say) has r resolution sets of three
blocks each, i.e., they are denoted by B;;, ¢ = 1,2,...,,r and
j = 1,2,3, being the jth block in the ith resolution set B§1)
= {Bi, Biz, Bis}. Now the other two incidence matrices IN
and N3 can be formed as follows. The incidence matrix N,
corresponds to a resolvable BIBD(v = 3k, b,, k, A) with r reso-
lution sets of three blocks each, whose ith resolution set is glven
by 8(2) = {Bi2, Bi3, By} fori = 1,2, ...,r, i.e., a collection {B, ,
i=1,2,...,7}. In this case it follows that N 1 + N is the inci-
dence matrix of a BIBD(v = 3k, b,2r,2k,2\(2k — 1)/(k — 1)).
In fact, it is clear that the complement of this design yields
a resolvable BIBD(v = 3k,b,r,k,\) with the incidence matrix
N3 (= J — (N1 + N3)) which, in fact, has r resolution sets
3(3) {Bis, Bi1, Bi2}. Since the numbering of blocks within
the resolution sets discussed above is arbitrary, the sum of any
two incidence matrices yields a BIB design. Hence the proof is
complete. O

Many resolvable BIB designs are available in literature (cf.
Colbourn and Dinitz [1]). We can find individual examples of
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power (cf. Raghavarao [2; page 78]), there exists a resolvable
BIBD(v = ¢",b = ¢(g" - 1)/(¢g - 1), r = (¢" - 1)/(g - 1),
k=q"!, A= (¢""1-1)/(g — 1)), which can be shown to sat-
isfy the conditon (2) in Section 1, by taking an idea used in the
proof of Theorem 2.1. In particular, when ¢ = 3, by Theorem
2.1, the resolvable BIB design can satisfy the conditions (1) and
(2). That is,

Series 4: A resolvable BIBD(v = 3*,b = 3(3* - 1)/2, r =
(3" — 1)/2,k = 3"1, A = (3"1 — 1)/2) solves the problem.

A recursive method of construction of a resolvable BIBD(v =
3k,b,r,k,\) is presented as Theorem 2.2 below. Through this
method, we can get more series of BIB designs satisfying the
conditions (1) and (2).

Theorem 2.2. The existence of a resolvable BIBD(v = 3k, b,
7, k, A) implies the existence of a resolvable BIBD(9k, 3(4r—3)),
4r — 3\, 3k, 7).

Proof. By Theorem 2.1, we can let a resolvable BIBD(3k, b,
7, k, A) have three incidence matrices IN;, N, IN 3 satisfying the
conditions (1) and (2) as in Section 1. Then the following inci-
dence matrix can yield the required design:

Ny, N, Ni,|J 0 O
N, N, N,|o J o
N, N; Ny |o o J

for any distinct 4,42 € {1,2,3}, where J is a 3k x (r — 3))
matrix whose elements are all 1. O

3. Examples

In this section, we provide three examples for s = 4 and
5 that do not belong to the series and theorem given in Sec-
tion 2. One of them satisfies the conditions (1) and (2) in Sec-
tion 1 completely. As to the notation PC(n), for example, in
{1,3},{2,6}PC(4), mod 8, PC(4) means a short cycle of order
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4, .., a cyclic development of the initial block {2,6} four times
and reducing modulo 8 when necessary. The other block {1, 3}
is developed modulo 8. In fact, this case means that

{1,3},{2,4},{3,5},{4,6},{5,7},{6,0},{7,1},{0,2},

{2’ 6}7 {3) 7}’ {47 O}) {5’ 1}'
Example 3.1. Consider a BIBD(v = 8,b = 28,r = 7,k = 2,
A = 1). Then there are four (i.e., s = 4) incidence matrices of
this BIB design as follows:

(i) N, is generated by initial blocks {0, 1}, {0, 3}, {0,2},
{0,4}PC(4), mod 8.

(ii) N, is generated by initial blocks {4,5}, {2,5}, {1, 3},
{2,6}PC(4), mod 8.

(iii) N3 is generated by initial blocks {3,6}, {1,7}, {6,7},
{1,5}PC(4), mod 8.

(iv) N, is generated by initial blocks {2, 7}, {4, 6}, {4, 5},
{8,7}PC(4), mod 8.

