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Abstract

The posets of dimension 2 are those posets whose minimal realiza-
tions have two elements, that is, which may be obtained as the in-
tersection of two of their linear extensions. Gallai’s decomposition of
a poset allows for a simple formula to count the number of the dis-
tinct minimal realizations of the posets of dimension 2. As an easy
consequence, the characterization of M. El-Zahar and of N.W. Sauer
of the posets of dimension 2, with an unique minimal realization, is
obtained.
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1 Introduction

A digraph D is an ordered pair (V (D), E(D)), where V(D) is a finite set,
called the set of the vertices of D, and E(D) is a family of ordered pairs of
distinct vertices of D, called the set of the edges of D. With each subset X
of V(D), is associated the subdigraph (X, E(D)N (X x X)) of D induced by
X, denoted by D[X]. Two of the usual examples of digraphs, on a given
set of vertices V, are the empty digraph and the complete digraph, where
the sets of the edges are respectively the empty set and the set of all of the
ordered pairs of distinct elements of V.
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With any digraph D, is associated its complement and its dual, denoted
respectively by D and D*, and defined by E(D) = (V(D) x V(D)) -
(B(D)U{(z,2) ; = € V(D)}) and by E(D*) = {(z,9) : (y,2) € E(D)}-
Given two digraphs D; and D, defined on the same set of vertices V, the
union D1 UD3 of Dy and of D; is the digraph (V, E(Dl) UE(Dz)), and the
intersection D1 N Dy of Dy and of D, is the digraph (V, E(D;) N E(D3)).
In another respect, D, is an extension of D, if E(D,) C E(D2), which is
briefly denoted by D; C Dj. The operations of union and of intersection
extend to any family F = {D; ; ¢ € I} of digraphs defined on the same set
of vertices V by UF = (V,U;e; B(D;)) and N F = (V,N;¢; E(D3))-

A digraph D is a symmetric digraph or a graph provided that for all
z,y € V(D), if (z,y) € E(D), then (y,z) € E(D). In another vein, a
digraph D is transitive provided that for all z,y, z € V(D), if (z,¥), (¥,2) €
E(D), then (z,2) € E(D). Since the edges of a digraph are constituted by
distinct vertices, for all of the vertices z and y of a transitive digraph D, if
(z,y) € E(D), then (y,z) ¢ E(D). A (strict) partially ordered set or poset
is then a transitive digraph.

Let P be a poset. The comparability graph of P is the graph G(P)
defined on V(G(P)) = V(P) as follows. For all z,y € V(G(P)), (z,y) €
E(G(P)) if (z,y) € E(P) or if (y,z) € E(P). A graph G is then said to
be a comparability graph if there exists a poset P such that G = G(P).
Furhermore, P is a linear order if G(P) is a complete digraph. A poset L
is a linear extension of P if P C L and if L is a linear order. The set of
all of the linear extensions of P is denoted by L(P). A realization of P is
any subset F C L(P) such that (| F = P. The minimum cardinality of a
realization of P is called the dimension of P and is denoted by dim(P). A
minimal realization of P is a realization of P of cardinality dim(P). The set
of all of the minimal realizations of P is denoted by M(P). The set of all
of the ordered minimal realizations of P is denoted by O(P), that is, given
Ly,...,Ln € L(P), (L1,...,Ls) € O(P)if {Ly,...,Ln} € M(P) and if for
alli# j € {1,...,n}, L; # L;. It follows that | O(P)|= dim(P)!x | M(P)|.

Given a poset P, a subset X of V(P) is convex provided that for all
z,y,2 € V(P), if (z,¥),(y,2) € E(P) and if z,z € X, then y € X. Clearly,
V(P) is convex and any intersection of convex subsets is convex. Con-
sequently, for each subset Y of V(P), the convez hull of Y, denoted by
conv(Y), may be defined as the intersection of all of the convex subsets
containing Y.

Given a graph G, the equivalence relation C is defined on V(G) in the
following manner. For all z,y € V(G), zCy if there exists a sequence
(21, -+, 2) of vertices of G such that z; = z, 2 = y and (2;, 2i41) € E(G)
for every 1 < i < k. The equivalence classes of C are called the connected
components of G. A graph is then said to be connected if it admits a
single connected component. For convenience, the connected components
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of G are called the coconnected components of G. Analogously, a graph is
coconnected if its complement is connected. By extension, given a poset
P, the connected (resp. coconnected) components of P are the connected
(resp. coconnected) component of G(P) and P is then said to be connected
(resp. coconnected) if G(P) is.

