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Abstract. Path problems in graphs can generally be formu-
lated and solved by using an algebraic structure whose instances
are called path algebras. Each type of path problem is charac-
terized by a different instance of the structure. This paper
proposes a method for combining already known path algebras
into new ones. The obtained composite algebras can be applied
to solve relatively complex path problems, such as explicit iden-
tification of optimal paths or multi-criteria optimization. The
paper presents proofs showing that the proposed construction
is correct. Also, prospective applications of composite algebras
are illustrated by examples. Finally, the paper explores possi-
bilities of making the construction more general.
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1. Introduction

Path problems are a family of optimization and enumeration problems,
which reduce to generation or comparison of paths in directed or undirected
graphs. Some examples are: checking path existence, finding shortest or
most reliable paths, listing all paths.

Each particular type of path problem can be treated separately, and
solved by dedicated algorithms [3]. However, a more economic approach
is to establish a general framework for the whole family of problems, and
to use general algorithms. The latter can be achieved by introducing a
suitable abstract algebraic structure.
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Many variants of the algebraic approach to path problems have been
proposed [1, 4, 8, 9, 10, 12]. Our favorite variant from [1] uses a structure
whose instances are called “path algebras”. The approach from [1] relies
heavily on matrices and on analogies with ordinary linear algebra. Each
type of path problem is formulated by using a different algebra. Solving a
concrete problem reduces to computing with matrices over the correspond-
ing algebra.

The aim of this paper is to propose a method for building more complex
path algebras from simpler ones. The obtained composite algebras can be
applied to formulate and solve relatively complex but still meaningful path
problems.

The paper is organized as follows. Section 2 gives preliminaries about
path algebras, graphs and the adopted algebraic approach. Section 3
presents our construction of a composite path algebra and proves that the
construction is indeed correct and useful. Section 4 illustrates by examples
how composite algebras can be applied to solve more complicated tasks,
such as optimization with explicit identification of optimal paths or multi-
criteria optimization. Section 5 explains why our construction of a com-
posite path algebra cannot be made even more general. Finally, Section 6
gives a conclusion.

2. Path algebras and graphs

We start with the definition of our algebraic structure. A path algebra is a
set P equipped with two binary operations, V (join) and o (multiplication),
which have the following properties.

¢ The operation V is idempotent, commutative and associative. Or
in other words, for all z,y,2 € P: zVz =2z, zVy =yVaz,
(zvy)Vz=zV(yVz)

¢ The operation o is associative, left-distributive and right-distributive
over V. Thus for all z,y,z € P: (zoy)oz=zo(yoz),zo(yVz)=
(zoy)V(zoz), (yV2)oz=(yoz)V(zoz).

e There exist a zero element ¢ € P and a unit element ¢ € P, such that
foranyz € P: ¢Vz =2z, poz=¢=z0¢, €coT=xT=2zO0E

When evaluating algebraic expressions over P, we will always assume that
o takes precedence over V, unless otherwise regulated by parentheses. Con-
crete instances of our algebraic structure can be found in [1, 7, 8, 9, 11],
and some of them are also repeated in Table 1.
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notation P zVy oy ¢ €
Py R U {oo} min{z,y} z+y co 0
Py RU {-o0} max{z,y} T+Y -00 0
Py {reR|0<r<1} max{z,y} z-y 0 1
Ps  {reR|r>0}U{oo} max{z,y} min{z, y} 0 oo
Ps P(Z%) zUy  {werwy |wz €z,wy €y} 0 {A}
Py B(Z*) bas(zUy) {weswy |w: €z,wy €y} 0 {A}

Table 1: Some well known path algebras.

The first four examples in Table 1 are “extremal” algebras dealing with
real numbers, infinity symbols and conventional arithmetic operations. The
algebras Ps and Ps; use “linguistic” concepts, namely ¥ denotes a finite
alphabet, and X* is the set of all words (finite sequences of letters) over
¥. Consequently, P(Z*) is the set of all languages (sets of words) over .
The operation V is based on the set union U, and o on word concatenation
*. The symbol X stands for the empty word, and @ is the empty language.
The operator bas( ) extracts from a language all words that do not have
abbreviations in that language. If bas(L) = L, then L is a basic language.
B(Z*) denotes the set of all basic languages over X.

