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ABSTRACT. In this paper we give a new method for constructing
modular n-queens solutions which in particular yields nonlinear so-
lutions for all composite n such that gcd(n,6) = 1 and all prime
n > 19.

1. INTRODUCTION

The modular n-queens problem is to place n nonattacking queens on
the n X n modular chessboard, for which opposite sides are identified, like
a torus; this was first considered by Pélya in [4]. This is also known as
the toroidal n-queens problem. We number the rows of the n x n modular
board from 0 at the top to n — 1 at the bottom and 0 at the left ton —1 at
the right, and we refer to the cell on row ¢ and column j by (¢, 7). We define
a modular sum diagonal as the set {(¢,7)|i + j = ¢ (mod n)} for a fixed c,
and a modular difference diagonal as the set {(¢,7)|i — j = ¢ (mod n)} for
a fixed c.

A placement of n nonattacking queens on the n xn modular board is said
to be a modular n-queens solution. (This is equivalent to an independent set
of n vertices in the queens graph of n? vertices, with adjacency determined
by queen attacks.) We observe that a permutation g of {0,...,n—1} = Z,,
of the columns into the rows, is a modular n-queens solution if and only
if g(z) + = (mod n) and g(x) — z (mod n) are both permutations of Z,,
to avoid modular sum and difference diagonal attacks respectively. We say
that a modular n-queens solution g is linear when it is of the form g(z) =
cx+d (mod n) for fixed ¢ and d, and nonlinear otherwise. Linear n-queens
solutions are also known as regular n-queens solutions in the literature.

We recall from Pélya in [4] that a modular n-queens solution exists if and
only if ged(n, 6) = 1. For ged(n,6) = 1, it can be shown without difficulty
that a self-mapping g of Z, is a linear modular n-queens solution if and
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only if g(z) = cz+d (mod n) for some constants ¢ and d where c—1,¢,c+1
are all relatively prime to n. Burger, Mynhardt and Cockayne determine in
[3] the number of isometry classes of linear modular n-queens solutions for
all n such that ged(n,6) = 1, i.e. for all n such that a modular n-queens
solution exists.

In this paper we give a new method for constructing modular n-queens
solutions, which gives modular n-queens solutions for all » where ged(n, 6) =
1, and in particular yields nonlinear solutions for all composite n such that
ged(n,6) = 1, and all prime n=p > 19.

2. RESULTS

Let U, = {m € Z,|gcd(m,n) = 1} be the multiplicative group of units
of Z,. For G any subgroup of Uy, we define R(G) = {u € Glu-1,u+1e€
G}. Recall that for each z € Z,, the orbit of z under the action of G is
Gz = {gz|g € G}. Then, for O(G) the set of all orbits of the elements of
Z, under G, recall further that O(G) is a partition of Z,,, i.e. each z € Z,
is in one and only one orbit under the action of G. We also observe that if
u € G, then G(uz) = Gz for all z € Z,, since G is a group.

Theorem 1. Let n be a positive integer such that ged(n,6) = 1, and let
G be a fized subgroup of U,. Then for any function f : O(G) — R(G),
the self-mapping g of Z,, defined by g(z) = f(Gz)r (mod n) is @ modular
n-queens solution.

Proof. Suppose that for some z # y (mod n), g(z) = g(y) (mod n). Thus:
6 f(Gz)z = f(Gy)y (mod n).

Since f(Gz) € G, then f(Gz)z € Gz, and similarly f(Gy)y € Gy. Because
O(G) is a partition of Z,, it must then be that Gz = Gy, and so f(Gz) =
f(Gy). Since f(Gz) € U, we can divide (1) by f(Gz) = f(Gy), yielding
z =y (mod n), a contradiction.

Suppose that for some =z # y (mod n), g(z) + z = g(y) + y (mod n).
Thus:

(2) f(Gz)z+z=f(Gy)ly+y (modn).

Since f(Gz) € R(G), then f(Gz)+1 € G. As f(Gz)z+z = (f(Gz) + 1)z,

then f(Gz)z + z € Gz, and likewise f(Gy)y +y € Gy. Since O(G) is

a partition of Z, it must be that Gz = Gy, and thus f(Gz) = f(Gy).