2 Preliminaries

Given a digraph D, a subset X of V(D) is an interval (or an autonomous
subset or a homogeneous subset or a module) of D provided that for all
u,v € X and 2z € V(D) — X, (u,z) € E(D) if and only if (v,z) € E(D),
and (z,u) € E(D) if and only if (z,v) € E(D). Clearly, 8, V(D) and {z},
where z € V(D), are intervals of D, called trivial intervals. A digraph is
then said to be indecomposable (or prime) if all of its intervals are trivial.
Otherwise, it is said to be decomposable. To begin, the properties of the
intervals of a digraph are reviewed.

Proposition 1 Let X and Y be two intervals of a digraph D.
(i) XNY is an interval of D.
(i) If XNY # 0, then X UY is an interval of D.
(iii) If X =Y #0, thenY — X is an interval of D.

(iv) For every Z C X, Z is an interval of D[X] if and only if Z is an
interval of D.

(v) If XNY =0, then for all z,z' € X end y,y' €Y, (z,y) € E(D) if
and only if («',y') € E(D’').

The last above mentionned property allows for the following definition
of the quotient. Given a digraph D, a partition of V' (D), all of the elements
of which are intervals of D, is called an interval partition of D. For such
a partition P, is defined the quotient D/P = (P,E(D/P)) of D by P as
follows. Forall X # Y € P, (X,Y) € E(D/P) ifforz € X andy € Y,
(z,y) € E(D). The inverse operation of the quotient is the lexicographical
sum defined in the following manner. Given a digraph D, with any z €
V (D), is associated a digraph D, so that for all z # y € V(D), V(D) N
V(Dy) = 0. The lexicographical sum of the D,’s under D is the digraph
D(D: ; z € V(D)) defined on |, ,, V(Dz) in the following way. For all
wv €U, 0 V(Da) (u,v) € BE(D(Dz ; z € V(D))) if either z = y and
(u,v) € E(D;) or z #y and (z,y) € E(D), where z and y are the vertices
of D such that u € V(D;) and v € V(D,).
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To continue, the following strengthening of the notion of interval is
introduced. Given a digraph D, a subset X of V(D) is a strong interval
(T. Gallai [3]) of D provided that X is an interval of D and for any interval
Yof D,if XNY # @, then X CY or Y C X. The properties of the strong
intervals of a digraph, which follow from Proposition 1, are recalled.

Proposition 2 Let D be a digraph.

(i) For every interval X of D, if Y is a strong interval of D such that
Y C X, thenY is a strong interval of D[X].

(ii) For every strong interval X of D, if Y is a strong interval of D[X],
then Y is a strong interval of D.

The family of the maximal elements, with respect to the inclusion,
among the proper strong intervals of a digraph D constitutes an inter-
val partition of D. This family is called Gallai’s partition of D and is
denoted by Gal(D). Gallai’s decomposition theorem characterizes the quo-
tient D/Gal(D). It is stated only for the graphs and for the posets in what
follows.

Theorem 1 (T. Gallai [3]) Given a graph G such that |[V(G)|> 2, one of
the following holds.

(i) If G is not connected, then Gal(G) is the family of the connected
components of G and G/Gal(G) is an empty graph.

(i) If G is not coconnected, then Gal(G) is the family of the coconnected
components of G and G/Gal(G) is a complete graph.

(iit) If G is connected and coconnected, then |Gal(G)|> 4 and G/Gal(G)
is indecomposable.

Theorem 2 (T. Gallai [3]) Given a poset P such that |V(P)|> 2, one of
the following holds.

(i) If P is not connected, then Gal(P) is the family of the connected
components of P and P/Gal(P) is an empty poset.

(i) If P is not coconnected, then Gal(P) is the family of the coconnected
components of P and P/Gal(P) is a linear order.

(iti) If P is connected and coconnected, then |Gal(P)|> 4 and P/Gal(P)
18 indecomposable.
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Let P be a poset. By definition, if X and Y are strong intervals of P,
then either X CY or Y C X or X NY = 0. Hence, it is obtained the tree
decomposition Tp of P defined on the set of the nonempty strong intervals
of P as follows. For all X,Y € V(Tp), (X,Y) € E(Tp) f X C Y. It is
noticed that, by Proposition 2, for every X € V(Tp), V(Tpix)) = {Y €
V(Tp) : Y C X} and, thus, Tpx) = Tp[V(Tpix))]. By using Gallai’s
decomposition, the labelling function Ap from V(Tp) to {e,i,1} is defined
in the following manner, where X € V(Tp).

e \p(X) =eif | X|> 2 and P[X]/Gal(P[X]) is an empty poset,
e Ap(X) = L if either | X |= 1 or | X [> 2 and P[X]/Gal(P[X]) is a

linear order,
e A\p(X) =i if | Gal(P[X])|> 4 and P[X]/Gal(P[X]) is indecompos-
able.

Now, it is presented a concise proof of the next result which emphasizes
the importance of the strong intervals among the intervals when both a
poset and its comparability graph are considered.

