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ABSTRACT. MacGillivray and Seyffarth (J. Graph Theory 22 (1996),
213-229) proved that planar graphs of diameter three have domina-
tion number at most ten. Recently it was shown (J. Graph Theory 40
(2002), 1-25) that a planar graph of diameter three and of radius two
has domination number at most six while every sufficiently large pla-
nar graph of diameter three has domination number at most seven.
In this paper we improve on these results. We prove that every pla-
nar graph of diameter three and of radius two has total domination
number (and therefore domination number) at most five. We show
then that every sufficiently large planar graph of diameter three has
domination number at most six and this result is sharp, while a pla-
nar graph of diameter three has domination number at most nine.

1 Introduction

In this paper we continue the study of the domination number of planar
graphs with small diameter started by MacGillivray and Seyffarth [5] and
continued in [2]. For diameter 2, MacGillivray and Seyffarth [5] proved
that planar graphs have domination number at most 3. Thereafter, it
was proven in [2] that there is a unique planar graph of diamneter 2 with
domination number 3. On the other hand, a tree of radius 2 and diameter 4
can obviously have arbitrarily large domination number.
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So the remaining question is what happens when the diameter is 3.
MacGillivray and Seyffarth [5] proved that planar graphs of diameter 3
have domination number at most ten. It was proven in [2] that every planar
graph of diameter 3 and of radius 2 has domination number at most 6 and
that every sufficiently large planar graph of diameter 3 has domination
number at most 7.

In this paper, we improve on the results of [2] and [5]. We prove that
every planar graph of diameter 3 and radius 2 has domination number
(and indeed total domination number) at most 5. We then show that every
sufficiently large planar graph of diameter 3 has domination number at
most 6 and this result is sharp, while a planar graph of diameter 3 has
domination number at most 9. We use the same approach as in [2] but
with more detailed analysis and with the use of a computer.

For notation and graph theory terminology we in general follow [1]. So,
for a graph G, if X, Y C V(G), then we say that X dominates (resp., totally
dominates) Y if every vertex of Y — X (resp., of Y) is adjacent to some
vertex of X. In particular, if X dominates (resp., totally dominates) V(G),
then X is called a dominating set (resp., total dominating set) of G. The
domination number of G, denoted by (G), is the minimum cardinality of a
dominating set, while the total domination number of G, denoted by +:(G),
is the minimum cardinality of a total dominating set. Domination and its
variations in graphs are now well studied (see [1, 3, 4]). To simplify the
notation, if X dominates Y we write X > Y while if X totally dominates
Y we write X >, Y. Further, if a vertex u is adjacent with a vertex v, we
write u ~ v, while if » and v are nonadjacent, we write u 7 v. We denote
the eccentricity of a vertex v in G by eccg(v), or simply ecc(v) if G is clear
from the context. The subgraph induced by a subset S C V(G) is denoted

by G[S].

2 Results

MacGillivray and Seyffarth [5] proved that planar graphs with diameter 3
have bounded domination numbers.

Proposition 1 ([5]) A planar graph of diameter 3 has domination number
at most 10.

They gave an example (see Figure 1) of a planar graph of diameter 3
with domination number 6. The following three results were proven in [2].

Proposition 2 ([2]) Bvery planar graph of diameter 3 and of radius 2 has
domination number at most 6.
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Figure 1: A planar graph with diameter 3 and domination number 6

Proposition 3 ([2]) For a sufficiently large planar graph G of radius and
diameter 3, there ezists a planar graph G’ of radius at most 2 and diameter
at most 3 such that v(G) < v(G')+ 1.

Proposition 4 ([2]) Every sufficiently large planar graph of diameter 3
has domination number at most 7.

Our aim is to improve the bounds in Propositions 1, 2, and 4. We shall
prove:

Theorem 1 Ewvery planar graph of diameter 3 and of radius 2 has total
domination number at most 5.

