On the Cordiality of Corona Graphs

M. M. Andar, Samina Boxwala, N. B. Limaye¹

Abstract: Let G_1, G_2 be simple graphs with n_1, n_2 vertices and m_1, m_2 edges respectively. The Corona graph $G_1 \circ G_2$ of G_1 with G_2 is obtained by taking one copy of G_1 , n_1 copies of G_2 and then joining each vertex of G_1 to all the vertices of a copy of G_2 .

For a graph G, by the *index of cordiality* i(G) we mean $\min\{|e_f(0) - e_f(1)|\}$, where the minimum is taken over all the binary labelings of G with $|v_f(0) - v_f(1)| \le 1$. In this paper, we investigate the cordiality of $G \circ \overline{K_t}$, $K_n \circ \overline{K_t}$ and $G \circ C_t$ where G is a graph with the index of cordiality k.

Introduction

Throughout this paper, all graphs are finite, simple and undirected. Let V(G) and E(G) denote the vertex set and edge set of a graph G. A mapping $f:V(G)\longrightarrow\{0,1\}$ is called a binary vertex labeling of G and f(v) is called the label of the vertex v under f. For an edge e=uv, the induced edge labeling $\overline{f}:E(G)\longrightarrow\{0,1\}$ is given by $\overline{f}(e)=|f(u)-f(v)|$. Let $v_f(0),v_f(1)$ be the number of vertices in G having labels 0 and 1 respectively under f. Let $e_f(0),e_f(1)$ be the number of edges having labels 0 and 1 respectively under \overline{f} .

Definition: For a graph G, by the *index of cordiality* i(G) we mean $\min\{|e_f(0) - e_f(1)|\}$ where the minimum is taken over all the binary labelings of G with $|v_f(0) - v_f(1)| \le 1$.

A graph G is called a *cordial graph* if $i(G) \le 1$ and a binary labeling f of G is called a *cordial labeling* if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$.

¹This work was partially supported by Department of Science and Technology, Government of India

One can easily see that $i(K_{2t}) = t = i(K_{2t+1})$ and $i(C_{4t}) = 0$, $i(C_{4t+1}) = 1 = i(C_{4t+3})$, $i(C_{4t+2}) = 2$.

Cordial graphs were first introduced by Cahit as a weaker version of both graceful and harmonious graphs [7]. In the same paper, Cahit proved the following:

Theorem 1: If G is an Eulerian graph with e edges, where $e \equiv 2 \pmod{4}$, then G has no cordial labeling.

In [1] several families of wheel related graphs were shown to be cordial. A fan F_m is a cycle C_m with m-3 concurrent chords. Shee and Ho [9] proved that the one point union $F_m^{(n)}$ of n copies of the fan (shell) F_m are cordial for all $m \geq 3, n \geq 1$. In [2], this result was generalized for one point union of fans of arbitrary sizes, that is, multiple shells. A t-uniform homeomorph $P_t(G)$ of a graph G is obtained by replacing each edge of the graph G by a path of length t. In [3], the cordiality of $P_t(G)$ was investigated while in [4], a necessary and sufficient conditions for the cordiality of the t-uniform homeomorphs of complete graphs were found. A ply is a vertex disjoint union of many paths having common end points. An elongated ply is a graph each of whose blocks is a ply and whose block-cut-vertex tree is a path. In [5], [6] it was proved that plys as well as elongated plys are cordial if and only if they are not ruled out by Theorem 1.

Definition: Let G_1, G_2 be two graphs with $|V(G_i)| = n_i, |E(G_i)| = m_i, i = 1, 2$. The *Corona* graph $G_1 \circ G_2$ of G_1 with G_2 is the graph obtained by taking one copy of G_1 and G_1 copies of G_2 and then joining the *i*th vertex of G_1 to all the vertices in the *i*th copy of G_2 .

This term was introduced in [8]. Clearly this graph operation is not commutative and $|V(G_1 \circ G_2)| = n_1(1+n_2)$, $|E(G_1 \circ G_2)| = m_1 + n_1(m_2 + n_2)$. In this paper, we investigate the cordiality of $G \circ \overline{K_t}$ and $G \odot C_t$. The following figure gives $K_4 \circ K_3$ and $K_3 \circ K_4$.

Let G be a graph with |V(G)| = n and i(G) = k. Let $V(\overline{K_t}) =$

 $\{v_1, \dots, v_t\}$. The edge set $E(\overline{K_t})$ is empty. Let g be a binary labeling of G such that $|v_g(0) - v_g(1)| \le 1$ and $|e_g(0) - e_g(1)| = k$. If necessary by interchanging the labels 0 and 1 in the labeling g, we can assume that $v_g(0) \ge v_g(1)$. Whenever possible, we extend this labeling g of G to a cordial labeling f of $G \circ \overline{K_t}$ and of $G \circ C_t$.