Theorem 3 (T. Gallai [3]) Given a poset P, P and G(P) share the same
strong intervals.

Proof. To begin, it is recalled that for any interval X of G(P), X is an
interval of P if and only if X = conv(X). Furthermore, it is assumed that
there exists an interval X of G{P) which is not an interval of P. By the
definition of the convex hull, for every y € V(P), y € conv(X) — X if and
only if there are z,2' € X such that (z,y),(y,z’) € E(P). In particular,
it is deduced that conv(X) is an interval of P. Since X is an interval of
G(P), for any z € X and y € conv(X) — X, (z,y) € E(P) or (y,z) €
E(P). As X C conv(X), P[conv(X)] is not coconnected. Moreover, given
y € conv(X)— X, it is obtained that X = X~"UX™* where X" ={z € X :
(z,y) € E(P)} and X+ = {z € X : (y,2) € E(P)}. By transitivity, for
u € X~ and v € X, (u,v) € E(P) and, hence, P[X] is not coconnected.
It follows from Theorem 2 that Gal(P[X]) is the set of the coconnected
components of P[X]. Given ¥ € Gal(P[X]), by which precedes, for all
y €Y and z € conv(X) - X, (y,2) € E(P) or (2,y) € E(P). Consequently,
Y is a coconnected component of P[conv(X)] as well. It results that for
every interval X of G(P), if X is not an interval of P, then P[X] and
Plconv(X)] are not coconnected, and Gal(P[X]) C Gal(P[conv(X)]).

Let X be a strong interval of G(P). Since all of the intervals of P
are intervals of G(P), it is sufficient to prove that X is an interval of P.
By contradiction, it is supposed that X is not. By which precedes, there
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exists Y € Gal(P[conv(X)]) — Gal(P[X]). The set of the elements z of
conv(X) — Y, such that there is y € Y with (z,y) € E(P), is denoted
by Y~. As P[conv(X)]/Gal(P[conv(X)]) is a linear order, Y~ UY is an
interval of Plconv(X)]. By Proposition 1, Y~ UY is an interval of P
and, hence, of G(P). In another vein, it is deduced from the previous
characterization of the elements of conv(X)— X that the minimum element
U and the maximum element U’ of P[conv(X)]/Gal(P[conv(X)]) belong
to Gal(P[X]). The contradiction then follows from U C X N (Y~ UY),
UCX—-(Y uUY)andY C (Y UY)-

Conversely, let Y be a strong interval of P. It suffices to establish that
for every interval X of G(P), which is not an interval of P, if X NY # 0
and X -Y # 0, then Y C X. As X C conv(X), conv(X)NY # @
and conv(X) — Y # 0. Since conv(X) is an interval of P, Y C conv(X).
By Proposition 2, Y is a strong interval of P[conv(X)]. As X —Y # 0,
Y # conv(X) and, by the definition of Gal(P[conv(X)]), there exists Z €
Gal(P[conv(X)]) such that Y C Z. Since Gal(P[X]) C Gal(P[conv(X)])
and since @ #XNY C XN Z, Z € Gal(P[X]) and, hence, Y C X. O

The following results from the three above theorems.

Corollary 1 (T. Gallai [3)) Given a poset P, P is indecomposable if and
only if G(P) is indecomposable.

The following theorem is also needed.

Theorem 4 (T. Gallai [3]) Given an indecomposable poset P, for every
poset Q, G(Q) = G(P) if and only if Q = P or Q = P*.

3 A counting of the minimal realizations

Lemma 1 (B. Dushnik and E.-W. Miller [1]) Given a poset P, dim(P) < 2
if and only if G(P) is a comparability graph. Moreover, if dim(P) < 2, then
for every element L of a minimal realization of P, L N G(P) is a poset.
Conversely, if dim(P) < 2 and if Q is a poset such that G(Q) = G(P),
then {PUQ,PUQ*} is an element of M(P).

An immediate consequence of Corollary 1, of Lemma 1 and of Theorem 4
follows.

Corollary 2 (T. Gallai [3]) Let P be a poset of dimension 2. If P is
indecomposable, then | M(P)|= 1.

Now, it is presented a succinct proof of the following, which is very close
to results of M. El-Zahar and N.W. Sauer (2], and of P. Winkler [4].
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Corollary 3 Let P be a poset of dimension 2. For every element L of a
minimal realization of P, Gal(P) is an interval partition of L.

