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Abstract

A hypergraph is a generalization of an ordinary graph, in which
an edge is not limited to contain exactly two vertices, instead, it
can contain an arbitrary number of vertices. A number of desirable
properties of database schemes have been shown to be equivalent to
hypergraphs. In addition, hypergraph models are very important for
cellular mobile communication systems. By applying Pélya’s Enu-
meration Theorem (PET) twice, the counting series is derived for
unlabeled linear acyclic hypergraphs in this paper.
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1 Introduction

A hypergraph is an extension of a graph. Recent researches have shown
that database schemes, which are usually collections of table skeletons, can
be viewed as hypergraphs. Thus, the hypergraph models have proven to be
a very useful structure in relational databases for computer science [1][2].

In a cellular network with limited spectral resources, cellular systems
have hitherto been modeled mostly by graphs for the purpose of channel
assignment. However, hypergraph modeling of cellular systems offers a sig-
nificant advantage over graph modeling in terms of the total traffic carried
by the system. Therefore, hypergraph models can be used to generate ef-
ficient fixed and dynamic channel allocation schemes, which outperform
those designed using the graph model [3).

Definition 1 Let X be a finite set, £ be a family of subsets of X and
Ug,ee Bi = X. Then H = (X,¢) is called a hypergraph with vertext set
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Figure 1: (a) A hypergraph H and (b) the corresponding bipartite graph
G(H)

X and edge set € . | X |= pis called the order of H. If | E; |= M for each
E; € ¢, then H is an M-uniform hypergraph. If E; € € and | E; |= 1, then
E; is called a loop.

In H, a vertex z is isolated if it belongs to only one edge. Suppose
E ce, Eisanear of H if E # ¢ and there exists E' € ¢é\E such that y
is isolated for any y € E\E'. The Graham reduction of a hypergraph is
the partial hypergraph obtained by removing ears until no more removals
are possible [4][5]. H is an acyclic hypergraph if its Graham reduction is
empty.

A hypergraph is said to be connected if there is an edge sequence
fisfey -+, fx of € such that Ey = f1,E; = fi for any E,,E; € ¢ and
finfimn#$1<i<k—-1

Definition 2 A hypergraph is called a hypertree if it is acyclic and
connected. It is said to be linear if | Ey N E, |< 1 for every pair of edges
Ely E2 €E.

Definition 3 In a linear hypertree, E; is called a suspending edge, if
it has exactly one point adjacent to the other edges, and | E; > 2.

Definition 4 A hypergraph H has a corresponding bipartite graph
G(H) = (11,Y2, E), where Y1 = X and Y2 = ¢ are the vertex sets of the
two parts of G(H) respectively, and F is the edge set. That is, we take the
edges of H as the vertex set Yz of G(H). In G(H), z; € Y1,E; € Y; are
adjacent if and only if z; € E; in H. A 3-uniform hypergraph H and its
corresponding bipartite graph G(H) are illustrated in Fig. 1 (a) and Fig.
1 (b) respectively.

Definition 5 The corresponding bipartite graph of a linear hypertree
H is called a corresponding bipartite tree. A corresponding bipartite rooted
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tree has one of its points, called the root, distinguished from the others. A
corresponding bipartite planted tree is a rooted tree in which the root has
degree one.

Definition 6 H is called an unlabeled hypertree if H is a hypertree
and its vertices and edges are not labeled.

Enumeration of hypergraphs has been studied by several authors. The
fundamental work was done by N. G. de Bruijn and D. A. Klarner [6]. In (7]
and [8], methods are proposed to enumerate the number of hypergraphs by
applying PET. The number of maximum r-uniform acyclic hypergraphs are
derived in [9]. We obtained the counting series for the (k+1)-uniform linear
acyclic hypergraphs in [10]. Following this result, we derive the counting
series for the unlabeled linear acyclic hypergraphs by applying PET twice
in this paper.

2 Preliminaries

The following results have been obtained for the linear hypertree [11].

Lemma 1 H is a linear hypertree if and only if G(H) is a tree.

Lemma 2 If H is a linear hypertree without loops and | € |> 2, then
H has at least two suspending edges.

If H is a linear hypertree without loops, then there exists a bijection
between H and G(H). In fact, we can get a unique G(H) according to
H. Conversely, it is possible to construct a unique H from a G(H) as
follows. Since H is a linear hypertree without loops, then Y; contains
pendant vertices by Lemma 2 and Y» contains no pendant vertex. Thus
the only way to construct a H from G(H) is that the vertex set and the
edge set of H correspond to Y; and Y, respectively. Therefore, there exists
a bijection between H and G(H) for linear hypertree without loops.