Note that the order of initial blocks above is essential to solve
the present problem. Now it follows that

(1) N; is a BIBD(v = 8,b=28,r = T,k =2, A = 1) for all
i=1,2,3,4;

(2) N;+ N, is a BIBD(v=8,b=28,r =14,k =4, A = 6) for
all 1,5 (i#7)=1,2,3,4

(3) Ny, + Ny, + Ny, is a BIBD(v = 8,b = 28,7 = 21,k = 6,
A = 15) for all distinct 4, 42,43 € {1,2,3,4};

(4) N1+ N2+ N3+ N,=J.

O

Example 3.2. Consider a BIBD(v = 10,b = 90,r = 18,k = 2,
A = 2). Then there are five (i.e., s = 5) incidence matrices of
this BIB design as follows:

(i) N, is generated by initial blocks {1,2}, {0,4}, {0,1}, {1,5},
{1’3}, {0’ 7}7 {4’ 6}’ {1’4}’ {0’ 5}, mOd 10‘
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(ii) N, is generated by initial blocks {0, 4}, {1,2}, {2, 5},
{0,2},{0,7},{1,3}, {0, 1}, {0,6},{2, 7}, mod 10.

(iii) N3 is generated by initial blocks {3, 6}, {3, 6}, {6,8},
{6,8},{2,8},{2,8}, {7, 8},{7,8},{4,9}, mod 10.

(iv) IN4 is generated by initial blocks {7,8},{5,9},{7,9},
{47 7}) {4’ 5}: {57 9}1 {3’ 5}: {2’9}2 {1a6}a mod 10.

(v) N is generated by initial blocks {5,9}, {7, 8}, {3,4},
{3) 9}) {6? 9}! {4’ 6}» {2’ 9}: {31 5}’ {31 8}1 mod 10.

Now it follows that

(1) N; is a BIBD(v = 10,b = 90,7 = 18,k = 2, A = 2) for all
i=1,2,3,4,5

(2) Ni+Nsor Ny+N5isaBIBD(v=10,b=90,r =36,k =
4.0 =12);

(83) N1+ N3+ Njzor N3+ N4+ N5isaBIBD(v = 10,b= 90,
r =54,k =6\ = 30);

(4) Nil+Ni2+Ni3+N,-4 is a,BIBD(v =10,=90,r =72,k =
8, A = 56) for any distinct %1, 1%3,13,%4 € {1,2,3,4,5};

(5) Ni{+N;+N3+Ny+Ns=J.

The above properties (2) and (3) are only valid for the present
combinations. 0O

Example 3.3. Consider a BIBD(v = 12,b = 44,r = 11,k = 3,
A = 2). Then there are four (i.e., s = 4) incidence matrices of
this BIB design as follows:

(i) NV, is generated by initial blocks {0, 1,3}, {0, 1,6}, {0,2, 5},
{0,4, 8}PC(4), {0,4,8}PC(4), mod 12.

(ii) N, is generated by initial blocks {5, 10,11}, {7,8,10},
{3,6,8}, {1,5,9}PC(4), {1,5,9}PC(4), mod 12.

(iii) N3 is generated by initial blocks {6,8,9},{2,3,9},
{1,4,11}, {2,6, 10}PC(4), {2,6,10}PC(4), mod 12.

(iv) N4 is generated by initial blocks {2,4, 7}, {4,5, 11},
{7,9,10}, {3,7, 11}PC(4), {3,7,11}PC(4), mod 12.
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Now it follows that

(1) N; is a BIBD(v =12,b= 44,7 = 11,k = 3, A = 2) for all
i=1,2,34;

(2) N1+N2 orN3+N4isa.BIBD('v= 12,b=44,'l‘=22,k=
6, A = 10);

(3) Ni, + Ni, + Ny, is a BIBD(v = 12,b = 44, = 33,k = 9,
A = 24) for any distinct 4,3, 13 € {1,2,3,4};

(4) Ny + N3+ N3+ Ny=J.

The above property (2) is only valid for the present combina-
tions. 0O -

The condition (1) given in Section 1 is strong. Note that
Examples 3.2 and 3.3 do not satisfy all cases of the conditon (1).
However, the present stratum structure on incidence matrices
are quite interesting from a combinatorial point of view.
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