A NEW METHOD FOR CONSTRUCTING NONLINEAR MODULAR n-QUEENS SOLUTIONS

JORDAN BELL

ABSTRACT. In this paper we give a new method for constructing modular n-queens solutions which in particular yields nonlinear solutions for all composite n such that gcd(n,6) = 1 and all prime n > 19.

1. Introduction

The modular n-queens problem is to place n nonattacking queens on the $n \times n$ modular chessboard, for which opposite sides are identified, like a torus; this was first considered by Pólya in [4]. This is also known as the toroidal n-queens problem. We number the rows of the $n \times n$ modular board from 0 at the top to n-1 at the bottom and 0 at the left to n-1 at the right, and we refer to the cell on row i and column j by (i,j). We define a modular sum diagonal as the set $\{(i,j)|i+j\equiv c\pmod n\}$ for a fixed c, and a modular difference diagonal as the set $\{(i,j)|i-j\equiv c\pmod n\}$ for a fixed c.

A placement of n nonattacking queens on the $n \times n$ modular board is said to be a modular n-queens solution. (This is equivalent to an independent set of n vertices in the queens graph of n^2 vertices, with adjacency determined by queen attacks.) We observe that a permutation g of $\{0, \ldots, n-1\} = \mathbf{Z}_n$, of the columns into the rows, is a modular n-queens solution if and only if $g(x) + x \pmod{n}$ and $g(x) - x \pmod{n}$ are both permutations of \mathbf{Z}_n , to avoid modular sum and difference diagonal attacks respectively. We say that a modular n-queens solution g is linear when it is of the form $g(x) \equiv cx + d \pmod{n}$ for fixed c and d, and nonlinear otherwise. Linear n-queens solutions are also known as regular n-queens solutions in the literature.

We recall from Pólya in [4] that a modular n-queens solution exists if and only if gcd(n, 6) = 1. For gcd(n, 6) = 1, it can be shown without difficulty that a self-mapping g of \mathbf{Z}_n is a linear modular n-queens solution if and

²⁰⁰⁰ Mathematics Subject Classification. Primary: 05B30, Secondary: 05C69.

Key words and phrases. modular n-queens problem, toroidal n-queens problem, n-queens problem, queens graph.

The author was supported by an NSERC USRA while this paper was written.

only if $g(x) \equiv cx+d \pmod{n}$ for some constants c and d where c-1,c,c+1 are all relatively prime to n. Burger, Mynhardt and Cockayne determine in [3] the number of isometry classes of linear modular n-queens solutions for all n such that $\gcd(n,6)=1$, i.e. for all n such that a modular n-queens solution exists.

In this paper we give a new method for constructing modular n-queens solutions, which gives modular n-queens solutions for all n where gcd(n, 6) = 1, and in particular yields nonlinear solutions for all composite n such that gcd(n, 6) = 1, and all prime $n = p \ge 19$.

2. Results

Let $U_n = \{m \in \mathbb{Z}_n | \gcd(m,n) = 1\}$ be the multiplicative group of units of \mathbb{Z}_n . For G any subgroup of U_n , we define $R(G) = \{u \in G | u - 1, u + 1 \in G\}$. Recall that for each $x \in \mathbb{Z}_n$, the orbit of x under the action of G is $Gx = \{gx | g \in G\}$. Then, for $\mathcal{O}(G)$ the set of all orbits of the elements of \mathbb{Z}_n under G, recall further that $\mathcal{O}(G)$ is a partition of \mathbb{Z}_n , i.e. each $x \in \mathbb{Z}_n$ is in one and only one orbit under the action of G. We also observe that if $u \in G$, then G(ux) = Gx for all $x \in \mathbb{Z}_n$, since G is a group.

Theorem 1. Let n be a positive integer such that gcd(n,6) = 1, and let G be a fixed subgroup of U_n . Then for any function $f : \mathcal{O}(G) \to R(G)$, the self-mapping g of \mathbf{Z}_n defined by $g(x) \equiv f(Gx)x \pmod{n}$ is a modular n-queens solution.