But since f(Gz) € R(G), then f(Gz)+ 1 € G, so we can divide (2) by

f(Gz) +1 = f(Gy) + 1, obtaining z = y (mod n), a contradiction.
Showing that g(z) — £ (mod n) is a permutation can be done in the

same way as for g(z) + z (mod n) above. Hence g is a modular n-queens
solution. _ O

The following theorem is then clear:
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Theorem 2. Let n be a positive integer such that ged(n,6) = 1. For G
a subgroup of U, and f : O(G) — R(G), the modular n-queens solution g
given by Theorem 1 is nonlinear if and only if there exists an x € Z,, such
that f(Gz)z # f(Gl)z (mod n).

In particular we note that gcd(n,6) = 1 implies that 2,3 € R(G). Hence
for all composite n such that ged(n,6) = 1, it is clear that for G = U,,
the function f : O(G) — R(G) defined by f(G1) = 2 and f(Gz) = 3 for
all z ¢ G satisfies the above theorem. Thus for all composite n such that
ged(n,6) = 1 there exists a nonlinear modular n-queens solution g.

For example, for n = 35, let G = Uss. Then R(G) = {0, 2, 3, 12,
17, 18, 23, 32, 33}, and O(G) = {G0,G1,G5,G7}. Define the function
f: O(G) —» R(G) by f(G1) = 3, f(G5) = 32, f(G7) = 3, and f(GO) an
arbitrary element in R(G). Then for the self-mapping g of Zss defined by
g9(z) = f(Gz)z (mod 35), Theorems 1 and 2 imply that g is a nonlinear
modular n-queens solution. Expressing g by g = (g(0),9(1),...,9(34)), we
have:

g=1(0,3,6,9,12,20,18,21,24,27,5,33,1,4,7,25,13, 16, 19, 22, 10, 28, 31, 34,
2,30,8,11, 14,17, 15, 23, 26, 29, 32),
which we show in Figure 1.

Theorem 3. For p prime, G a subgroup of Up, and f : O(G) — R(G), the
modular n-queens solution g given by Theorem 1 is nonlinear if and only if

[F(O@G)\ {o})| > 1.

Proof. If g is nonlinear then by Theorem 2 there is some z such that
J(Gz)z # f(Gl)z (mod p). Clearly z # 0 (mod p), and so z € U,, which
implies that f(Gz) £ f(G1) (mod p), so the image of O(G) \ {0} under f
has more than one element in it.

If the image of O(G) \ {0} under f has more than one element in it,
then there is some z £ 0 (mod p) such that f(Gz) Z f(G1) (mod p). But
z € U,, implying that f(Gz)z £ f(Gl)x (mod p), so by Theorem 2, g is
nonlinear. O

The following lemma shows that for all p > 19, such an f : O(G) — R(G)
exists:

Lemma 4. For all prime p > 19, there ezxists a proper subgroup G of U,
such that |R(G)| > 1.

Proof. Let v(p) be the number of quadratic residues z modulo p in the set
{1,2,...,p—1} such that z—1 and x+1 are also quadratic residues modulo
p. Andrews in [1, Theorem 10.4] proves that |v(p) — 1p| < 1,/ + 2. Note
that for all p > 37, p— 1,/5—2 > 1, hence for all p > 37, v(p) > 1. Hence
for all p > 37, for G the (proper) subgroup of U, of the quadratic residues
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modulo p, |R(G)| > 1. For 19 < p < 37, in the following we give quadratic
residues z and y modulo p such that z — 1,2+ 1 and y — 1,y + 1 are also
quadratic residues modulo p:

p=19: z=5y=6
p=23: z=2,y=3
p=29: z=5,y=6
p=3l: z=8,y=9

Hence for all prime p > 19, for G the (proper) subgroup of U, of quadratic
residues modulo p, |R(G)| > 1. 0

More generally, for 1 < k < p— 1 a divisor of p — 1 for p prime, let
G be the (proper) subgroup of U, of kth power residues modulo p. For
|R(G)| > 1, Theorem 3 then yields a nonlinear modular n-queens solution.
In particular, a quadruple of kth power residues gives two triples of kth
power residues. Brauer in (2] proves that for any positive integers &k and !,
for all sufficiently large prime p there exists a positive integer = such that
r,v+1,...,74 1 — 1 are all kth power residues modulo p. Taking ! =4 in
Brauer’s result gives us the following:

Remark 5. For each integer k > 1, for all sufficiently large prime p such
that k properly divides p — 1, for G the (proper) subgroup of U, of kth
power residues modulo p, Theorem 3 yields a nonlinear modular n-queens
solution.
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FIGURE 1. Nonlinear solution for 35 x 35 modular board
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