This is proven in Section 3. As an immediate consequence of Proposi-
tion 3 and Theorem 1, we have the following result.

Theorem 2 Ewery sufficiently large planar graph of diameter 3 has domi-
nation number at most 6, and this bound is sharp.

The sharpness is shown by the graph of Figure 1, which can be made
arbitrarily large by duplicating any of the vertices of degree 2. Furthermore,
by adding edges joining vertices of degree 2, it is possible to construct such
a planar graph with minimum degree equal to 3. While this theorem shows
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that there are finitely many planar graphs of diameter 3 with domination
number more than 6, we do not know of any.

As observed in [2, Section 7], the maximum domination number of a pla-
nar graph of diameter 3 is at most four more than the maximum for radius 2
and diameter 3. Hence the following result is an immediate consequence of
Theorem 1, and improves on Proposition 1.

Theorem 8 Euvery planar graph of diameter 3 has domination number at
most 9.

There are similar results for total domination number. The following
result is proven in Section 4.

Theorem 4 Every sufficiently large planar graph of diameter 3 has total
domination number at most 7.

The maximum total domination number of a planar graph of diameter 3
is at most five more than the maximum for radius 2 and diameter 3. For
example, if G has diameter and radius 3, then shrink the open neighborhood
of a vertex v of minimum degree to a single vertex z. The resultant graph
G’ has diameter at most 3 and radius 2. Also, v:(G’) < 7:(G)+5 since = is
in every minimum total dominating set S’ of G’, and so (S’ — {z}) U N[v]
totally dominates G.

Hence the following result is an immediate consequence of Theorem 1.

Theorem 5 FEvery planar graph of diameter 3 has total domination num-
ber at most 10.

It is not known if the bound in Theorem 5 is sharp. We showed above
that there are finitely many planar graphs of diameter 3 with total domi-
nation number more than 7. It is entirely possible that there is none.

3 Proof of Theorem 1

In this section we prove Theorem 1. We use the same approach used to
prove Theorem 4 in [2], but with more detailed analysis and with the use
of a computer.

The focus is on cut-cycles. Note that in a planar graph of diameter 3,
there cannot on both sides of a cut-cycle be vertices not dominated by the
cycle. We define a basic cycle as follows. Let vertex = have eccentricity 2
in G. Then a basic cycle C is an induced cycle z,v,,v2,..., v,z such that
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on both sides of the cycle there is a vertex whose neighbors on the cycle are a
subset of the two consecutive vertices fartherest from z, specifically v(r_1)/2
and v(r41)/2 if r is odd, and v,/2 and vz, if 7 is even. A special basic
cycle is one with the added condition that there is on the dominated side
of the cycle a vertex with only one neighbor on the cycle and that neighbor
is not z.

Our strategy is as follows. In Subsection 3.1 we show the existence of a
special basic cycle of length 3 or 4 or of a basic 5-cycle in G. Thereafter,
in Subsection 3.2 we prove some lemmas about how to totally dominate
vertices at distance 2 from two or more vertices, in particular the Divider
Lemma. In Subsection 3.3 we use these lemmas to bound the total domi-
nation number when there exists a special basic cycle of length 3 or 4. In
Subsection 3.4 we use a computer to complete the proof of Theorem 1 when
there exists a basic 5-cycle.

3.1 Basic Cycles Exist

Let G be a plane graph of radius 2 and diameter 3 with central vertex z.
We say that it is edge-minimal if for every edge e of G, diam(G —e) > 3
or ecc(z) > 2 in G — e. Clearly, we may assume that G is edge-minimal
in proving Theorem 1 (since removing edges can only increase the total
domination number).

The following improves considerably on Lemma 10 of [2].

Lemma 6 Let G be an edge-minimal plane graph of radius 2 and diame-
ter 3 with central vertex . Then, v:(G) < 5, or there exists a special basic
triangle, special basic 4-cycle, or basic 5-cycle.