Method of Extension: There are $v_g(0)$ vertices of G which are assigned label 0 by G. In $G \circ \overline{K_t}$ there are $t.v_g(0)$ new vertices adjacent to these vertices. While constructing f, we will choose x number of these new vertices and assign them label 0. Similarly, there are $v_g(1)$ vertices of G which are assigned label 1 by G. In $G \circ \overline{K_t}$ there are $tv_g(1)$ new vertices adjacent to these vertices. While constructing f, we will choose g number of these new vertices and assign them label 0. All the remaining new vertices will be assigned the value 1 by the labeling f. The values g and g will be chosen suitably in each case so as to make the labeling cordial. It follows that for the labeling f, so constructed,

$$v_f(0) = v_g(0) + x + y,$$

$$v_f(1) = v_g(1) + (tv_g(0) - x) + (tv_g(1) - y),$$

$$e_f(0) = e_g(0) + x + (tv_g(1) - y).$$

$$e_f(1) = e_g(1) + (tv_g(0) - x) + y.$$
(**)

Cordiality of $G \circ \overline{K_t}$.

We split the analysis into two parts, according to the parity of t. Both the proofs are similar.

Theorem 2: Let g be a binary labeling of a graph G such that $i(G) = |e_g(0) - e_g(1)|$, then g can be extended (by the method of extension) to a cordial labeling of $G \circ \overline{K_{2m}}$ if and only if n is not even with $k \equiv 2 \pmod{4}$. Proof: Here t = 2m. Let $k = 4p + r, 0 \le r \le 3$ and n = 2q + s, s = 0, 1. Case 1: n is even, that is n = 2q where q is even. This means $v_g(0) = q = v_g(1)$. Further $|V(G \circ \overline{K_{2m}})| = n + 2nm = 2q + 4mq$ and $|E(G \circ \overline{K_{2m}})| = |E(G)| + 2nm = |E(G)| + 4mq$. From the above it is clear that $|V(G \circ \overline{K_{2m}})|$ is even, whereas $|E(G \circ \overline{K_{2m}})|$ is even or odd according as |E(G)| is even or odd. Thus $|E(G \circ \overline{K_{2m}})|$ is even if and only if k is even. Hence if k is to be a cordial labeling of k is even if and only if k is even. Hence if k is to be a cordial labeling of k is even if and only if k is even. Hence if k is to be a cordial labeling of k is even if and only if k is even. Hence if k is to be a cordial labeling of k is even if and only if k is even. Hence if k is even or odd. Note that for this case we are assuming that $k \neq 2 \pmod{4}$. The following table gives the chosen values of k and k in various cases.

r	Case	x	y	$e_f(0)$	$e_f(1)$
0	$e_g(0) = e_g(1) + k$	mq - p	mq + p	$e_g(1) + 2mq$	$e_g(1) + 2mq$
				+2p	+2p
	$e_g(1) = e_g(0) + k$	mq + p	mq - p	$e_g(0) + 2mq$	$e_y(0) + 2mq$
				+2p	+2p
1	$e_g(0) = e_g(1) + k$	mq - p	mq + p	$e_g(1) + 2mq$	$e_g(1) + 2mq$
				+2p+1	+2p
	$e_g(1) = e_g(0) + k$	mq + p	mq – p	$e_g(0) + 2mq$	$e_g(0) + 2mq$
				+2p	+2p + 1
3	$e_g(0) = e_g(1) + k$	mq-p-1	mq+p+1	$e_g(1) + 2mq$	$e_g(1) + 2mq$
				+2p + 3	+2p + 2
	$e_g(1) = e_g(0) + k$	mq+p+1	mq-p-1	$e_g(0) + 2mq$	$e_g(0) + 2mq$
				+2p + 2	+2p + 3

Using equations (**), one can easily see that in all these cases $v_f(0) =$

 $q(1+2m) = v_f(1)$, that is, f is a cordial labeling.

Case 2: n is odd. that is n=2q+1 and s=1. This means $v_g(0)=q+1, v_g(1)=q$ and $|V(G\circ \overline{K_{2m}}|=(2q+1)(2m+1)=4mq+2q+2m+1$ and $|E(G\circ \overline{K_{2m}}|=|E(G)|+2m(2q+1)$. Again, the following table gives the chosen values of x and y in various cases.

r	Case	x	y	$e_f(0)$	$e_f(1)$
0	$e_g(0) = e_g(1) + k$	mq - p	mq + p	$e_g(1) + 2mq$	$c_g(1) + 2mq$
		+m		+2p + m	+2p + m
	$e_g(1) = e_g(0) + k$	mq + p	mq - p	$e_g(0) + 2mq$	$e_g(0) + 2mq$
		+m		+2p + m	+2p+m
1	$e_g(0) = e_g(1) + k$	mq - p	mq + p	$e_g(1) + 2mq$	$e_g(1) + 2mq$
		+m		+2p + m + 1	+2p+m
	$e_g(1) = e_g(0) + k$	mq + p	mq - p	$e_g(0) + 2mq$	$e_y(0) + 2mq$
		+m		+2p+m	+2p + m + 1
2	$e_g(0) = e_g(1) + k$	mq - p	mq + p	$e_g(1) + 2mq$	$e_y(1) + 2mq$
		+m-1		+2p+m+1	+2p+m+1
	$e_g(1) = e_g(0) + k$	mq + p	mq - p	$e_g(0) + 2mq$	$e_g(0) + 2mq$
		+m	-1	+2p+m+1	+2p + m + 1
3	$e_g(0) = e_g(1) + k$	mq-p-1	mq+p+1	$e_g(1) + 2mq$	$e_y(1) + 2mq$
		+m		+2p+m+1	+2p+m+2
	$e_g(1) = e_g(0) + k$	mq+p+1	mq-p-1	$e_g(0) + 2mq$	$e_g(0) + 2mq$
		+m		+2p + m + 2	+2p + m + 1

Using equations (**), one can easily see that in all these cases f is a cordial labeling.