If H is a linear hypertree with loops, however, there is no bijection
between H and G(H). As discussed above, we can still get a unique G(H)
according to H. Since some vertices in Y7 and Y2 have degree one, we
can get a new isomorphic G'(H) in the following way. Take Y7 and Y» of
G(H) as the edge set and the vertex set of G'(H) respectively, Hence, we
can get two nonisomorphic hypertrees from G(H) and G'(H). That is, a
linear hypertree with loops, which has p vertices and g edges, corresponds
to the same bipartite tree as a g vertices and p edges linear hypertree with
loops does. Therefore, the former and the latter have the same number of
hypertrees after counting the bipartite trees.

Using white and black, we color the corresponding bipartite trees of
linear hypertrees, and get bicolor trees. Without loss of generality, sup-
pose the vertices in Y7 and Y5 are colored by white and black re§pectively.
Whether a linear hypertree H has loops or not, G(H) has no symmetry
edges. The number of the symmetry edges is equal to zero, because the
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endpoints of an edge are different for any edge of G(H).

Lemma 3 If H is a p vertices and g edges linear hypertree without
loops, then the degree of the vertex in Y; is less than p — ¢ + 1.

Proof By contradiction. Assume that the degree of some vertex in Y5
is p— g+ 2, and the degree of the other vertices are two. Then the number
of edgesin G(H) isp—q¢+2+2(¢g—1) = p+q. But G(H) is a tree with
p + g vertices, there should be p + g — 1 edges, a contradiction.

3 Counting linear acyclic hypergraphs without loops

For convenience, linear hypertrees without loops and linear acyclic hy-
pergraphs without loops are simplified as linear hypertrees and linear hy-
perforests respectively in this section. The hypergraphs without loops have
no edge containing the same vertices.

To enumerate linear hypertrees H, we need only to enumerate their
corresponding bipartite trees G(H) according to Lemma 1. Once we obtain
the counting series for H, then the counting series for linear hyperforests
can be obtained consequently.

Since H has no loops, by Lemma 3, the degree of the vertex z in Y
satisfies that 2 < deg(z) < p — ¢ + 1, and the degree of any vertex in Y] is
g at most.

Let I-{a,b,Ha,b,ha,b denote the number of the corresponding bipartite
planted trees, corresponding bipartite rooted trees and corresponding bi-
partite trees of H respectively, where a is the order of G(H) and b is the
number of edges in H. Let H(z,y), H(z,y), h(z,y) be the counting series
for H, 5, Hy b, hop respectively, where

I-{(:II, y) = z I?a,bxayba
a,b

H(Z’, y) = Z Ha,bxaybs
a,b

h(z,y) = ) hapzy’.
a,b

Let | € |= q,]| X |= p, then | G(H) |= p + ¢. Using Theorem 4, we
can derive the counting series for H. Therefore, the coefficient of z®y! in
the function counting series of H is the number of such H which contains
t edges and (s — t) vertices.

Theorem 4 For corresponding bipartite planted trees, corresponding
bipartite rooted trees and corresponding bipartite trees of H, the counting
series H(z,y), H(z,y), h(z,y) satisfy

P—q q-1 3,
By) =2y Z(S, Y aZ(Sn, T L)) )
k

=1 n=0
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Hew) = =3 2(5, 20

g+1 q-—
+zypz z Sk,ZzZ(SmH(x’y))), (2)
n=0
o) = Hz) - 22D S oz, BED)
n=0

Proof The counting series for planted trees will be derived firstly. For
brevity, the point adjacent to the root is called the next root.

As mentioned previously, the colors of the vertices in Y; and Y3 are white
and black respectively, then the color of the root of a plant tree is white. n
planted trees can construct a new tree by merging the white roots together.
Hence, on applying PET to the symmetric group S, with H(z,y)/z as the
figure counting series, we obtain the cycle index Z(Sn, H(z,y)/z) as the
configuration counting series. But the identified point has not yet been
taken into account. Therefore the configuration counting series should be
multiplied by z. Summing over all n > 0, we get

3 02(5a, 2 (z’y)). @

n=0

Formula (4) is denoted by A, (z,y). Since the linear hypertrees consid-
ered here are not necessarily uniform, we conclude that such k(1 < k <
P — ¢) new trees can correspond to a new planted tree, where the next
root is black with degree (k + 1) and the root is white with degree one.
Applying PET once more, Z(Sk, H(z,y)) enumerates these planted trees
with H,(z,y) as the figure counting series. The new white root and the
identified next black root, however, have not yet been taken into account.
The proper adjustment is made by multiplying by z2y. Then sum over all
1 € k < p - g. Noting that the number of the white vertices of a corre-
sponding bipartite planted tree is less than ¢, then we need only to sum
over all 0 < n < ¢ — 1 in formula (4). Hence, formula (1) is obtained.