Proof. Suppose there is neither a special basic cycle of length 3 or 4 nor
a basic 5-cycle in G.

Let Y = V(G) — N[z]. Let M be a minimal subset of N(z) that
dominates Y. The set M exists since ecc(z) = 2. Let |M| = m. Since
7(G) < m + 1, we may assume m > 5.

Let the vertices of M be ng,n1,...,nm—1 in cyclic order (clockwise)
around z in G. Let Y]’ be the set of vertices of Y whose only neighbor in M
is n;. By the minimality of M, each Y] is nonempty. Let Yp,Y;,..., Y1
be a partition of Y such that ¥; C N(n;) for each i. Necessarily, ¥/ C Y;
for each 1.

We now choose a vertex y; € Y; for each 4. If there is a vertex of Y/
adjacent to both a vertex of Y;_; and a vertex of Y;;; (where addition is
taken modulo m), then this vertex is unique by the planarity of G and we
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choose this as ;. If there is no such vertex of Y, then we let y; be any
vertex of Y,/ adjacent to a vertex of Y;_; or a vertex of Y;,1, if such a vertex
exists, failing which we let y; be any vertex of Y.

As in [2], we say that two neighbors u; and uz of = are separated if
there is a vertex of M between u; and u» in both directions around z in the
embedding of G. We define type-1, type-2 and type-3 edges as follows. A
type-1 edge joins vertices uy, u2 € N(x) such that u; and uy are separated.
A type-2 edge joins vertices u; € N(z) and v2 € Y with v, dominated by
a vertex ug of M such that u; and ug are separated. A type-3 edge joins
vertices v;,v2 € Y with v; and v» dominated by vertices u; and us of M,
respectively, such that u; and us are separated.

Claim 6.1 There is no type-1, type-2 or type-3 edge.

Proof. Let e be an edge. Suppose e = ujug is a type-1 edge. Then there
is a vertex ny of M inside the cycle C:z,u;,u3,z and a vertex n; of M
outside the cycle C. Since the vertices y; and y; are not dominated by z,
C is a basic triangle.

Without loss of generality, C dominates its inside. By assumption, C
is nonspecial. That is, every vertex of Y inside C is adjacent to both w,
and ug. By planarity, y; is the only vertex of Y inside the triangle C, since
each such vertex must be adjacent to all of u1, u5 and n;. But then we can
remove the edge n;y;, contradicting the minimality of G. Hence, G has no
type-1 edge.

Suppose e = ujvs is a type-2 edge. Then again there is a vertex n; of
M inside the cycle C:z,u1,v2,u2, z and a vertex n; of M outside the cycle
C with vertices y; and y; not dominated by {z,us}. Furthermore, since
there is no type-1 edge, C is induced and hence a basic 4-cycle.

Without loss of generality, C dominates its inside. By assumption, C
is nonspecial. That is, every vertex of Y inside C is adjacent to at least
two vertices on the cycle. In particular, since ups € M, y; is adjacent to u,
and v2 (and not to up). Hence by planarity, each vertex of Y inside C is
adjacent to at most one of u; and ug, and therefore, since C is nonspecial,
is adjacent to vo. But then we can remove the edge n;y;, contradicting the
minimality of G. Hence, G has no type-2 edge.

If e = vyv2 is a type-3 edge, then again there is a vertex y; both inside
and outside the cycle C:z,u1,v1,v2,u2,z not dominated by {z,u;,u2}.
Furthermore, since there is no type-1 or type-2 edge, C is induced and
hence a basic 5-cycle, a contradiction. Hence, G has no type-3 edge. O
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Claim 6.2 Ifi,j are not consecutive, then
(i) there is no edge from Y; to Yj, and
(ii) d(ni,y;) = 3.