Let X be a square matrix whose entries belong to a path algebra P.
Then we consider the following expression:

X=XxvXxXivXx3v..vXtv....

Here X2 stands for XoX, X3 for XoXoX, etc. The matrix operations V
and o are derived from the corresponding scalar operations similarly as in
ordinary linear algebra, provided that V is analogous to the conventional
addition and o to the conventional multiplication. In most situations the
involved matrix X is stable, meaning that the above cxpression becomes
saturated after joining enough powers of X. Thus the matrix X, called the
closure of X, is well defined and computable in a finite number of algebraic
operations. The number of powers necessary to reach the closure is then
called the stability index of X.

In this paper we consider directed graphs and explore their paths, i.e.
non-empty sequences of consecutive arcs. A circular path is called a cycle.
A path is elementary if it does not traverse any node more than once. A
graph G is said to be labeled with a path algebra P if each arc (3,7) of G
is assigned a non-zero label {(3,5) € P. An n-node labeled graph G is fully
described by its n x n adjacency matriz A over P, whose (i, 7)-th entry is
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equal to I(z,7) if the arc (,7) exists, or ¢ otherwise. The label (1) of a
path i in G is computed as the product of its arc labels. G is absorptive
if for any elementary cycle  in G holds that I(y) V € = €. The importance
of absorptive graphs is stressed by the following theorem proved in [1].

Theorem 1. The adjacency matriz A of an absorptive n-node graph G is
always stable with the stability index < n. The (i,7)-th entry of the closure
A is then equal to the join of labels of all elementary paths from node i to
node j (or ¢ if there are no such paths).

Now we are ready to explain our algebraic approach to path problems.
For a certain problem posed in a graph G, we choose a suitable path algebra
P and assign appropriate arc labels I(i,7) € P. We compute the closure
A of the adjacency matrix A of G and read from it the solution to the
original problem. Feasibility and correctness of the whole procedure is
usually guaranteed by Theorem 1. Note that each type of problem requires
a different algebra, although the overall problem structure remains the
same. Thus A can be computed by general algorithms [1, 2, 5, 6, 8, 9)
operating over an arbitrary algebra.

Examples of using the described algebraic approach with the particular
path algebras from Table 1 can be found in [1, 5, 6, 8, 9]. It can be seen
that by computing in extremal algebras, such as P, P3, P4 or Ps, one can
find certain optimal values in a graph, e.g. shortest distances among nodes,
maximum reliabilities, etc. Still, one cannot directly identify paths where
those optimal values are achieved. On the other hand, by computing in
linguistic algebras, such as P or Pg, one can list all paths or all elementary
paths. Still, there is no possibility to filter or sort the listed paths according
to some optimality criterion.

3. Composite path algebras

Let Pbea path algebra whose binary operations are V and 5. Let the zero
element of P be ¢ and the unit element & Suppose that

e the operation V is a “choice operation”, i.e. for all z, 5 € P:
p P y
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ZVg=2Z or IVH=7;

¢ the operation & has the “cancellation property”, i.e. for all Z, 3, z € P:

L]
™

(262=§6% or 262 =1430F) = (=9 or z=4).
Let P be any other path algebra whose binary operations, zero and unit
element are denoted with V, 3, ¢, €, respectively. Then we can construct a

set P= P® P and two binary operations, V and o, in the following way.
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« PoP={@a)|zc P\(3}, 5 PLu{(5)}.

o For all (%,%),(5,7) € P® P:

(%, %) fzVg=2#7
&2V (@9 = @y ifzVg=g#z ,

iVg,iVg) ifz=%
(Z,%2)o(3,9) = (Z83,Z5%).

The correctness of our construction is guaranteed by the following theorem.

Theorem 2. The proposed V and o are correctly defined binary operations
on the set P® P. With these operations, P® P constitutes a path algebra,
whose zero element is ¢ = (¢, @) and unit element is € = (&, €).