Now we assume that k=4p+2 and n is even. In this case, we show that no values of x and y are possible such that the extension f of g is cordial. Suppose f is a cordial labeling for some x and y. Since $v_f(0)-v_f(1)=2x+2y-4mq$, which is even, it must be zero. This gives x+y=2mq. Also, either $e_g(0)=e_g(1)+k$ or $e_g(1)=e_g(0)+k$. Similarly, $e_f(0)-e_f(1)=2x-2y+4p+2$ or $e_f(0)-e_f(1)=2x-2y-4p-2$, which is again even. Hence, it must be zero. This gives either y-x=2p-1

or x-y=2p+1. Solving these equations, we get $x=\frac{2mq-2p-1}{2}$ or $x=\frac{2mq+2p+1}{2}$ which are not integers. Hence, no cordial extension f of g is possible.

Remark: If we take $e_f(0) - e_f(1) = 2$ instead of 0, one gets x = mq - p, y = mq + p or x = mq + p + 1, y = mq - p - 1. We will thus get a binary extension f of g to $G \circ \overline{K_{2m}}$ such that $|e_f(0) - e_f(1)| = 2$. Thus, $i(G \circ \overline{K_{2m}}) \leq 2$, that is, this corona graph is either cordial or has index of cordiality 2.

Corollary: If G is a cordial graph on n vertices and g is a cordial labeling of G, then g can be extended to a cordial labeling of $G \circ \overline{K_{2m}}$.

Theorem 3: The corona $K_n \circ \overline{K_{2m}}$ is cordial if and only if $n \not\equiv 4 \pmod{8}$. Proof: We know that $i(K_n) = \left\lfloor \frac{n}{2} \right\rfloor$. Let g be a binary labeling of K_n which assigns the label 0 to $\left\lceil \frac{n}{2} \right\rceil$ vertices of K_n and the label 1 to $\left\lfloor \frac{n}{2} \right\rfloor$ vertices of K_n . Then $v_g(0) = v_g(1)$ or $v_g(0) = v_g(1) + 1$ and $e_g(1) = e_g(0) + k$, where $k = \left\lfloor \frac{n}{2} \right\rfloor$. From Theorem 2, we know that this labeling cannot be extended to a cordial labeling f of $K_n \circ \overline{K_{2m}}$ if and only if n is even with $k \equiv 2 \pmod{4}$. Thus we get a cordial labeling of $K_n \circ \overline{K_{2m}}$ whenever n is not of the form $2k, k \equiv 2 \pmod{4}$, that is, n = 4q where q is odd. We note that $K_n \circ \overline{K_{2m}}$ has n + 2nm vertices and 2q(4q - 1) + 2nm edges. Thus if f is to be a cordial labeling for $K_n \circ \overline{K_{2m}}$, then $v_f(0)$ must be equal to $v_f(1)$ and $e_f(0)$ must be equal to $e_f(1)$.

If possible, let f be a cordial labeling of labeling of $K_n \circ \overline{K_{2m}}$ where n=4q, with q odd. Let g be the restriction of f to the vertices of K_n in this corona graph. Let $v_g(0)=a$ and $v_g(1)=n-a$. One can easily see

that
$$e_g(0) = \frac{a(a-1)}{2} + \frac{(n-a)(n-a-1)}{2}$$
 and $e_g(1) = a(n-a)$. Then
$$v_f(0) = a+x+y.$$

$$v_f(1) = (n-a) + (2am-x) + (2m(n-a)-y)$$

$$= n-a+amn-x-y,$$

$$e_f(0) = \frac{a(a-1)}{2} + \frac{(n-a)(n-a-1)}{2} + x + (2m(n-a)-y),$$

$$e_f(1) = a(n-a) + (2am-x) + y.$$

The conditions on the vertex labels and edge labels given by f imply

$$x + y = 4mq + 2q - a$$

$$x - y = 4aq - a^2 + 2am - 4mq - 4q^2 + q.$$

Solving these two equations, we get $x = 2aq + am - 2q^2 - \frac{a(a+1)}{2} + \frac{3q}{2}$. In this expression, all but the last term are integers and the last term 3q/2 is not since q is odd, that is for no value of a do we have integral solutions x and y. Hence $K_{4q} \odot \overline{K_{2m}}$ cannot have a cordial labeling.

The proof of the next theorem is similar to that of Theorem 2. Hence, we give only the values of x and y.

Theorem 4: Let g be a binary labeling of a graph G, such that $i(G) = |e_g(0) - e_g(1)|$, then g can be extended (by method of extensin) to a cordial labeling of $G \odot \overline{K_{2m+1}}$ if and only if G does not satisfy the following:

- (a) $k \equiv 0 \pmod{4}$, $n \equiv 2 \pmod{4}$
- (b) $k \equiv 1 \pmod{4}$, $n \equiv 1 \pmod{4}$ with $e_g(1) = e_g(0) + k$
- (c) $k \equiv 1 \pmod{4}$, $n \equiv 3 \pmod{4}$ with $e_g(0) = e_g(1) + k$
- (d) $k \equiv 2 \pmod{4}$, $n \equiv 0 \pmod{4}$
- (e) $k \equiv 3 \pmod{4}, \ n \equiv 1 \pmod{4} \text{ with } e_q(0) = e_q(1) + k$
- (f) $k \equiv 3 \mod 4, n \equiv 3 \mod 4$, with $e_g(1) = e_g(0) + k$.