Proof. Suppose that for some $x \not\equiv y \pmod{n}$, $g(x) \equiv g(y) \pmod{n}$. Thus:

(1)
$$f(Gx)x \equiv f(Gy)y \pmod{n}.$$

Since $f(Gx) \in G$, then $f(Gx)x \in Gx$, and similarly $f(Gy)y \in Gy$. Because $\mathcal{O}(G)$ is a partition of \mathbf{Z}_n , it must then be that Gx = Gy, and so f(Gx) = f(Gy). Since $f(Gx) \in \mathbf{U}_n$, we can divide (1) by f(Gx) = f(Gy), yielding $x \equiv y \pmod{n}$, a contradiction.

Suppose that for some $x \not\equiv y \pmod{n}$, $g(x) + x \equiv g(y) + y \pmod{n}$. Thus:

(2)
$$f(Gx)x + x \equiv f(Gy)y + y \pmod{n}.$$

Since $f(Gx) \in R(G)$, then $f(Gx) + 1 \in G$. As f(Gx)x + x = (f(Gx) + 1)x, then $f(Gx)x + x \in Gx$, and likewise $f(Gy)y + y \in Gy$. Since $\mathcal{O}(G)$ is a partition of \mathbb{Z}_n it must be that Gx = Gy, and thus f(Gx) = f(Gy). But since $f(Gx) \in R(G)$, then $f(Gx) + 1 \in G$, so we can divide (2) by f(Gx) + 1 = f(Gy) + 1, obtaining $x \equiv y \pmod{n}$, a contradiction.

Showing that $g(x) - x \pmod{n}$ is a permutation can be done in the same way as for $g(x) + x \pmod{n}$ above. Hence g is a modular n-queens solution.

The following theorem is then clear:

Theorem 2. Let n be a positive integer such that gcd(n, 6) = 1. For G a subgroup of U_n and $f: \mathcal{O}(G) \to R(G)$, the modular n-queens solution g given by Theorem 1 is nonlinear if and only if there exists an $x \in \mathbb{Z}_n$ such that $f(Gx)x \not\equiv f(G1)x \pmod{n}$.

In particular we note that gcd(n,6) = 1 implies that $2,3 \in R(G)$. Hence for all composite n such that gcd(n,6) = 1, it is clear that for $G = \mathbf{U}_n$, the function $f: \mathcal{O}(G) \to R(G)$ defined by f(G1) = 2 and f(Gx) = 3 for all $x \notin G$ satisfies the above theorem. Thus for all composite n such that gcd(n,6) = 1 there exists a nonlinear modular n-queens solution g.

For example, for n=35, let $G=\mathbf{U}_{35}$. Then $R(G)=\{0, 2, 3, 12, 17, 18, 23, 32, 33\}$, and $\mathcal{O}(G)=\{G0,G1,G5,G7\}$. Define the function $f:\mathcal{O}(G)\to R(G)$ by f(G1)=3,f(G5)=32,f(G7)=3, and f(G0) an arbitrary element in R(G). Then for the self-mapping g of \mathbf{Z}_{35} defined by $g(x)\equiv f(Gx)x\pmod{35}$, Theorems 1 and 2 imply that g is a nonlinear modular n-queens solution. Expressing g by $g=(g(0),g(1),\ldots,g(34))$, we have:

g = (0, 3, 6, 9, 12, 20, 18, 21, 24, 27, 5, 33, 1, 4, 7, 25, 13, 16, 19, 22, 10, 28, 31, 34, 2, 30, 8, 11, 14, 17, 15, 23, 26, 29, 32),

which we show in Figure 1.

Theorem 3. For p prime, G a subgroup of U_p , and $f: \mathcal{O}(G) \to R(G)$, the modular n-queens solution g given by Theorem 1 is nonlinear if and only if $|f(\mathcal{O}(G) \setminus \{0\})| > 1$.