Proof . In order to prove that V and o are correctly defined, we must check
that a result of V or o cannot take the form (¢,Z) where Z # é. This
checking is done quite easily, by taking into account special properties of V
and 6.

In order to prove that P® P constitutes a path algebra, we have to check
that all properties listed in the definition of a path algebra are satisfied.
First, it is obvious that V is idempotent and commutative, and that o
is associative. Also, it is very easy Lo show that ¢ = (¢, ) fulfills the
properties of the zero element, and that ¢ = (g, €) is the unit elemnent.

Next, we verily that V is associative. Indeed, for all (z1,21), (£2,22),
(£3,43) € P ® P it holds:

((#1,51) V (22, 5) ) V (d3,43) = |&Vd2, \ & |V (£3,43)
1€i<2
\ =1 Vi,
= | #V5Ves, \/ £
1€i<3
\ x.—:f:\_/fq\-/:l:'g

= (z—l’x'l) \ ((12)12) \ (2311?3) ) .

For better understanding of the above identity, let us note that the choice
operation V defines a total ordering in P, such that V can be interpreted
as choosing the maximum according to that ordering. Thus the identity
simply says that locating maxima in a list of values according to a total
ordering yields the same results, no matter in which order those values are
compared.
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To verify that o is left-distributive over v, we compute the following
two expressions for any (z1,%1), (€2, Z2), (€3,23) € P® P :

-~

(#1,%1) o ((&2,%2) V (£3,43) ) = (Z1,%1) o | 22 Va3, \/ i
2€ig3
Li=LaVZE3
= 1689 V £,06%3 , Z)\0%; |,
2gig3
TZy=ToVI3
(21, 81)0(%2, 22) V (%1, £1)0(&3,53) = (Z106%,%1052) V (25623, £823)
= | #1624, V110423 , V 718,

We can assume that z; # ¢, since otherwise both considered expressions
would become zero and equal. With this assumption, and thanks to the
cancellation property of &, we have:

T10%; = 21682 V£1063 & 2,6%; = £16(L V Z3)

Consequently, the two expressions above have to be equal. The right-
distributivity of o over V is checked analogously. O

The newly constructed path algebra P = P ® P will be called a com-
posite path algebra with respect to P and p.

Let us now consider an n-node graph G labeled with both P and P.
Thus each arc (i, j) of G is simultaneously assigned a label I(7,j) € P and
a label l(z j) € P. These two _values can obviously be interpreted as a
composite label I(i,j) = (1, 7), I(4,)) from P® P. The labeling in P® P
is correct since both I(, 7) and I(4, 5) are nonzero, thus I(#,7) indeed cannot
be zero. For any path . in G we can compute its labels I(u) € P, i(p) € P,
and I(u) = (I(x),{()) € P®P. The next theorem establishes the necessary
and sufficient conditions for absorptivity in the sense of P ® P.
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Theorem 8. The considered graph G is absorptive in the sense of P =
P ® P if and only if for any elementary cycle v in G it simultaneously
holds:

o l(y)VeE=g,
o l(y)#eori(y)Vei=C¢

Proof. We show necessity. Suppose that G is absorptive in the sense of
P®P, and let v be any elementary cycle in G. By combining the definition
of absorptivity with the definition of V, we obtain:

. A, 1) if i(y) Ve = i(v) #
(&8 = (I, iMvEd = G ifi(y)ve=e#i(y
(Ve l(y)ve) ifl(y)=¢

This obviously cannot be true for the first line within the curly brace, so
it is necessary that the conditions [rom the second or third line are valid.
Or in other words, it is necessary that

l(y)Ve=¢

By inserting the above expression into the second and third line within
the curly brace, and by insisting again that the values of the associated
expressions are equal to (g, &), we obtain that

l(v)#¢€ or I(y)VE=¢

Sufficiency can be proved by reading the above necessity proof in opposite
direction. O

The first condition in Theorem 3 is simply absorptivity in the sense of
P. The second condition is a slight generalization of absorptivity in the
sense of P. From Theorem 3 we directly derive two important corollaries,
which give sufficient conditions for checking absorptivity in the sense of
P®P.