Moreover, in those cases, $i(G \odot \overline{K_{2m+1}}) \leq 2$.

Proof: Let $k = 4p + r, n = 4q + s, 0 \le r, s \le 3$. The table below gives

values of x and y for the cases in which f is a cordial labeling.

$\overline{}$				
r	8	Case	$oldsymbol{x}$	y
0	0	$e_g(0) = e_g(1) + k$	2mq+q-p	2mq+q+p
0	0	$e_g(1) = e_g(0) + k$	2mq+q+p	2mq+q-p
0	1	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+q+p
0	1	$e_g(1) = e_g(0) + k$	2mq+m+q+p	2mq+q-p
0	3	$e_g(0) = e_g(1) + k$	2mq + 2m + q + 1 - p	2mq+m+q+p
0	3	$e_g(1) = e_g(0) + k$	2mq+2m+q+1+p	2mq+m+q-p
			,	
1	0	$e_g(0) = e_g(1) + k$	2mq+q-p	2mq+q+p
1	0	$e_g(1) = e_g(0) + k$	2mq+q+p	2mq+q-p
1	1	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+q+p
1	2	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+m+q+p+1
1	2	$e_g(1) = e_g(0) + k$	2mq+m+q+1+p	2mq+m+q-p
1	3	$e_g(1) = e_g(0) + k$	2mq + 2m + q + 1 + p	2mq + m + q - p
				-
2	1	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+q+p
2	1	$e_g(1) = e_g(0) + k$	2mq+m+q+p+1	2mq+q-p-1
2	2	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+m+q+p+1
2	2	$e_g(1) = e_g(0) + k$	2mq+m+q+1+p	2mq+m+q-p
2	3	$e_g(0) = e_g(1) + k$	2mq + 2m + q - p	2mq+m+q+1+p
2	3	$e_g(1) = e_g(0) + k$	2mq + 2m + q + p + 1	2mq+m+q-p
3	0	$e_g(0) = e_g(1) + k$	2mq+q-p-1	2mq+q+p+1
3	0	$e_g(1) = e_g(0) + k$	2mq+q+p+1	2mq+q-p-1
3	1	$e_g(1) = e_g(0) + k$	2mq+q+p+1	2mq+q-p-1
3	2	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+m+q+p+1
3	2	$e_g(1) = e_g(0) + k$	2mq+m+q+1+p	2mq+m+q-p
3	3	$e_g(0) = e_g(1) + k$	2mq+m+q-p	2mq+m+q+p+1

It can be shown, by proving that the only possible values of x, y for cordiality are not integers, that the cordial extension f of g is not possible

in the remaining cases which are listed in the statement of the Theorem. As before, it can be shown that in all these cases, $i(G \circ \overline{K_{2m+1}}) \leq 2$.

Corollary: Let G be a cordial graph on n vertices. Any cordial labeling g of G can be extended to a cordial labeling of $G \circ \overline{K_{2m+1}}$ if and only if G does not satisfy any of the following:

- (a)G has an even number of edges and $n \equiv 2 \pmod{4}$.
- (b)G has an odd number of edges and either $n \equiv 1 \pmod 4$, with $e_g(1) = e_g(0) + 1$ or $n \equiv 3 \pmod 4$, with $e_g(0) = e_g(1) + 1$.

Theorem 5: The corona graph $K_n \circ \overline{K_{2m+1}}$ is cordial if and only if $n \not\equiv 7 \pmod{8}$.

Proof: As before $i(K_n) = \lfloor \frac{n}{2} \rfloor = k$. By Theorem 4, any binary labeling g of K_n with $v_g(0) = \lceil \frac{n}{2} \rceil$, $v_g(1) = \lfloor \frac{n}{2} \rfloor$ and $e_g(1) = e_g(0) + k$, can be extended to a cordial labeling of $K_n \circ \overline{K_{2m+1}}$ in all except six cases. We now check which of the six cases apply in this context.

Case (i) If n is even, write n = 4q + s, s = 0, 2.

If s=0, then n=4q, k=2q for some integer q. If q is even, then $k \not\equiv 2 \pmod{4}$. If q is odd, then $k \equiv 2 \pmod{4}$. Moreover, this also implies $n \equiv 4 \pmod{8}$. Thus the condition (d) in Theorem 4 applies and an extension of q to a cordial labeling of $K_n \circ \overline{K_{2m+1}}$ is not possible. If s=2, then k=2q+1 that is k is odd. Hence, $k \not\equiv 0 \pmod{4}$. Thus condition (a) does not apply.

Case (ii) If n is even write n = 4q + s, s = 1, 3. Clearly conditions (c) and (d) of Theorem 4 do not apply since in those cases $c_g(0) = c_g(1) + k$. Hence we look at only conditions (b) and (f).

If s=1, then n=4q+1, k=2q for some integer q. Clearly k is even and hence not equivalent to 1 modulo 4, that is condition (b) does not apply. If s=3, then n=4q+3 and k=2q+1. If q is even, then $k\equiv 1\pmod 4$,

that is condition (f) does not apply. If q is odd, then $k \equiv 3 \pmod{4}$ and n = 4q + 3 implies $n \equiv 7 \pmod{8}$. Thus condition (f) applies if and only if $n \equiv 7 \pmod{8}$.