Next we verify (2). There are two cases of coloring the root of G(H).

Case 1l The root is white in G(H). In analogy to the discussion above,
we can get that the figure counting series is H(z,y)/z. By summing over
all n(1 < n < g), the counting series can be expressed as

s> 2(5,, 2E), (5)

n=1

Case 2 The root is black in G(H). It is almost similar to the arguments
of deriving the counting series for planted trees. Since the root is black, the
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configuration counting series is multiplied by zy. But the corresponding
bipartite rooted trees have no loops, then the degree of the vertex in Y is
not one. Therefore, summing over all k(2 < k <p—q+1), we get

p—gq+l
'S 26 S 2(s,, EEL), ®)
k=2 n=0

Thus, combining (5) and (6), we have (2) as asserted.

Finally, we verify (3). Let L(z,y) be the counting series for correspond-
ing bipartite trees rooted at an unsymmetric edge. Subject to the result
that the corresponding bipartite trees have no symmetry edge, a planted
tree and a tree with a white root can correspond to a tree rooted at an
unsymmetric edge. By joining the next root of the planted tree and the
root of the other tree, then deleting the root of the planted tree, the 1-1
correspondence can be made. Therefore, L(z,y) is

Lo,y = ZE) Zz<smH(””’-"’> @

n=0

By Otter’s formula, the counting series h(z,y) for trees is expressed in
terms of the series H(z,y) for rooted trees and the counting series L(z,y)
for trees rooted at a nonsymmetry edge by h(z,y) = H(z,y) — L(z,y) [12].
Hence, (3) is obtained.

Now we count the linear hyperforests.

Let fi(z,y) be the counting series for the number of corresponding bi-
partite forests of the linear hyperforests, each of which contains exactly ¢
corresponding bipartite trees. Let f(z,y) be the counting series for all of
the general corresponding bipartite forests of the linear hyperforests. Then
we have

q
fzy) = filz,y). 8
t=1
By PET,
ft(xa y) = Z(Shh(x,y))' (9)
Hence we have
Theorem 5 .
F(@,y) = Y Z(Se, h(z, y))- (10)
t=1

Using Mathematica, we compute the following expressions as an exam-
ple. Suppose 1 < p < 7 and 1 < g < 3, by Theorem 4 and formula (10), we
have
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H(z,y) = 2Py+zly+2’y+2ly+a’y+a8y+--
+2%y? + 22%9% + 327y + 428y + 52 + -
+2z7y° + 62%y® + 122%% + 2021%°% + - .-,
253y + 25ty + 22%y + 228y + 227y + 228y + - --
+3z%y% + 52%y% + 82"y + 1028y? + 132%% + - --
+727y% + 172893 + 342%3 + 552103 + - ..,
h(z,y) = Py+2ty+Py+2y+aTy+aBy+.-
+2%y% + 289% + 227y? + 228y% + 3292 + - -
+227y3 + 3283 + 62%9% + 921%3 + .- -,
fz,y) = Py+aty+iy+2Py+aTy+aty+-.-
+2%y? + 225¢% + 327y? + 428y + 52%% + - -
+227y% + 4283 + 92%% + 1421%% 4. ...

H(z,y)

The table below demonstrates the number of linear acyclic hypergraphs
with p vertices and g edges when the hypergraphs have no loops, where
the numbers in the first row indicate the orders of hypergraphs, and the
numbers in the first column indicate the numbers of edges of hypergraphs.

1 2 3 4 5 6 7
1 0 1 1 1 1 1 1
2 0 0 1 2 3 4 5
3 0 0 0 2 4 9 14

Table 1: The number of the linear acyclic hypergraphs without loops (1 <
p<7,1<¢<3).

For linear acyclic hypergraphs with 6 points and 3 edges, their corre-
sponding term in f(z,y) is 92%3. It can be checked that the number of
the nonisomorphic linear acyclic hypergraphs without loops is 9.

4 Counting linear acyclic hypergraphs

In this section, we will discuss the number of linear acyclic hypergraphs,
including hypergraphs without loops and hypergraphs with loops. The
linear acyclic hypergraphs have no edge containing the same vertices, except
the loops.

Since H has loops, the degree of the vertex z in Y, satisfies that 1 <
deg(z) < p, and the degree of any vertex in Y) is g at most.