Corollary 1. If our graph G is absorptive both in the sense of P and in
the sense of P, then G is also absorplive in the sense of P ® P.

Corollary 2. Let our graph G be absorplive in the sense of P. Suppose
that, additionally, the label () of any elementary cycle v in G is # &
Then G is also absorptive in the sense of P® P.

In many situations we can guarantee either by Corollary 1 or by Corol-
lary 2 that our graph G is absorptive in the sense of P ® P. Then we
can apply the following direct re-statement of Theorem 1, to assure that
computing in P ® P is feasible, and that the obtained results are useful.
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Corollary 3. Let our graph G be absorplive in the sense of P®P. Then
the n x n adjacency matriz A of G over P® P is stable, with the stability
indez < n. Also, the (i,7)-th entry Gi; of the closure A has the Jollowing

value:
= V W, V i

»€T(,5) aeT(i,5)

Here T(3,5) denotes the set of all elementary paths i in G from node i io
node j, while T(i, ) denotes the set of all elementary paths fi in G from
node i to node j such that I(a) = V erq 5l (1)

4. Applications of composite algebras

Composite path algebras can be applied for identification of optimal paths
in graphs. The role of the first algebra P should be taken by an extremal
path algebra, such as Ps, P; or Py. The second algebra P should be a lin-
guistic path algebra, such as Ps or P. By computing in the corresponding
P ® P, it is possible to obtain certain optimal values in a graph, together
with identifiers of paths where those optimal values are achieved.

Composite path algebras can also be applied for multi-criteria optimiza-
tion. Two different extremal path algebras should be chosen as P and P.
The first algebra then implements the primary criterion of optimality, and
the second algebra reflects the secondary criterion. By computing in the
corresponding P® P we can obtain the optimal value according to the first
criterion computed on a certain set of paths in a graph. Simultaneously, we
also obtain the optimal value according to the second criterion, computed
on the subset of paths that are optimal according to the first criterion.

Multi-criteria optimization can be accomplished even better by iterating
our construction of composite path algebras. Namely, we can use an algebra
of the form P ® (P ® P), where P and P are two extremal path algebras
implementing two optimization criteria, and P is a linguistic path algebra.
By computing in P® (P ® P) we obtain the same pair of optimal values as
before, but this time with identifiers of paths where those optimal values
are simultaneously achieved.

Some concrete applications are listed in Table 2. All proposed compo-
sitions are based on simple path algebras from Table 1. Table 2 describes
how a graph should be labeled with a particular algebra, and what results
can be obtained by computing the closure of the corresponding adjacency
matrix in that algebra. If the given assumptions about the graph are sat-
isfied, then feasibility and correctness of the involved computations can be
guaranteed by Corollaries 1-3.
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Composite Assumptions |Components of the Components of the
path algebra |about the (%,7)-th entry of the |(%, j)-th entry of the
P graph G adjacency matrix A  |closure matrix A
P,®Fs any elemnentary]- length of arc (z,7) |- shortest distance
cycle has - identifier of arc (¢,7) | from node i to node j
positive - identifiers of all
length shortest paths from
node 7 to node j
PP any elementaryl|- length of arc (i,7) |- shortest distance
cycle has - identifier of arc (¢,7) [ from node 7 to node j
non-negative - identifiers of all
length shortest paths from
node i to node j
Ps® Ps there are - length of arc (¢,7) |- longest distance
no cycles - identifier of arc (3,7) | from node ¢ to node j
- identifiers of all
longest (critical) paths
from node % to node j
Pi®Ps any elementary|- reliability of arc (7, §)|- maximumn reliability

cycle contains
an arc with
reliability < 1

identifier of arc (%, j)

of a path from

node i to node j
identifiers of all

most reliable paths
from node i to node 7

P ® (P ® Ps)

any elementary
cycle has
non-negative
length

length of arc (3, j)
reliability of arc (7, 7)
identifier of arc (3, 5)

shortest distance
from node 7 to node j
maximurm reliability
of a shortest path
from node ? to node j
identifiers of all
shortest paths from
node i to node j
achicving maximum
reliability