Proof. If there is an edge from Y; to Yj, then the edge is type-3, con-
tradicting Claim 6.1. Now, by the lack of type-2 edges, n; and y; are not
adjacent. Suppose they have a common neighbor a. This creates a 5-cycle
z,n;, a,yj,nj, . By Claim 6.1, it can be checked that this cycle is induced.
(For example, if z ~ a then either n;a is type-1 or ay; is type-2.) Thus it
is a basic 5-cycle (the desired vertices are y;_ and y;41). O

As in [2], for an index 1, if ¥ ~ yit+1 we define the lozenge L; as the
region inside the 5-cycle z, n;, ¥i, ¥i+1, ni+1,Z. We denote the set of vertices
of Y inside lozenge L; by X;. The following result extends (and corrects)
Claim 2 from [2].

Claim 6.3 (i) If there is a path of length 2 from y € Y; to z € Yiy2, then
the intermediate vertex 18 yit1 OT Miy1.

(ii) If m > 6, then the shortest yi—yit+3 path s yi, Yi+1,Yi+2,Yi+3, o7 of
m = 6 is possibly ys, Yi—1,Yi—2, Yi43-

(iii) If m > 6 and y € X;, then the shortest y—yii3 path is ¥, Yi+1,Yi+2, ¥i+3
and the shortest y—y;—o path is y, ¥, ¥i—1,Yi—2. In particular, y is adjacent
to both y; and yit1.

(iv) If m =5 and y € X;, then y is adjacent to y; or y;y1.

) A path of ‘length .at most 3 from y; to yiyo either uses a vertez of Y/,
or, if m =35, is possibly yi, Yi—1,Yi-2, Yi+2-

Proof. (i) Assume the path is y,a,2. If a € N(z), then a = n;;; else
one of the edges ay or az would be a type-2 edge. So assume a € Y; then
a € Y;4+1 by Claim 6.2. Further, by Claim 6.1, vertex a cannot be placed in
Y; or Yi4o; that is, a € Y, ,, and by the definition of y;41, in fact a = ;4.

(ii) The same as the proof of part (ii) of Claim 2 in [2].

(iii) Assume the shortest y—y;+3 path is y, a, b, yi+3. Then a ¢ {n;, niy1},
since each of n; and ni4 is distance at least 3 from ;43 (by Claim 6.2).
So a = yi+1 and by part (i), b = yi42. '

(iv) This follows by considering the distance between y and ;3.

(v) Consider a walk ¥;, a, b, y;+2 (Where possibly a = b). Then, a,b #
ni41. If the walk uses a vertex of Y;_i, then, by part (i), it must be the
path ¥, ¥i—1, ¥%i—2, Yi+2. So assume the walk does not use a vertex of ¥;_;.

Since there is no type-1 or type-2 edge, at least one of a,b € Y, say
b. Suppose b ¢ Y.;. Then, b ~ n; or b ~ n;;2. However, since the edge
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byito is not a type-3 edge, b 4 n; and so b ~ nyio. If b € Yiys, then by
part (i), @ = yi+1. So assume b € Y;;,; in particular, b ~ n;.;. If a were in
N(z), then by planarity a would lie between n; and n;;; in the ordering of
neighbors of z and so edge ab would be type-2. So a € Y. Since edge ab is
not type-3, it follows that a % n;, and so a € Y, ;, as desired. O

By Claim 6.3, we may assume that m < 7, for otherwise d(yo,34) > 3.
So there are three cases.

Casel: m=1T1.

Then, by Claim 6.3, a shortest path from y; to y;+3 must have as interme-
diate vertices y;+1 and y;4+2. That is, there is an edge from y; to ;41 for
all 4. Suppose there is another vertex of Y'; say inside the lozenge Lg. Then
it is too far from y4, a contradiction. Hence, Y = {y0,%1,...,¥s}. Thus,
{z,n0, yo, ¥3, v} totally dominates G, and so v:(G) < 5.

Case 2: m =6.

Consider the shortest 0—ys, ¥1—¥4 and y2—ys paths. Since by Claim 6.3(ii)
each interior vertex on any such path is a vertex y; for some i, it follows
that there are at least five consecutive edges y;i+1, starting at yo say.