Similar to the denotation described in Section 3, let H} ,, Hj 5, k} ; de-
note the number of corresponding bipartite planted trees, corresponding
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bipartite rooted trees and corresponding bipartite trees of H respectively.
Let H(z,y), H(z,y), h(z,y) be the counting series for A, ,,H. ,, !, , re-
spectively. Let H;(z,y) and Hy(z,y) be the counting series for corre-
sponding bipartite planted trees whose roots are vertices and edges in H

respectively, where
H(z,y) =) _ H, %,
a,b

H'(z,y) = ) H, 2%,
a,b

h’(xly) zhl bz y )

I_{I(xa y) = Hz(xi y) + Hy(za y)' (11)

Theorem 6 For corresponding bipartite planted trees, corresponding
bipartite rooted trees and corresponding bipartite trees of H, the counting
series H'(z,y), H'(z,y), H'(z,y) satisfy

p—1

H(z,y) = = yZZ Sk,zxz(sm =(2, y)))
k=0 n=0
‘o yZZ(sk,EzyZ(S H”S;’ B@y )
=0 n=0

Ho) =23 26 200 sy 3 705, Blodyy -y

n=1 n=1

Hla) = He,y) - 2208 o)) (1)

Proof Firstly, we take the counting series for planted trees whose
roots are the vertices in H into consideration. The method is similar to
that one deriving the formula (1). The difference is that we can sum over
all k(0 < k < p— 1), since the degree of the vertex in Y, may be one or p.

Secondly, we consider the planted trees whose roots are the edges in H.
Applying the method of deriving H.(z,y), we can get the figure counting
series Hy(z,y)/(zy) by applying PET once. The configuration counting
series should be multiplied by zy, since the identified point in Y5 has not
yet been taken into account. From the discussion above and (11), (12) is
obtained.

In analogy to the method in the third section, we derive the counting
series for rooted trees. There are two cases of coloring the roots of G(H).
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Case 1 The root is white in G(H). We can get the counting series
without difficulties

z f: Z(Shn, g@) (15)

n=1

Case 2 The root is black in G(H). Similar arguments show that

3 Ell (:E ) y) 1
5‘73/;2(571,: ) (16)

(15) plus (16) is formula (13).

Finally, we attempt to get the counting series for corresponding bipartite
trees. Similar to the deriving of A'(z,y), let L'(z,y) be the counting series
for corresponding bipartite trees rooted at an unsymmetric edge. Knowing
that the corresponding bipartite trees have no symmetry edge, a planted
tree with a black root and a planted tree whose root is white can correspond
to a tree rooted at an unsymmetric edge. By joining the next roots of the
two planted trees, then deleting the roots of the two planted trees, the 1- 1
correspondence can also be made. So L'(z,y) is

L’(il,',y) = H’z(:;cvy) X Hy(z,y)‘ (17)

Ty

By Otter’s formula b/(z,y) = H'(z,y) — L'(z, y) again, (14) is obtained.

Now we count the linear acyclic hypergraphs.

Let f'(z,y) denote the counting series of all the general corresponding
bipartite hypergraphs of the linear acyclic hypergraphs. By adopting the
same method of deriving linear hyperforests without loops, we have

Theorem 7

q
fl(:c’y) = ZZ(Sta hl(mvy))' (18)

t=1

As an example, we can also get the expressions for linear acyclic hyper-
graphs when 1 < p <7 and 1 < ¢ < 3. From Theorem 6 and formula (18),
we have

H(z,y) = 22%y+2%y+zty+2%y+28y+2Ty+28y+--
+23y? + 22%9?% + 32°%y® + 428y + 527y? + 6282
+72%% + - .- + 2% + 3259 + 8:1:6y3 + 142743
+2328%° + 33x9y3 + 46z1%° +
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2z%y + 223y + 22y + 22y + 228y + 227y
+228y + - - + 2239 + 4z%9® + T2¥y? + 92542
+1227y? + 1428y + 172%° + - - 4+ 22%3
+72%y° + 182%y° + 34273 + 5528y + 812%°
+113x0%5% 4 ...
?y+y+ 2ty + 2Py + 2ty + 2Ty + 28y + -
+2392 + 2%y + 20%y% + 22%9% + 327y% + 32842
+42%% + - + zhy® + 2259% + 428y + 7278
+10z°%9% + 142%° + 19'%° + - -+,

fllzy) = sPy+y+ziy+oy+2Py+aTy

+z8y + - - + 28y? + 22%y? + 325y? + 428°
+527y? + 628y + T2% + - - - + 2y + 3258
+72%° + 1227y + 182%% + 262%¢3 + 352103 + .. ..

H'(z,y)

k' (z,y)

Likewise, the table for the number of the linear acyclic hypergraphs
with p vertices and g edges can be presented below, where the numbers in
the first row indicate the orders of hypergraphs, and the numbers in the
first column indicate the numbers of edges of hypergraphs.

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 1 3 7 12 18 26 35

Table 2: The number of the linear acyclic hypergraphs (1 <p<7,1<¢<
3).

When p = 6 and ¢ = 3, the corresponding item in f(z,y) is 26z%y5.
We also can check that the number of the nonisomorphic linear acyclic
hypergraphs is 26.
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