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Abstract. There are several well-known and important hamilto-
nian results for claw-free graphs but only a few are concerned with
quasi-claw-free graphs. In this note, we provide a new sufficient
condition for quasi-claw-free hamiltonian graphs.
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1. Introduction

In this note, G = (V, E) denotes a simple undirected graph (i.e., finite,
loopless and without multiple edges) with vertex set V = V(G) and edge
set E = E(G). The open neighborhood and the closed neighborhood of a
vertex v € V are the sets N(v) = {u € V|uv € E} and N[v] = N(v)U{v},
respectively. The square G? of G is the graph with the same vertex set
as G and two vertices are adjacent if their distance in G is at most 2.
With each pair (u,v) of vertices at distance 2 in G, we associate a set
J(u,v) = {w € Nw)NN()| N[w] € N[u]JUN(v]}. For a subset S C V(G),
the subgraph of G induced by S is denoted by G[S]. Also, we use G — S to
denote the graph G[V \ S] where V\ Sistheset {ve V|v ¢ S}. If Hisa
subgraph of G, then for simplicity, we sometimes write H to mean V(H).

A set of vertices in a graph G is independent if no two of them are adja-
cent. The largest number of vertices in such a set is called the independent
number of G and is denoted by a(G). The connectivity of G, denoted by
#(G), is the minimum number of vertices whose removal from G results in
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a disconnected or trivial graph. A graph G is k-connected if x(G) > k. A
cycle that contains every vertex of G exactly once is called a hamiltonian
cycle. Thus, a graph G is hamiltonian if it possesses a hamiltonian cycle. A
classical result, due to Chvétal and Erdés (6], in hamiltonian graph theory
is the following

Theorem 1. [6] For k > 2, a k-connected graph G is hamiltonian if
a(G) <L k.

A claw is a graph on four vertices such that one of them, called the
center, is adjacent to the other three vertices which themselves are pairwise
nonadjacent. A graph G is called claw-free if it has no claw as an induced
subgraph. For a thorough treatment of claw-free graphs, we refer the reader
to [9].

Ainouche, Broersma and Veldman in [3] showed the following analogue
of the Chvétal-Erdés theorem for claw-free graphs.

Theorem 2. (3] Fork > 2, a k-connected claw-free graph G is hamiltonian
if o(G?) < k.

Later on, Ainouche [2] extended Theorem 2 to a wider class of graphs
called quasi-claw-free graphs. A graph G is quasi-claw-free (QC-free for
short) if each pair (z,y) of vertices at distance 2 satisfies the condition

J(z,y) # 0.

Theorem 3. (2] For k > 2, a k-connected QC-free graph G is hamiltonian
if a(G?) < k.

In this note, we study the hamiltonicity of QC-free graphs and give a
sufficient condition which is similar to Theorems 3 but using the asteroidal
number of a graph instead of the independent number of its square. We
now introduce the concept of the asteroidal number of graphs as follows.

An asteroidal triple (AT for short) of a graph is a set of three vertices
such that any two of them are joined by a path avoiding the closed neigh-
borhood of the third. A graph is called asteroidal triple-free (AT-free for
short) if it does not contain an AT. Lekkerkerker and Boland [14] first in-
troduced the concept of AT to characterize certain special class of graphs
called interval graphs. Walter [16) generalized the notion of AT to the so-
called asteroidal sets. A set of vertices A C V(G) is an asteroidal set if for
every vertex a € A, the set A\{a} is contained in one connected component
of G — N|a]. The asteroidal number of a graph G, denoted by an(G), is the
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maximum size of an asteroidal set in G. Clearly, AT-free graphs are those
graphs with asteroidal number at most 2. Also, every asteroidal set is an
independent set, and thus we have an(G) < a(G) for every graph G. Kloks
et al. [12) investigated the complexity of computing asteroidal number for
certain special classes of graphs. In particular, it is shown that the polyno-
mial algorithm obtained in [15] for computing the independent number of
claw-free graphs can be also used to compute the asteroidal number. For
more information about claw-free and/or AT-free graphs and the asteroidal
number of graphs the reader can refer to {4],(5],(7],(8],(10],[11], and [13].