This means that $K_n \circ \overline{K_{2m+1}}$ is cordial whenever $n \not\equiv 4,7 \pmod 8$. We consider these cases separately.

Case 1: n = 8z + 4. Let g be a binary labeling of K_n with $v_g(0) = 4z + 3$, $v_g(1) = 4z + 1$. Then $e_g(0) = (4z + 3)(2z + 1) + (4z + 1)(2z)$, $e_g(1) = (4z + 3)(4z + 1)$. Let x, y be as explained earlier. Then

$$v_f(0) = (4z+3) + x + y,$$

$$v_f(1) = (4z+1) + (2m+1)(4z+3) - x + (2m+1)(4z+1) - y$$

$$= 16mz + 8m + 12z + 5 - x - y,$$

$$e_f(0) = (4z+3)(2z+1) + (4z+1)(2z) + x + (2m+1)(4z+1) - y$$

$$= 16z^2 + 8mz + 2m + 16z + 4 + x - y,$$

$$e_f(1) = (4z+3)(4z+1) + (2m+1)(4z+3) - x + y$$

$$= 16z^2 + 8mz + 6m + 20z + 6 - x + y.$$

Now, $v_f(0) = v_f(1)$ implies x + y = 8mz + 4m + 4z + 1 and $e_f(0) = e_f(1)$ implies x - y = 2m + 2z + 1. Solving these two equations we get x = 4mz + 3m + 3z + 1, y = 4mz + m + z. One can easily verify that $v_f(0) = 8mz + 4m + 8z + 4 = v_f(1)$ and $e_f(0) = 16z^2 + 8mz + 18z + 4m + 5 = e_f(1)$. Thus we obtain a cordial labeling of $K_n \circ \overline{K}_{2m+1}$ even in the case when $n \equiv 4 \pmod{8}$.

Case 2: n = 8z + 7. We prove that no binary labeling of K_n can be extended to a cordial labeling of $K_n \circ \overline{K_{2m+1}}$. Let g assign the label 0 to a

of the vertices and the label 1 to the remaining n-a vertices of K_n . Then

$$v_g(0) = a,$$

 $v_g(1) = n - a,$
 $c_g(0) = a(a-1)/2 + (n-a)(n-a-1)/2,$
 $c_g(1) = a(n-a).$

Let f, x and y be as described earlier. Then

$$\begin{aligned} v_f(0) &= a + x + y. \\ v_f(1) &= (n - a) + [(2m + 1)a - x] + [(2m + 1)(n - a) - y] \\ &= 2mn + 2n - a - x - y \\ e_f(0) &= a(a - 1)/2 + (n - a)(n - a - 1)/2 + x + [(2m + 1)(n - a) - y], \\ e_f(1) &= a(n - a) + [(2m + 1)a - x] + y. \end{aligned}$$

Now, $v_f(0) = v_f(1)$ implies that x + y = mn + n - a and $e_f(0) = e_f(1)$ implies that $x - y = 2am - mn + an - a^2 + a - n/4 - n^2/4$. Solving these two equations, we get $x = am + 4az + 4a - a/2(a+1) + 3z + 22/8 - 8q^2 - 14q - 6$. Every term on the right hand side of this equation except 22/8 is an integer. Consequently, x cannot be an integer. Hence in this case, $K_n \circ \overline{K_{2m+1}}$ is not cordial when $n \equiv 7 \mod 8$.

Remark: Even in the cases where an extension of g is not possible, $G \circ \overline{K_t}$ may very well be cordial.

Cordiality of $G \circ C_t$

Let G be a cordial graph. Then there exists a labeling g of G such that $|v_g(0) - v_g(1)| \le 1$ and $|e_g(0) - e_g(1)| \le 1$. Whenever possible we extend this labeling to a cordial labeling of $G \circ C_t$.

Theorem 6: Let G be a cordial graph on n vertices with a cordial labeling g. Then g can be extended to a cordial labeling of $G \circ C_t$ if $t \neq 4m + 3$, with n odd and $e_g(0) = e_g(1)$.

Proof: Let |V(G)| = n and $V(C_t) = \{v_1, v_2, \dots, v_t\}$, $E(C_t) = \{v_i v_{i+1}, v_t v_1 \mid 1 \le i \le t-1.\}$. Clearly $|V(G \circ C_t)| = n + nt = n(1+t)$ and $|E(G \circ C_t)| = |E(G)| + 2nt$.

The edges which connect the *i*th vertex of G to each of the vertices of the *i*th copy of C_t will henceforth be called the **connecting edges**. Note that there will be nt such connecting edges in $G \circ C_t$. Let $t = 4m + r, 0 \le r \le 3$. Case 1: r = 0, that is t = 4m. Let f be a binary labeling of $G \circ C_t$ defined as follows: f(u) = g(u) for each $u \in V(G)$. In each copy of C_t , label the vertices as $1, 1, 0, 0, \cdots$, that is in each copy of C_t , let $f(v_i) = 1, i \equiv 1, 2 \pmod{4}$ and $f(v_i) = 0, i \equiv 0, 3 \pmod{4}$.