Proof. By Lemma 1, L = PUQ, where Q is a poset such that G(Q) =
G(P). Since G(P) and G(P) share the same intervals and, thus, the same
strong intervals, it follows from Theorem 3 that Gal(P) = Gal(@). Now,
given X € Gal(P), an element z of V(P) — X is considered. Since X is
an interval of P, either {z} x X C E(P) or X x {2z} C E(P) or (({z} x
X)U (X x {z})) N E(P) = 0. In the last sentence, as G(Q) = G(P),
(({z} x X)U(X x {z})) N E(Q) # 0 and, since X is an interval of Q, either
{z}x X CE@Q)or X x{z} CE(Q). AsPC Land QCL, it is always
obtained that either {z} x X C E(L) or X x {z} C E(L). Consequently,
X is an interval of L.
The main result follows.

Theorem 5 If P is a poset of dimension at most 2, then

dim(P)x |M(P)|=2** W x [  |Gal(P[x))]!.
Xerzl({e})
Proof. The result is obvious for | V(P) |= 2 and an induction on
| V(P) | follows. It is considered the function © from O(P/Gal(P)) x
[Tyecae) OPY]) to O(P), which associates (L(Ly ;Y € Gal(P)),

M(My ; Y € Gal(P))) with [(L,M),(Ly, My)yega(p)]- It is easy to
verify that © is well defined and is injective. Moreover, it follows from
Corollary 3 that © is surjective. Thus, it is obtained that

lop/Gal(P))| x [ 10@Y)I=|0F)] .
Y€Gal(P)

As previously noticed, for each Y’ € Gal(P), V(Tppy)) = {Z € V(Tp) :
Z C Y}. It is deduced that Ap/ V(Tp[y]) = /\p[y]. It is also noted that
for any poset @, if dim(Q) < 2, then | O(Q) |= dim(Q)x | M(Q)|. By
induction hypothesis, it follows that

dim(P)x | M(P)|=
|oP/GalPY)| x  J[ P s T |GalPXDIY
Y eGal(P) XG)\;IIY]({e})

and, hence,
dim(P)x | M(P)|=

|O(P/Gal(P))| x2P7 {IN-{V(PIH x II |Gal(P[X])|! .
XeM'{eh—-{V(P)})
In order to conclude, the following is observed.
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o If P/Gal(P) is a linear order, then V(P) ¢ Ap'({i,e}) and
|O(P/Gal(P))|= 1.

e If P/Gal(P) is an empty poset, then V(P) € (Ap!({e}) — Az'({i}))
and

|O(P/Gal(P))|=|Gal(P)]! .

o If P/Gal(P) is indecomposable, then V(P) € (Ap*({i}) — Ap'({e}))
and, by Corollary 2, |O(P/Gal(P))|= 2.

O

As an easy consequence, the following characterization of the posets of
dimension 2, with an unique minimal realization, is established.

Corollary 4 (M. El-Zahar and N.W. Sauer [2]) Given a poset P of dimen-
sion 2, | M(P)|=1 if and only if P is decomposed into Q[Q: ; z € V(Q)]
with one of the following.

(i) Q is indecomposable and for every xz € V(Q), Qz is a linear order.

(i) Q is a linear order and all of the Qs admit a single vertex except for
one which is either an indecomposable poset on at least 4 vertices or an
empty poset on 2 vertices.

(iii) Q is an empty poset on 2 vertices and the two Qs are linear orders.

Proof. To begin, it is observed that, by Theorem 2, for every X € V(Tp)
and for every Y € Gal(P[X]) if Ap(X) € {e,1} and if | Y |> 2, then
Ap(X) # Ap(Y). Now, it is easy to verify that if P fulfils one of the three
above assertions, then | M(P)|= 1. Conversely, if P is a poset of dimension
2 such that | M(P)|= 1, then, by Theorem 5, it is obtained that

2= W x  J[ IGa(PIX]]!.
Xerz'({e})

Firstly, it is supposed that Az ({i}) # 6. Thus, A\5!({i}) contains an
unique element X and Ap'({e}) = 0. It is then obtained that for every
Y € V(Tp) - {X}, Ap(Y) = 1. If X = V(P), then, by the previous
observation, for every Y € Gal(P), P[Y] is a linear order. Equivalently, P
satisfies assertion (i). On the other hand, if X # V(P), then P/Gal(P) is
a linear order. By the former observation, for each Y € Gal(P), if |Y'|> 2,
then Ap(Y) # 1 and, hence, Y = X. It follows that P fulfils assertion (ii).

Secondly, it is assumed that Ap'({i}) = 0. Thus, Ap'({e}) contains an
unique element X, which is reduced to a pair, and for every Y € V(Tp) —
{X}, Ap(Y) = 1. If X = V(P), then, by the previous observation, P
satisfies assertion (iii). On the other hand, if X # V(P), then P/Gal(P) is
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a linear order. By the former observation, for each Y € Gal(P), if |Y'|> 2,
then Ap(Y) # 1 and, hence, Y = X. It follows that P fulfils assertion (ii).
()
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