Proof. If g is nonlinear then by Theorem 2 there is some x such that $f(Gx)x \not\equiv f(G1)x \pmod{p}$. Clearly $x \not\equiv 0 \pmod{p}$, and so $x \in U_p$, which implies that $f(Gx) \not\equiv f(G1) \pmod{p}$, so the image of $\mathcal{O}(G) \setminus \{0\}$ under f has more than one element in it.

If the image of $\mathcal{O}(G)\setminus\{0\}$ under f has more than one element in it, then there is some $x\not\equiv 0\pmod p$ such that $f(Gx)\not\equiv f(G1)\pmod p$. But $x\in U_p$, implying that $f(Gx)x\not\equiv f(G1)x\pmod p$, so by Theorem 2, g is nonlinear.

The following lemma shows that for all $p \ge 19$, such an $f : \mathcal{O}(G) \to R(G)$ exists:

Lemma 4. For all prime $p \ge 19$, there exists a proper subgroup G of \mathbf{U}_p such that |R(G)| > 1.

Proof. Let $\nu(p)$ be the number of quadratic residues x modulo p in the set $\{1, 2, \ldots, p-1\}$ such that x-1 and x+1 are also quadratic residues modulo p. Andrews in [1, Theorem 10.4] proves that $|\nu(p) - \frac{1}{8}p| < \frac{1}{4}\sqrt{p} + 2$. Note that for all $p \geq 37$, $\frac{1}{8}p - \frac{1}{4}\sqrt{p} - 2 > 1$, hence for all $p \geq 37$, for G the (proper) subgroup of \mathbf{U}_p of the quadratic residues

modulo p, |R(G)| > 1. For $19 \le p < 37$, in the following we give quadratic residues x and y modulo p such that x - 1, x + 1 and y - 1, y + 1 are also quadratic residues modulo p:

p = 19: x = 5, y = 6 p = 23: x = 2, y = 3 p = 29: x = 5, y = 6p = 31: x = 8, y = 9

Hence for all prime $p \ge 19$, for G the (proper) subgroup of \mathbf{U}_p of quadratic residues modulo p, |R(G)| > 1.

More generally, for 1 < k < p-1 a divisor of p-1 for p prime, let G be the (proper) subgroup of \mathbf{U}_p of kth power residues modulo p. For |R(G)| > 1, Theorem 3 then yields a nonlinear modular n-queens solution. In particular, a quadruple of kth power residues gives two triples of kth power residues. Brauer in [2] proves that for any positive integers k and l, for all sufficiently large prime p there exists a positive integer r such that $r, r+1, \ldots, r+l-1$ are all kth power residues modulo p. Taking l=4 in Brauer's result gives us the following:

Remark 5. For each integer k > 1, for all sufficiently large prime p such that k properly divides p-1, for G the (proper) subgroup of \mathbf{U}_p of kth power residues modulo p, Theorem 3 yields a nonlinear modular n-queens solution.

3. ACKNOWLEDGEMENTS

The author is grateful to the anonymous referee for excellent ideas to generalize the original construction.

REFERENCES

- [1] George E. Andrews, Number theory, Dover Publications, New York, 1994.
- [2] Alfred Brauer, Über sequenzen von potenzresten, Sitzungsberichte Akad. Berlin (1928), 9-16.
- [3] A. P. Burger, C. M. Mynhardt, and E. J. Cockayne, Regular solutions of the n-queens problem on the torus, Util. Math. 65 (2004), 219-230.
- [4] George Pólya, Über die "doppelt-periodischen" losüngen des n-damenproblem, Mathematische Unterhaltungen und Spiele (W. Ahrens, ed.), vol. 2, B. G. Teubner, second ed., 1918, pp. 364-374.

E-mail address: jbell3@connect.carleton.ca

SCHOOL OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, 1125 COLONEL BY DRIVE, OTTAWA, ONTARIO, K1S 5B6, CANADA.