2. Main results

Before we introduce our main results, it is certainly important to distin-
guish the terms “QC-free” and “claw-free” for those graphs with bounded
asteroidal number. Lemma 1 below shows that the two terms are equiva-
lent for AT-free graphs. However, this is not true for graphs with asteroidal
number at least three. Figure 1 shows a QC-free graph that is not AT-free
or claw-free.

Lemma 1. Let G be an AT-free graph. Then G is QC-free if and only if
G is claw-free.

Proof. Since every claw-free graph is QC-free, the “if part” is obvious.
Conversely, we assume that G is both AT-free and QC-free but it contains
a set of vertices C = {zo, T1,z2,z3} that induces a claw with zo as the
center vertex. Since zo ¢ J(x;,z;), for each pair of vertices z;,z; with
i,j € {1,2,3} and i # j there exists a vertex y;; € J(zi, ;). Obviously,
vijzk ¢ E(G) where k € {1,2,3} and k # i,j otherwise zx € Nlyi;] C
N[z;]UN{z;] which is a contradiction. Now, it is easy to check that z;y;;z;
is a path connecting z; and z; in G — N|[zx]. This shows that {z,,z2,z3}
is an AT in G, a contradiction. O

In this note, we show the following theorem whose proof will occur in
Section 3.

Theorem 4. For k > 2, a k-connected QC-free graph G is hamiltonian if
an(G) < k.

We note that Theorem 3 and Theorem 4 are incomparable in the sense
that neither theorem implies the other. For instance, the cycle Cs is a QC-
free hamiltonian graph with o(C?) = 2 = k(Cs) and an(Cs) = 3 > x(Cs).
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A QC-free graph contains an AT {z,y,z} and a claw {w,z,y, z}.

Figure 1

In contrast, Figure 2 depicts a QC-free hamiltonian graph G for which
an(G) = 2 = k(G), whereas a(G?) = 3 > k(G). It is easy to exhibit that
both examples can be extended to classes containing infinite number of
graphs for which one theorem ensures the hamiltonicity of the graphs and
the other one fails to draw the same conclusion. An immediate consequence
of Theorems 3 and 4 is the following.

Corollary 1. For k > 2, a k-connected QC-free graph G is hamiltonian if
min{an(G), a(G?)} < k.

The combination of Lemma 1 and Theorem 4 implies that every 2-
connected claw-free AT-free graph is hamiltonian. In fact, Brandstadt et
al. [4] designed a linear time algorithm to construct a hamiltonian cycle in
a 2-connected claw-free AT-free graph (see Corollary 5.9 in [4]).

3. Proofs

Let C be a longest cycle of a k-connected (k > 2), non-hamiltonian graph
G. By Dirac’s theorem, |C| > 2k. We fix an orientation on C and for
u € V(C) we denote by u* and u~ the successor and the predecessor of v
on C, respectively. If u, v € V(C) then uCv denotes the consecutive vertices
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(a)
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(b)

(a) A QC-free hamiltonian graph G with an(G) = 2; (b) The square G? contains
an independent set {z,y, z}.

Figure 2

on C from u to v (including » and v) in the orientation of C. For a subgraph
H of G, let Nc(H) denote the set of neighbors of vertices of H that belong
to C. Throughout the remainder of this section, we assume that H is a
component of G — C and o is a vertex of H. Let No(H) = {d,...,dm},
where the subscripts of d;’s will be taken modulo m. Since G is k-connected,
k < m. We assume that d,,...,d,, occur on C in the order of their indices
and set C; = d}Cdy,, for i = 1,...,m. Given a path P = vjvp-- v,
(p > 2) and a vertex u ¢ V(P), we say that u is P-insertible [17] if there
exists ¢ € {1,...,p — 1} such that v; and v;;, are both adjacent to u. For
simplicity, a vertex v € V(C;) is called insertible if it is d;;Cd;-insertible.
We will use the following known results in our proof.

