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Abstract
In this paper subsets of a three-dimensional locally projective

planar space which meet every plane either in 2 or in k, b > 2,
points are studied and classified.

1 Introduction

A linear space is a pair (S, L), where S is a non-empty set of points and £
is a non-empty set of proper subsets of S called lines, such that through
every pair of distinct points there is a unique line and every line has at least
two points.

Let (S, £) be a finite linear space. For every point p of S, the degree of
p is the number [p] of lines through p; for every line , the length [I] of l is
its cardinality. The integer n defined by n + 1 = max{[p] : p € S} is the
order of the linear space. A subset T of the point-set S of a linear space
(S8,L) is a subspace if it contains the line through any two of its points.

A planar space is a triple (S, £, P), where (S, £) is a linear space and P
is a non-empty family of proper subspaces of (S, L), called planes, satisfying
the following properties:

(p1) through any three non-collinear points there is a unique plane and it
is the smallest subspace containing them;

(p2) every plane contains at least three non collinear points.

Let (S,L,P) be a finite planar space. For every plane 7 of P, denote
by L the set of the lines of £ contained in 7 and by n(r) the order of the
linear space (mw,Lx). The integer n = {maxn(w) : # € P}, is the order of
the planar space.

For any point z of S, the star of lines with center z is the set of all lines
through z. Let m be a plane of (S,L£,P) and let = be a point of 7: the
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pencil of lines with center z in 7 is the set of all lines through z contained in
@. If every pencil of lines has at least three lines we have a non-degenerate
planar space. Two skew lines are two non-coplanar lines of a planar space.
In this paper v is the number of points, b is the number of lines and c is
the number of planes of the planar space (S, £, P).

A planar space (S, L, P) is embeddable in a projective space P if there
is an injection of S into the point set of P preserving the collinearities and
coplanarities and non-collinearities and non-coplanarities.

A three dimensional locally projective planar space is a planar space
(S,L,P) whose planes pairwise intersect either in the empty set or in a
line. If (S, L, P) is a non-degenerate planar space of order n, it is easy to
see that the property that its planes pairwise intersect either in the empty
set or in a line is equivalent to the property that for every point p of S, the
linear space (£Lp, Pp) whose points are the lines through p and whose lines
are the pencils of lines with center p, is a projective plane of order n.

If for every point p of S, the linear space (£p, P,) is a projective space,
then (8, £, P) is a locally projective planar space. Throughout this paper
(S,L,P) is a non-degenerate finite planar space of order n satisfying the
following property:

(i) the planes of (S, L, P) pairwise intersect in a line.

Hence (S, £, P) is a three dimensional locally projective planar space of
order n, and so (£,, P,) is a finite projective plane of order n for every point
p. It is not difficult to see that (S, £, P) satisfies the following properties:

(a) through every point there are n% 4+ n + 1 lines and n? 4 n + 1 planes;
(b) in every plane the pencils have cardinality n + 1;

(c) through every line there are n + 1 planes;

(d) in every plane there are n2 + n + 1 lines;

(e) the number of planesis c=n®+n? 4+ n+1;

(f) the number of lines is b = (n? + 1)(n? + n +1);

(g) the number v of points is at most n® +n? + n + 1.

Assume that in the planar space (S, L, P) there is a set K of points
which meets every plane in either 2 or A (h > 2) points. A plane m meeting
K in exactly two points is a 2-secant plane. A plane meeting K in Ak points
is a h-secant plane.

A set C of points meeting every line in at most two points is a cap
of (S,£,P). It is possible to prove (see [2]) that if (S,£,P) is a non-
degenerate planar space of order n (n > 2) satisfying Property (), then
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every cap C has at most n2 + 1 points. A cap of cardinality n? + 1 is an
ovoid of (S, L, P).

In order to study sets K of class [2, h] with respect to planes of (S, L, P)
it is useful to recall the following theorem contained in [1]:

Theorem I Let (S,L,P) be a non-degenerate finite planar space of
order n satisfying Property (i) and let K be a proper subset of S meeting
every plane in either 1 or h (h > 1) points. Then K is a line (of length
n+ 1) or an ovoid of (S,L,P).