It is clear that in each copy of C_t , 2m edges as well as 2m vertices receive the label 0 and 2m edges as well as 2m vertices receive the label 1. Of the 4mt connecting edges, 2mt will have the label 0 and 2mt will have the label 1. Thus,

$$|v_f(0) - v_f(1)| = |v_g(0) - v_g(1)| \le 1,$$

 $|e_f(0) - e_f(1)| = |e_g(0) - e_g(1)| \le 1.$

Hence f is a cordial labeling.

Case 2: r = 1, that is t = 4m + 1. Let f be a binary labeling of $G \circ C_t$ defined as follows:

Define f(u) = g(u) when u belongs to V(G). In the $v_g(0)$ copies of C_t adja-

cent to the vertices labeled 0 in G, use the labeling $1, 1, 0, 0, 1, 1, 0, 0, \cdots 1, 1, 0, 0, 1$ that is, define $f(u_i) = 1, i \equiv 1, 2 \pmod{4}$ and $f(u_i) = 0, i \equiv 0, 3 \pmod{4}$.

On each such copy of C_t , 2m vertices receive the label 0 and 2m + 1 vertices receive the label 1. Further, on each such copy of C_t , 2m + 1 edges receive the label 0 and 2m receive the label 1. Among the connecting edges connecting any one such vertex of G to a copy of C_t , 2m edges receive the label 0 and 2m + 1 receive the label 1.

In the $v_g(1)$ copies of C_t adjacent to the vertices labeled 1 in G use the labeling $0, 0, 1, 1, 0, 0, 1, 1, \dots, 0, 0, 1, 1, 0$ that is

$$\begin{aligned} v_f(0) &= v_g(0) + 2mv_g(0) + (2m+1)v_g(1) \\ &= (2m+1)[v_g(0) + v_g(1)] \\ &= (2m+1)n. \\ v_f(1) &= v_g(1) + 2mv_g(1) + (2m+1)v_g(1) \\ &= (2m+1)n, \\ e_f(0) &= e_g(0) + v_g(0)[2m + (2m+1)] + v_g(1)[(2m+1) + 2m] \\ &= e_g(0) + (4m+1)n. \\ &= e_g(0) + nt. \\ e_f(1) &= e_g(1) + v_g(0)[(2m+1) + 2m] + v_g(1)[2m + (2m+1)] \\ &= e_g(1) + (4m+1)n \\ &= e_g(1) + nt. \end{aligned}$$

We thus have

$$|e_f(0) - e_f(1)| = |e_g(0) - e_g(1)| \le 1.$$

Hence f is a cordial labeling.

Case 3: r = 2, that is t = 4m + 2.

Case 3A: Let n be even. Then $v_g(0) = v_g(1) = n/2$. Let f be a binary labeling of $G \circ C_t$ defined as follows:

Define f(u) = g(u) when u belongs to V(G). In the $v_g(0)$ copies of C_t adjacent to the vertices labeled 0 in G, use the labeling $0, 0, 1, 1, 0, 0, 1, 1, \dots 0, 0, 1, 1, 0, 0, 1, 0, 0, 1$

that is, for $1 \le i \le 4m-1$

$$f(v_i) = 0, i \equiv 1, 2 \pmod{4}$$

= 1, $i \equiv 0, 3 \pmod{4}$
= 0, $i = 4m, 4m + 1$
= 1, $i \equiv 4m + 2$.

In each such copy of C_t , 2m + 2 vertices receive the label 0 and 2m vertices the label 1. Further, in each such copy, 2m edges receive the label 0 and 2m + 2 the label 1. Amongst the connecting edges connecting any one such vertex of G to a copy of C_t , 2m + 2 edges receive the label 0 and 2m receive the label 1.

In the $v_g(1)$ copies of C_t adjacent to the vertices labeled 1 in G, use the labeling $1, 1, 0, 0, 1, 1, 0, 0, \cdots 1, 1, 0, 0, 1, 1, 0, 1, 1, 0$ that is for $1 \le i \le 4m - 1$

$$f(v_i) = 1, i \equiv 1, 2 \pmod{4}$$

$$= 0, i \equiv 0, 3 \pmod{4}$$

$$= 1, i = 4m, 4m + 1$$

$$= 0, i = 4m + 2.$$

In each such copy of C_t , 2m vertices receive the label 0 and 2m+2 vertices the label 1. Further, in each such copy, 2m edges receive the label 0 and 2m+2 the label 1. Amongst the connecting edges connecting any one such vertex of G to a copy of C_t , 2m+2 edges receive the label 0 and 2m receive