Pa® (P2 @ Fs)

any elementary
cycle has
non-negative
length

reliability of arc (2, 7)
length of arc (%, )
identifier of arc (i, 7)

maximum reliability
of a path from

node i to node j
minimal length of a
most reliable path
from node % to node j
identifiers of all

most reliable paths
from node ¢ to

node j achieving

minimal length

Table 2: Some applications of composite path algebras.
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To explain the fifth application from Table 2 in more detail, let us
consider the graph G in Figure 1, whose arcs are assigned lengths (integers),
reliabilities (real numbers) and identifiers (letters from an alphabet ¥ =
{a,b,c,...}). Then G can be treated as labeled witih P, ® (Ps® Ps). The
corresponding adjacency matrix A and its closure A are the following:

A=
(00,0, 0) (00,0,0) 3,09,{a})  (00,0,0) (00,0,0)
(-1,0.7,{b})  (00,0,0) (00,0,0)  (8,0.1,{c}) (o0,0,0)
9,04, {d)) (1,0.3,{e})  (00,0,0)  (00,0,0) (4,08,{£}) |,
(0,0,0) (=5,1.0,{g})) (5,05, {n}) (0c,0,0)  (00,0,0)
| (c0,0,0) (00,0,8)  (=3,02,{i}) (2,06,{3}) (c0,0,0)
A=

(o) () (32) (i) (i)
0.3024, 0432, 0.9, 0.432, 0. 72,
{afjgb} {afjg} {a} {afj} {af}
-1, 6,
( 0.7, ) ( 0.3024, ) ( ) ( 0.3024, ) ( 0.5 )
{v} {bafjg} {ba} {bafj} {ba
0, 4,
0.336, 0.48 0.16 0.48 08,
(o) (i) () (i) ()
-6, 1,
( 0.7, ) ( ) ( 0.63, ) ( 0.3024, ) ( 0.504, )
{eb} {g} zba} {gbafj} {gbaf}
-4, 1,
( 0.42, ) ( 0.6, ) ( 0.2, ) ( 06, ) ( 0.16, )
{igb} {is} {i} {i} {if}/ |

To justify feasibility and correctness of the above computation, we first
show that G is absorptive in the sense of P, ® (£4 ® Pg). This can be done
in several ways: for instance, we can apply Corollary 1 two times; or more
directly, we can note that the length of any elementary cycle in G happens
to be strictly positive, which means that the conditions of Corollary 2 are
fulfilled. After showing that G is absorptive, we apply Corollary 3. Thus
according to Corollary 3, the adjacency matrix A of G over P ®A(P4 ® Pg)
is stable, and the (4,7)-th entry of the corresponding closure A contains
exactly those three values that are listed in Table 2.

0.63,
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9,04,d -3,02, 14
Figure 1: A graph G with arc lengths, arc reliabilities and arc identifiers.

5. Importance of the cancelation property

Let us now review once more our definition of a composite path algebra
in order to see if it could be made more general. The definition of P QP
assumes that the operation V in P is a choice operation and that & in P
has the cancellation property. There are no special requirements on P.
The operation V being a choice operation is a natural assumption, which
is essential in order that the whole construction of P ® P makes sense.
However, the cancellation property of o is undesirable, since it decreases
the number of examples where the construction can be applicd. It would be
fine if the cancellation property could be skipped or replaced by a weaker
requirement.

Unfortunately, the cancellation property turns out to be virtually un-
avoidable. Namely, without this requirement it can happen very easily that
P ® P is not a path algebra, as shown by the following consideration.

Let P be a path algebra whose operation V is a choice operation. Sup-
pose that the operation & in P violates the cancellation property. Then we
can choose %, 7, 2 € P such that

263=76% and Z# ¢ and T #7.