In the same paper [1] it is proved that if a set K meets every plane of
(S, L£,P) in exactly h points then (S, L P) is PG(3,n) and K is its point-set.

In this paper we prove the following theorem:

Theorem  Let (S,L,P) be a non-degenerate finite planar space of
order n satisfying Property (i) and let K be a proper subset of S meeting
every plane in either 2 or h (h > 2) points. Then K is a pair of skew lines
(both of length n+ 1) of (S,L,P). :

2 Sets of type (2,h) in (S, £, P)

Let (8, £, P) be a non-degenerate finite planar space of order n satisfying
Property (i) and let K be a proper subset of the point set S meeting every
plane in either 2 or h (h > 2) points. Let k be the cardinality of K. An
exterior line is a line missing K, a tangent line is a line meeting K in just
one point, a 2—secant line is a line meeting K in exactly two points and a
s-secant line is a line meeting K in s (s > 3) points.

From the last part of Section one we may assume that there are both
types of planes: 2-secant planes and h-secant planes. Let o be the number
of 2-secant planes and let 8 be the number of h-secant planes. Let 7 be a
2-secant plane to K and let p and p’ be the two points of K on 7. Then
the line pp’ is a 2-secant line, any line of m containing neither p nor p’ is
an exterior line of K and a line of 7 containing p but not p’ is a tangent
line of K. Let L be a 2-secant line and let {p,p’} = KN L. Any point of
K\ {p,p'} is on an h-secant plane through L If p denotes the number of
h-secant planes through L then:

E=2+puh-2). (1)

The previous equation shows that x is independent of the 2-secant line L
and that
h — 2 divides k — 2. (2)

Let E be an exterior line of K. Computing the cardinality of K via the
planes through E we get
k>2n+2. (3)
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Let 7 be a 2-secant plane of K and let {p,p’} = KN . Let L be the line
pp’. Computing k via the planes through L we get

k<n(h-2)+2. (4)

Let ¢t be a tangent line of K at the point p. Denote by p the number of
2-secant planes through ¢. Then:

k=p+(n+1-p)(h—1)+1. (5)
From equation (5) we have
k-2=m+1)(h-1)—p(h=2)-1=(n+1)(h-2)+n—ph—2) (6)
and since from (2) k — 2 divides k — 2 we get

h — 2 divides n )
hence
h<n+2 (8)
From (8) and (4) it follows:
k<n?+42 9)

Since a is the number of 2-secant planes and 8 is the number of h-secant
planes we have
2(n® +n2 +n+1)=2a+28. (10)

Counting in two ways point-plane pairs (p, 7) with p € K and p € 7 we get
k(n®+n+1)=2a+6h (11)

Counting in two ways the pairs ({p,p'},7) with p,p’ € K and p,p' € 7 we
get
k(k-1)(n+1) =2a+ Bh(h—1) (12)

Subtracting (10) from (11) we get
Em®+n+1)—2(n?+1)(n+1) = B(h - 2) (13)
and subtracting (11) from (12) we get
k(k —1)(n+1) = k(n? +n +1) = Bh(h - 2). (14)
From (13) )
k(k—1)(n+1)—k(n® +n+1)—hlk(n®+n+1)—2(n?+1)(n+1)] = 0. (15)
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Hence k satisfies the following equation of second degree in k
(n+ 1)k — (h(n® +n+1) + (n? + 2n +2))k + 2h(n®* + 1)(n + 1) = 0 (16)

From (16) it follows that k¥ = 2n + 2 (its minimum value) if and only
is h = n + 2 (its maximum value). Indeed if h = n + 2, then from (16) it
follows k = 2n+2 or k = (n®+2n2+n+2)/(n+1). Since n > 2 the element
(n® 4 2n% +n+2)/(n+ 1) is not an integer number and hence k = 2n + 2.
Viceversa if k = 2n + 2, then from (16) it follows that A =n + 2.

We can now prove the following

Proposition 2.1 IfK has 2n+2 points, then K consists of two skew lines
(both of length n +1).