the label 1. Hence

$$v_{f}(0) = v_{g}(0) + v_{g}(0)(2m+2) + v_{g}(1)2m$$

$$= (n/2)(2m+3) + (n/2)2m$$

$$= (n/2)(4m+3),$$

$$v_{f}(1) = v_{g}(1) + v_{g}(0)(2m) + v_{g}(1)(2m+2)$$

$$= (n/2)(4m+3).$$

$$e_{f}(0) = e_{g}(0) + v_{g}(0)[2m + (2m+2)] + v_{g}(1)[2m + (2m+2)]$$

$$= e_{g}(0) + n(4m+2)$$

$$= e_{g}(0) + nt.$$

$$e_{f}(1) = e_{g}(1) + v_{g}(0)[(2m+2) + 2m] + v_{g}(1)[(2m+2) + 2m]$$

$$= e_{g}(1) + n(4m+2)$$

$$= e_{g}(1) + nt.$$

Thus $v_f(0) = v_f(1)$ and $|e_f(0) - e_f(1)| \le 1$, that is, f is a cordial labeling. Case 3B: Let n be odd. Then, without loss of generality we can assume that $v_g(0) = (n+1)/2$, $v_g(1) = (n-1)/2$. In the (n-1)/2 copies of C_t , adjacent to the vertices labeled 0 in G as well as the (n-1)/2 copies of C_t adjacent to the vertices labeled 1 in G, f assigns labels as in Case 3(A). For the one remaining copy of C_t adjacent to a vertex labeled 0 in G, use the labeling $1, 1, 0, 0, \dots, 1, 1$. On this copy, 2m vertices receive the label 0 and 2m + 2 vertices receive the label 1. Further, on this copy, 2m + 2 edges receive the label 0 and 2m edges receive the label 1. Amongst the connecting edges associated with this copy, 2m edges receive the label 0

and 2m + 2 edges receive the label 1.

$$v_f(0) = v_g(0) + (2m+2)(n-1)/2 + 2m(n-1)/2 + 2m$$

$$= (n+1)/2 + (n-1)(4m+2)/2 + 2m$$

$$= (n+1)/2 + (n-1)(2m+1) + 2m,$$

$$v_f(1) = v_g(1) + (n-1)2m/2 + (n-1)(2m+2)/2 + (2m+2)$$

$$= (n-1)/2 + (n-1)(2m+1) + 2m + 2$$

$$= (n+1)/2 + (n-1)(2m+1) + 2m + 1,$$

$$e_f(0) = e_g(0) + (n-1)[2m + (2m+2)]/2 + (n-1)[2m + (2m+2)]/2 + (n-1)[2m + (2m+2)]/2 + (n-1)[(2m+2) + 2m]/2 + (n-1)[(2m+2)$$

Thus $|v_f(0) - v_f(1)| = 1$ and $|e_f(0) - e_f(1)| = |e_g(0) - e_g(1)| \le 1$, that is, f is a cordial labeling.

Case 4: r = 3, that is t = 4m + 3.

Case 4A: Let n be even. Then $v_g(0) = v_g(1) = n/2$. In the n/2 copies of C_t connected to vertices having the label 0 in G assign the labels as $0,0,1,1,\cdots,0,0,1$, that is $f(v_i)=0$ for $i\equiv 1,2 \pmod 4$ and $f(v_i)=1$ for $i\equiv 0,3 \pmod 4$. In such copies of C_t , (2m+2) vertices receive the label 0 and (2m+1) vertices receive the label 1. Of the connecting edges associated with each such copy, (2m+2) edges receive the label 0 and (2m+1) edges receive the label 1. In the n/2 copies of C_t connected to vertices having the label 1 in G assign the labels as $1,1,0,0,\cdots,1,1,0$, that is $f(v_i)=1$ for $i\equiv 1,2 \pmod 4$ and $f(v_i)=0$ for $i\equiv 0,3 \pmod 4$. In such copies of C_t , (2m+2) vertices receive the label 1 and (2m+1) vertices receive the label

0. Then,

$$v_f(0) = v_g(0) + v_g(0)(2m+2) + v_g(1)(2m+1)$$

$$= n(4m+4)/2,$$

$$v_f(1) = v_g(1) + v_g(0)(2m+1) + v_g(1)(2m+2)$$

$$= n(4m+4)/2,$$

$$e_f(0) = e_g(0) + v_g(0)(4m+3) + v_g(1)(4m+3)$$

$$= e_g(0) + nt.$$

$$e_f(1) = e_g(1) + v_g(0)(4m+3) + v_g(1)(4m+3)$$

$$= e_g(1) + nt.$$

Thus $v_f(0) = v_f(1)$ and $|e_f(0) - e_f(1)| = |e_g(0) - e_g(1)| \le 1$, that is, f is a cordial labeling.

Case 4B: Let n be odd. Again without loss of generality, we assume that $v_q(0) = v_q(1) + 1$.

We first consider the case $c_g(0) = c_g(1) + 1$. For (n-1)/2 copies adjacent to the vertices labeled 0 in G and (n-1)/2 copies adjacent to the vertices labeled 1 in G we use the labeling as described in Case A. For the one remaining copy of C_t , adjacent to a vertex labeled 0 in G, use the labeling $1, 1, 0, 0, \dots, 1, 1, 0$. Then on this copy of C_t , (2m+1) vertices receive the label 0 and (2m+2) vertices receive the label 1, whereas 2m+1 edges receive the label 0 and 2m+2 edges receive the label 1. Amongst the connecting edges with this copy, 2m+1 edges receive the label 0 and 2m+2 edges receive the label 1. Thus,

$$v_{f}(0) = v_{g}(0) + (n-1)(2m+2)/2 + (n-1)(2m+1)/2 + 2m+1$$

$$= (n+1)/2 + (n-1)(4m+3)/2 + 2m+1$$

$$= (n-1)(4m+4)/2 + 2m+2$$

$$= n(2m+2),$$

$$v_{f}(1) = v_{g}(1) + (n-1)(2m+1)/2 + (n-1)(2m+2)/2 + 2m+2$$

$$= (n-1)(4m+4)/2 + 2m+2$$

$$= n(2m+2),$$

$$e_{f}(0) = e_{g}(0) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + 4m+2$$