First suppose that there are only five such consecutive edges, i.e., yo %
ys. Then, it follows by Claim 6.3(iii) that no vertex of Y is inside Lo, L1,
L3 or L4, while each vertex of X, if any, is adjacent to both y2 and ys.
Hence, {z, no,ns,y2, ys} totally dominates G, and so v;(G) < 5.

Second suppose yg ~ y5. By Claim 6.3(iii), each vertex of Xj, if any, is
adjacent to both y; and ;1. Hence, by planarity (recall that each vertex of
X; is adjacent to at least one of n; or ni+1), [Xi| < 1. Since diam(G) = 3,
L; and L;;3 cannot both contain elements of Y. Hence either (a) three
consecutive X; are empty, say Xp, X1 and X», or (b) every alternate X;
is empty, say X;, X3 and Xs. If (a) holds, then {z,n1,ys,y4,ys} totally
dominates G, while if (b) holds, then {z,no, yo,¥s,vs} totally dominates
G. In any event, v:(G) < 5.

Case 3: m =5.

We show that at least three of the edges y;y;+1 are present. This result
is clear if each y; is adjacent to at least one of y;_1 and ;4. Suppose, then,
there is some i such that y; 2 yi—1 and ¥ # »i+1. We may assume that
o is adjacent to neither y; nor ys. By the way y» is chosen, each vertex of
Y] is adjacent to neither y; nor ys. So by Claim 6.3(v), a shortest y,—y3
path must be the path y1, 0, ¥4, ¥3. Once again, at least three of the edges
%i¥i+1 must be present.

Let g be the number of edges v;y;+1 present. Then 3 < ¢ < 5. We
consider four subcases depending on the value of ¢ and the arrangement
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of these edges. If a vertex u is within distance 3 from a vertex v, we shall
simply write that u reaches ».

Subcase 3.1: ¢=35.

Then, ¥:y:+1 is an edge for all i and yo, %1, ...,%4, %o is an induced cycle.
If y € X;, then it is adjacent to one of n; and n;; by the definition of M,
and one of y; and y;4+; by Claim 6.3(iv).

We say that the vertex y; has a private neighbor in Y if it has a neighbor
y in Y such that y is not adjacent to any other y;. We claim that if y; has
a private neighbor in Y then X2 is empty. For suppose %o has a private
neighbor y*, in X say, and 3’ € X2. Then a shortest path from y* to y’
must be the path y*,n1, ns, ¥, and so each vertex in X5 is adjacent to ny.
Let y € Xp. If y lies inside the cycle yo, ¥*, 71, 1, yo, then, by definition of
M, y ~ ny. On the other hand, if y lies inside the cycle z, no, %0, %*, 71, ,
then, in order to reach 3, ¥ ~ n1. Hence every vertex of Xj is adjacent
to n;. Every vertex of X3 (resp., X4) is adjacent to ng or y4 in order to
reach y* (resp., y’). Hence, {z,n1,n2,n4,94} > V and 7,(G) < 5. Thus
the claim is established.

Now, if {z,ni,yi,¥i—2,¥i+2} >¢ V, then (G) < 5. Hence we may
assume that none of the five sets of that form is a total dominating set of
G. It follows that for every i, y—1 or ¥:4+1 has a private neighbor in Y.
Therefore at least three consecutive y;’s have private neighbors in Y, say
¥0,%1 and y2. By the previous paragraph, Xs = X3 = X3 = 0. But then
{z’nh Yo, y11y2} >¢ V, and so 7‘(0) <5.

Subcase 3.2: q=4.