Lemma 2. [1] Let G be a k-connected graph with k > 2, C be a longest
cycle of G, and H be a component of G — C. Then

19



(a) For each i € {1,...,m}, C; contains a non-insertible vertex.
Let z; be the first non-insertible vertex along C; (i = 1,...,m) and
set X = {z9,21,...,Zm}, where zp is any vertez of H. Also set Wy =
V(H), W; = V(dfCx;), and for 1 < i < m choose u; € W;. Then

(b) N(u;) NnWp = 0.

(c) Any set W = {w; € W;|0 < i < m} is an independent set. In partic-
ular, X is an independent set.

Throughout, we refer to the set X defined in Lemma 2 as the set
X(G;C,zo).

Lemma 3. [2] Let G be a connected QC-free graph of order n and suppose
that G contains a cycle C of length r where 3 < r < n. If G contains no
cycle of length r + 1, then u~ut € E for every vertez u of C that has
neighbors outside of C.,

Lemma 4. Let G be a k-connected (k > 2), non-hamiltonian QC-free
graph, C be a longest cycle of G, H be a component of G — C, and zo
be any vertez of H. Then X(G;C, ) is an asteroidal set of G.

Proof. Set X = X(G;C,zo) = {z:;|0 < ¢« < m} where m > k. From
Lemma 2(a), we have that each z; is a non-insertible vertex. From Lemma 3,
we have that d7d} € E(G) for each i € {1,2,...,m}. Thus z; # dj for
each i € {1,2,...,m}. By Lemma 2(c), X is an independent set of G. For
i=0,1,...,m, let G; = G— N[z;]. We will show that X\ {z;} is contained
in one connected component of G;. Consider the following two cases.

Case 1: Suppose i = 0. Since zg € V(H), N[zo) C V(H) U Nc(H).
Let G' = G — (V(H) U N¢(H)). Clearly, G’ is a subgraph of Go. Thus
d;,df € V(G') and d;df € E(G') for each j € {1,...,m}. Therefore,
G contams a cycle t.ha.t is obtained from C by replacing the edges d;d;
and d; d"’ with dj d} for all j € {1,...,m}. Since all vertices z1,...,Zm
occur on the cycle, it follows that X \ {zo} is contained in one connected
component of G’ and hence of Gy.

Case 2: Suppose i > 0. By Lemma 2(c), N(z;) " W; = 0 for each j €
{0,...,m}\ {i}. In the following proof, we always assume j € {1,...,m} \
{i}. By definition, d € Wj, z; € W;, and from Lemma 3 we have d d"’
E(G). Now we prove that d; ¢ N(z;). Suppose, to the contrary, that d €
N (x,) Let w be a neighbor of d; in H. Since the distance between w and.
d} is two, there exists a vertex, say g, such that ¢ € J (d},w). Obv1ously,
q ;é d; since z; € N(d;] but z; ¢ N[d}] U N(w]. Since N(d"') NV(H) =
g must be in Nc(H), say dy. Thus G has a cycle w’dkd;-"Cd,:dz'Cdij w’
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which is longer than C, where w' is a neighbor of di in H and wHw'
denotes a path between w and w’ in H, a contradiction. Let zoPd; be a
path from zg to d; in G such that all internal vertices are contained in
H. Then a:oPdJ-dj-'ij is a path joining zo and z; in G and z; does not
have any neighbor in this path. Since we have already pointed out that no
vertices of this path are contained in N[z;], zo and z; are connected by a
path in G;. This further implies that z; and z;» are connected by a path
in G; for each pair j,j' € {0,...,m} \ {¢}. Therefor, X \ {z;} is contained
in one connected component of G;. ]

Proof of Theorem 4. Suppose that G satisfies the conditions of The-
orem 4 but it is not hamiltonian. Let C be a longest cycle of G and
zg € V(G - C). Consider the independent set X = X(G;C, o) = {z;]0 <
i < m} where m > k. By Lemma 4, X is an asteroidal set of G and hence
we have an(G) > |X| = m + 1 > k, a contradiction. a
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