Proof : If K has 2n + 2 points, then from (16) it follows h = n 4 2. If
K is a cap let 7 be a (n + 2)-secant of K and let E of be an exterior line in
7 to the (n + 2)-arc K N . Counting k via the planes through the line E
we get k > n+ 2+ 2n = 3n + 2, that is a contradiction. Hence there is at
least a line ¢ meeting K in at least three points. Let s = [tNK]|. Counting
k via the planes through ¢, and since every such a plane is a (n + 2)-secant
plane, we get
k=2n+2=s+(n+1)(n+2-3s). (17

From (17) it follows s = n + 1 and hence the line t is contained in K. If
K’ = K\ t, then |K’| = n + 1. Note that each plane meets K’ in 1 or in
n + 1 points. From Theorem I it follows that also K’ is a line (of length
n + 1) and hence the assertion. a

Because of the previous proposition we may assume that h —2 < n and
since h — 2 divides n then k — 2 < n/2 and hence k < n%/2 + 2.

Assume that K is not a cap. Then there is a line » meeting K in more
than two points. Let s be the number of common points of r and K.
Computing the cardinality of K via the planes through r we get:

k=s+(n+1)(h—s). (18)

The previous equation shows that
s=h— ——, (19)
is a constant and so it is independent of the line r. Hence every line meeting
K in more then two points meets K in a constant number s of points, thus

the set K meets every line in 0,1,2 or s points.
We can now prove the following lemma
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Lemma 2.1 Let (S,L,P) be a finite non-degenerate planar space of order
n satisfying Property (i) and let K be a proper subset of S meeting every
plane in either 2 or h points. Then K is a pair of skew lines (both of length
n+1) or a cap of (S, L, P).

Proof : Assume K is not a cap. Since k = s+ (n+ 1)(h — s), equation
(16) becomes:

(n+1)h2 —((n?+3n+1)s— (n2 —n—2))h+s(sn(n+1)+n?+2n+2) =0
The discriminant of this equation is:

A = (s—1)°n"+2(s* —4s—1)n3 + (352 — 45— 3)n2 4+ 2(s® — s+ 2)n+ (s — 2)2
and since s > 3, we have A > 0. Solving the previous equation in h gives:

h (PP+8n+1)s—(n*=n-2)—vVA (n*+3n+1)s—(n*—n—2)+VA
€ An+1) ' M+ 1)

(n?+3n+1)s—(r?2-n-2)+vA

Assume first h = 3+ 1)

We will show that

2 —(n2 —p—
h=(n +3n+1l)s—(n*—n 2)+\/K>n
2(n+1)

+2.

Indeed, (n? +3n + 1)s — (n2 —n — 2) + VA > 2(n + 1)(n + 2) gives
(s—1)n% + (3s+ 1)n+ s + 2 + VA > 2n? + 4n + 2 which is always true
since s > 3. This gives a contradiction since h —2[nso h < n + 2.

We may now suppose that

he (n?+3n+1)s—(n?2-n-2)-vA

- 2(n+1) '
In this case we 2will show that h 2= s+ 1. f‘irs::/%e show that A < s+ 2.
(n*+3n+1)s—(n2-n-2) -
Indeed, h = D)

< s+ 3 gives

\/Z>(n2+3n+1)s—(n2—n—2)—2(n+1)(s+3)

ie.

VA>(s—1)n?+(s—5)n—s-4

which gives:
(s=3)n*+ (s> +3s—9)n? + (s>~ s —9)n —3(s +1) > 0

and which is true since s > 3 and n > 2.
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Assume h = s+ 2. Then 2n? — (s> + s — 2)n + 2s = 0, that is,
2 - ﬂ/ [
_Sts-2+VA where A = s + 25% — 352 — 205 + 4.

Since A’ = (s® 4+ s —2)% — 16s and A’ is a square, we have A’ <
(5% + s —3)2, that is, 25 — 14s — 5 < 0 so s < 7. It is easy to see that also
for 3 < s <7 A’ is never a square.

Then h = s 4 1. If follows that s = n + 1. Hence K contains a line of
length n + 1 and moreover k = 2n + 2. So, by Proposition 2.1, K is the
union of two skew lines of length n 4 1. )

It remains to study the case when K is a cap.