We may assume yo % ys. If y € Xi, then y ~ y5 in order to reach y,. If
y € X, then y ~ ¥, in order to reach yo. Hence, y2 dominates X; U X,. If
y € Xp then y ~ y; in order to reach y3, while if y € X3 then y ~ y3 in order
to reach y1. Thus, y; dominates X and y3 dominates X3. Hence if Xo = 0,
then {z,no, n4, y2,y3} > V, while if X3 = 0, then {z, no, n4,y1,92} >: V.
On the other hand, if both X and X3 are nonempty, then a shortest path
from a vertex of Xp to a vertex of Xs must be via ng and n4, and so
{z,n0,n2,n4,52} > V. In any event, v(G) < 5.

Subcase 3.3: g =3 and the edges y;yi+1 are not consecutive.

We may assume that yoy1, ¥1y2 and y3ys are edges. Then a shortest yo—y4
path has the form 3, a, y3, 94 for some vertex a, while a shortest yo—y3 path
has the form yo, b, y4, y3 for some vertex b. The cycle yo, ¥1, ¥2, @, ¥3, ¥1, b, %o
is induced by the choice of the y; and the above claims.

Since M dominates Y, there is no vertex outside the cycle yo, v1,¥2, a,
Y3, Y4, b, 7. Further, for i € {0,1,3}, a shortest path from a vertex inside
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L; to the vertex ;3 must be via z. Hence, Xp, X; and X3 are empty.

Now, let C, and C} denote the cycles z,n2, y2, @, y3, n3, = and z, ng, ¥,
b, y4, 4, z respectively. If there is a vertex y € Y inside the cycle Cp, then a
shortest path from y to y2 must be the path y, 5o, ¥1, ¥2; thus yo dominates
any vertices of Y inside the cycle Cp.

If {z,n0,%0,a,y3} > V, then ¢(G) < 5. Hence we may assume that
{z,no, o, a, y3} does not totally dominate G. Thus there exists a vertex
3y’ € Y inside the cycle C, such that 3’ o y3 and 3’ £ a. Then a shortest
b~y’ path is b,n4, ng,y’. By planarity and the definition of M, it follows
that a ~ ng and that every vertex inside the cycle C, is adjacent to ng (to
reach b or by definition of M). Furthermore, any vertex of Y inside the
cycle C), is adjacent to n4 to reach y’. Hence, nsy dominates b and every
vertex inside the cycle Cj, while ng dominates a and every vertex inside
the cycle C,. Therefore, {n;,ngs, n4,y1,z} >: V, and so 7.(G) < 5.

Subcase 3.4: q = 3 and the edges y;yi+1 are consecutive.

Say the three edges y:yi+1 &re Yoy, ¥1%2 and yoys. A shortest y,—y4 path
has the form ys3, y3, @, ¥4 for some vertex a, while a shortest y;—y4 path has
the form y1, yo, b, y4 for some vertex b. By Claim 6.1 and Claim 6.3(i), a # b
and the cycle yo, 1, ¥2, ¥3, @, ¥4, b, yo is induced. (The argument that a £ b
uses the fact that by the choice of y4, neither a nor b is in Y}.)

A shortest path from a vertex inside L; to y4 must be via z, and so
X1 is empty. A shortest path from a vertex of X5 to yo must be via
y2, and so y2 dominates X,. If there is a vertex y € Y inside the cycle
Ca: z,n3, ¥3, @, Y4, N4, , then a shortest path from y to y; must be the path
¥,¥3,%2, %1, and so y3 dominates any vertices of Y inside the cycle C,.
Hence if X, is empty, then {z,no, n4,%2,%3} > V, and so %(G) < 5. Thus
we may assume that | Xo| > 1.

A shortest path from a vertex of Xy to y3 must be via 3;, and so y;
dominates Xp. Since |Xo| = 1, every vertex of Y inside the cycle C,, as
well as the vertex a, must be adjacent to n4 in order to reach a vertex of
Xo. Hence! {m’ n01n41ylay2} >¢ V, and so 'Yt(G) <5.

Consequently, v.(G) <5. O

3.2 Outer Cycles and the Divider Lemma

We need the following strengthening of Lemma. 11 from [2].
Lemma 7 Consider a plane graph G with outer eycle C a triangle z,y, z, .