$$= e_{g}(1) + (n-1)(4m+3) + 4m+3,$$

$$e_{f}(1) = e_{g}(1) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + 4m+4$$

$$= e_{g}(1) + (n-1)(4m+3) + 4m+4.$$

Thus $v_f(0) = v_f(1)$ and $e_f(0) + 1 = e_f(1)$, that is, f is a cordial labeling. Next consider the case $e_g(0) + 1 = e_g(1)$. For (n-1)/2 copies adjacent to the vertices labeled 0 in G and for (n-1)/2 copies adjacent to the vertices labeled 1 in G, we use the labeling as described in Case A. For the one remaining copy of C_t adjacent to a vertex labeled 0 in G, use the labeling $1, 1, 0, 0, \dots 1, 1, 0, 0, 0, 1, 1$. Then on this copy of $C_t, 2m+1$ vertices receive the label 0 and 2m+2 vertices receive the label 1, whereas 2m+3 edges receive the label 0 and 2m edges receive the label 1. Amongst the connecting edges with this copy, 2m+3 edges receive the label 0 and 2m edges receive the label 1. Thus,

$$\begin{aligned} v_f(0) &= v_g(0) + (n-1)(2m+2)/2 + (n-1)(2m+1)/2 + 2m + 1 \\ &= n(2m+2), \\ v_f(1) &= v_g(1) + (n-1)(2m+1)/2 + (n-1)(2m+2)/2 + 2m + 2 \\ &= n(2m+2). \\ e_f(0) &= e_g(0) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + (2m+1) + (2m+3) \\ &= e_g(0) + (n-1)(4m+3) + 4m + 4, \\ e_f(1) &= e_g(1) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + (2m+2) + 2m \\ &= e_g(0) + (n-1)(4m+3) + 4m + 3. \end{aligned}$$

Thus $v_f(0) = v_f(1)$ and $e_f(0) = e_f(1)$, that is, f is a cordial labeling. \square Remark: If n is odd, $e_g(1) = e_g(0)$ and t = 4m + 3, then we can prove that $i(G \circ C_t) \leq 2$. For (n-1)/2 copies adjacent to the vertices labeled 0 in G and (n-1)/2 copies adjacent to the vertices labeled 1 in G, we use the labeling as described in Case A. For the one remaining copy of C_t , adjacent to a vertex labeled 0 in G use the labeling $1, 1, 0, 0, \dots, 1, 1, 0$. Then on this copy of C_t , (2m+1) vertices receive the label 0 and (2m+2) vertices receive the label 1, whereas 2m+1 edges receive the label 0 and 2m+2 edges receive the label 1. Amongst the connecting edges with this copy, 2m+1 edges receive the label 0 and 2m+2 edges receive the label

1. Thus,

$$v_f(0) = v_g(0) + (n-1)(2m+2)/2 + (n-1)(2m+1)/2 + 2m+1$$

$$= (n+1)/2 + (n-1)(4m+3)/2 + 2m+1$$

$$= (n-1)(4m+4)/2 + 2m+2$$

$$= n(2m+2),$$

$$v_f(1) = v_g(1) + (n-1)(2m+1)/2 + (n-1)(2m+2)/2 + 2m+2$$

$$= (n-1)(4m+4)/2 + 2m+2$$

$$= n(2m+2),$$

$$e_f(0) = e_g(0) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + 4m+2,$$

$$e_f(1) = e_g(1) + (n-1)(4m+3)/2 + (n-1)(4m+3)/2 + 4m+4.$$

From the above it follows that $e_f(0) + 2 = e_f(1)$. Hence $i(G \circ C_t) \leq 3$. \square

References:

- M. M. Andar, Samina Boxwala and N. B. Limaye, On the cordiality of some wheel related graphs, JCMCC,41(2002), 203-208.
- [2] M. M. Andar, Samina Boxwala and N.B.Limaye, A Note on cordial labelings of multiple shells, Proceedings of International Conference on Number Theory and Combinatorics, Panjab University Chandigarh, October 2000.
- [3] M. M. Andar, Samina Boxwala and N. B. Limaye, On the cordiality of the t-uniform homeomorphs of graphs - (I), Ars Combinatoria, Vol 66 (January, 2003).
- [4] M. M. Andar, Samina Boxwala and N. B. Limaye, On the cordiality of the t-uniform homeomorphs II (Complete Graphs), Ars Combinatoria, Vol 67 (April, 2003).
- [5] M. M. Andar, Samina Boxwala and N. B. Limaye, On the cordiality of the t-ply $P_t(u, v)$, To appear in ARS.
- [6] M. M. Andar, Samina Boxwala and N. B. Limaye, On the Cordiality of

Elongated plys, To appear in Congressus Numerantium.

- [7] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
- [8] Graph Theory, F. Harary, Addison-Wesley, Reading, MA, (1969).
- [9] S.C.Shee, Y.S. Ho, The cordiality of the one point union of n copies of a graph, Discrete Math. 117(1993), 225-243.

Dr. M. M. Andar
Dr. Samina Boxwala
Department of Mathematics N.
N. Wadia College, Pune
Pune, 411001.
sammy_1011@yahoo.com