Moreover, in most cases Z and § can be chosen as non-zero. Let P be any
path algebra with three elements Z, , Z such that

Then the pairs (Z, Z), (,7), (%, #)_ assembled from %, §, 2, Z, §, # chosen
above are elements of the set P® P. We show that in P® P the operation
o is not right-distributive over V. Namely, the expressions

(2,8)0(2,5) V (5,5)0(% )
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and
(&%) Vv 39)) o (%32)
are not equal. Indeed:

(Z,%)0(2,2) V (#,§)0(2,2)

|
~ o~
1]
o
K
K
ot
M
<
~~
<@
(o}
N
@
[o]
™N

while on the other hand:

(@E) V@)oo (27 = ((&3) or (4.9))°(272)
= (262z,Z0%) or (£62,4062).

We believe that the above procedure of assembling elements is general
enough, so that it can be conducted for any practically relevant path alge-
bra P whose V is a choice operation and & does not have the cancellation
property. In this sense, we can regard the cancellation property as a nec-
essary condition for correctness of working with composite path algebras.

In order to better understand the effects of not having the cancellation
property, let us apply our general procedure to one particular path algebra.
Take P = P; from Table 1. Then V¥ is max, thus a choice operation, while &
is min. The three non-zero elements showing that & violates the cancellation
property can be & =2, § =4, Z = 1. Namely,

min{2,1} = min{4,1} and 1#0 and 2#4.

As P we can substitute Py with the alphabet & = {a,b,c,...}. The three
elements from P satisfying the required inequalities can be one-word lan-
guages Z = {ab}, § = {cd}, z = {e}. Indeed:

{abe} # {abe,cde} # {cde}.

The two expressions demonstrating violation of right-distributivity become:
(2, {ab})o(1,{e}) V (4,{cd})o(1,{e}) = (1,{abe}) V (1,{cde})
= (1, {abe, cde})
and
((2,{ab}) v (4,{cd})) o (1,{e}) = (4,{cd})o(1,{e})
= (1’{Cde})'

The above two expressions can be interpreted as two ways of trying to
solve a concrete path problem. Consider the graph G in Figure 2 whose
arcs are given capacities and identifiers. Suppose that we want to identify
all paths of maximum capacity from node 1 to node 5. Then:
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o the first expression represents the correct solution, i.e. the maximum
capacity is 1, and there exist two paths achieving that capacity: “abe”
and “cde”;

o the second expression is an incomplete solution identifying only one
optimal path, which may be produced by some algorithms, for in-
stance the Escalator method [5].

Thus the final consequence of not having the cancellation property is that
some standard path-finding algorithms can fail.

node 2

@
node 1 : node 1 node 5

node 3

Figure 2: A graph G with given arc capacities and arc identifiers.

Our example with paths of maximum capacity can also be interpreted
as follows: one optimal path is lost in the second expression since the
maximum capacity problem does not satisfy Bellman’s optimality principle.
Namely, the path “abe” is an optimal path from node 1 to node 5 traversing
node 4. However, the section of the same path from node 1 to node 4 is not
an optimal path between node 1 and node 4! It is known [4] that Bellman’s
optimality principle is strongly related to the cancellation property.

6. Conclusion

The possibilities of simple path algebras are quite limited. To obtain more
comprehensive solutions of path problems, the already known algebras
should be combined. In this paper, we have proposed a suitable mech-
anism for combining simpler path algebras into composite algebras. We
have proved that the proposed construction is correct and as general as it
could be. By combining algebras from literature and by iterating the con-
struction, it is possible to specify a large number of new algebras. Those
composite algebras correspond to useful path problems, such as optimiza-
tion with explicit identification of paths or multi-criteria optimization.
Composite path algebras are, first of all, attractive from the “aesthetic”
point of view, since they considerably extend the applicability of our com-
mon algebraic framework. In addition to relatively simple problems, now
it is possible to use the same algebraic formulation for more complex tasks.
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Apart from its aesthetic appeal, the idea of putting a wider class of
problems into the same algebraic [ramework brings some additional prac-
tical benefits. For instance, it becomes possible to solve that wider class of
problems by already known and tested general algorithms.
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