3 The case when K is a cap
From (16) we have the following equation of second degree in k&
(n+ 1k - [r2+n+1)+ (2 +2n+2)k+2h(n®* +n¥ +n+1) =

Moreover, by Proposition 2.1 and the remarks preceding Lemma 2.1, we
know that if K isacap then3<h<n/2+2and 2n+3 <k <n?/2+2.
We can now prove the following lemma

Lemma 3.1 In (S,L,P) there are no caps of type (2, h) with respect to
planes

Proof : Assume K is a cap. Let 7 be a 2-secant of K. The number of

2-secant planes through r is: Counting line-plane pairs (r, ) with

h—2
T a 2-secant line, 7 a h-secant plane and r C 7, we have:

k—2k(k—1) h(h—l)

h-2 2 B,
with 8 the number of h-secant planes. It follows that g = —:8‘; — 3 E: — 2; .
.~ — k(n?
On the other hand, from (14) we have 8 = k(k — 1)(n ';(1’3 = é’)(" +tn+1)

comparing the two values of 8 so obtained we get
k(k—1)(k—2)=(h—1)(k(k=1)(n+1) —k(n®+n+1))
and, dividing everything by k& we get another equation:

E2—(hn+h+2-n)k—n?+hn?—2n4+2h+2hn=0. (20)
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solving this last equation in k we get

k

_hn+h+2-n+t./(h2—6h+5n2+2(h2-3h+2)n+h?—4h+4
= 5 .

Moreover if

_hn+h+2-n—+/(h2-6h+5m2+2(h?—3h+2)n+h?2—4h +4
B 2

then, for h > 5, we have (h — 5)n2 + 6n — 2h > 0 (since n > k), and so

k

< hn+h+2-n—-((h—5mn+h+2)

which is a contradiction since k > 2n + 3. Hence for h > 5

k

2n+2

_hn+h+2-n+4++/(h?—6h+5)n2+2(h?—3h+2)n+h?—4dh+4
- 2

k

and so
hn+h+2—n+(h—5)n+h+2

2 2
On the other hand, equation (16) minus n + 1 times equation (20) gives:

k>

(21)

(2n® —hn+n)k—hn® —n® - 3n® 4+ An® + 2hn - 2n=0.  (22)

Solving this last equation for & gives:

k

_hn*+n®+3n% —hn?—2hn+2n hn+n—h+h2+5 (h? - 1)(h—3)
- 2 —hn+n - 2 4 42n—h+1)

Comparing this last value of k with (21) gives

R?4+5 (R2-1)(h—3) _ (h=5n+h+2
noht e k] )

ie.
(h=Tn% - (A2 =Th+2)n-h%+ h <.
So, if h > 7, then:

h?—7Th+2+vhA—10R3 +21A2+4 _2h2—12h 7
n= 2k =7) S Shon S htlti—s
which is a contradiction since h < n/2 + 2.

Hence h < 7.
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For h = 7 we have (2n% —6n)k+8n3+4n? —12n = 0 so k = 2202=1=3
4n + 10 4 24/(n — 3) which is not an integer for n > 27.

For h = 6 we have (2n2 — 5n)k + 3n? — 7n® + 10n hence k = 7/2n +
29/4 + 105/4(2n — 5). Hence k is not integer for 2n — 5 > 105, i.e. for
n > 55.

For h = 5 we have k = 3n 4+ 5 + 3/(n — 2). Hence k is not integer for
n > 5.

For h = 4 we have k = 5/2n + 13/4 4+ 14/4(2n — 3). Hence k is not
integer for n > 9.

For h = 3 we have k£ = 2n+2, which is a contradiction since & > 2n 4 3.

Forh=7andn<27,h=6andn <55 h=5andn <5andforh=4
and n < 9 we get a few cases in which k is a integer, but also in these cases
using equation (20) we get a contradiction. O

From Lemma 2.1 and Lemma 3.1 we get the main Theorem:

Theorem 3.1 Let (S, L,P) be a non-degenerate finite planar space of or-
der n satisfying Property (i) and let K be a proper subset of S meeting
every plane in either 2 or h points. Then K is a pair of skew lines (both of
length n + 1) of (S, L, P).
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