Let S be the set of vertices at distance 2 from each vertez of C. Then S
is dominated by one vertez that is adjacent to a vertez of C or S is totally
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dominated by two vertices. Furthermore, if two vertices are needed to totally
dominate S, then every pair of vertices of C have a common neighbor inside
C and a common neighbor can be chosen for each pair such that any two
dominate S.

Proof. Let s; be a vertex of S; i.e., d(s1,z) = d(s1,y) =d(s1,2) =2. Ifa
neighbor of s, is adjacent to each of z, ¥ and z, then that vertex dominates
S since it separates each vertex of S from one of z, y or z. If each neighbor
of sy is adjacent to at most one of x, ¥ and z, then s; is the unique vertex
of S by the planarity of G.

So we may assume some neighbor of sy, say u, is adjacent to two vertices
of C, say = and y. Let v be a common neighbor of z and s;. Then,
{u, v} > S by the planarity of G (the path z,u, s, v, z partitions the interior
of C). Since u,v ¢ S, {u,v} >~: S.

Furthermore, « dominates S unless there is a vertex s, of S nonadjacent
to u. Without loss of generality, s lies inside the region z,u, s1,v, 2, .
Therefore, s ~ v and v ~ y. Let w be a common neighbor of z and s3.
Now, v dominates S unless there is a vertex s3 of S nonadjacent to v. The
vertex s3 must lie inside the region z,u, s1,v, s2, w,z and be adjacent to
both » and w. Thus u, v and w are common neighbors for {z,y}, {y, 2}
and {z, 2} respectively.

Now, w dominates S unless there exists a vertex s} of S nonadjacent to
w. The vertex s must lie inside the region u, y, v, s2, w, s3, u. Therefore, s}
must be adjacent to both u and ». Renaming if necessary, we may assume
that s} = s1, as shown in Figure 2. Any two vertices of {u,v,w} dominate
S.o

V.

v
2 y

Figure 2: A possible subgraph
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Lemma 8 Consider a plane graph G with outer cycle C being a 4-cycle
w,z,Y, 2, w. Let S be the set of vertices at distance 2 from each vertez of
C. Then, S is dominated by a vertez that is adjacent to a vertez of C.

The proof is identical to that of Lemma 12 from [2], even though the
conclusion is slightly stronger.

Finally in this subsection we prove a slight strengthening of Lemma 13
from [2].

Lemma 9 (Divider Lemma) Consider a planar graph G. Let z and y be
distinct vertices such that dg(z,y) < 2 and G + zy is planar. Let S be the
set of vertices at distance exactly 2 from both z and y. Suppose every pair
of vertices in S are distance at most 3 apart. Then there exist a set D of
at most three vertices such that D >, S, and if x and y are not adjacent in
G, then D =, {z,y} as well.

Proof. Lemma 13 from [2] shows that a D of at most three vertices exists
that dominates . The proof of the extension is identical except that when
the division into two cases is reached on page 17, one has to show that D
totally dominates S, and {z,y} as well if d(z,y) = 2.

Consider first Case 1 where at least one connector is long, say P. If
the other connector @ is short, then take D = W if M has length 1;
D =W — {5} if M has length 2; and D = W — {s,t} if M has length 3.

On the other hand, assume both connectors are long (so that M = W).
If M has length 1, then S = {s,t} and take D to be the internal vertices
of P; if M has length 2, then take D to consist of the interior vertex of M,
say e, any common neighbor of a and z, and either any common neighbor
of a and y if a € S or any common neighbor of z and y otherwise; if
M has length 3, then take D to be the two vertices of W — {s,t} and, if
da(z,y) = 2, add any common neighbor of z and y.

Consider second Case 2 where both connectors are short. If M has
length 1, then let D = {u,v}. If M has length 2 and the interior vertex a
of M is in S*, then take D = {u, s,v}; if M has length 2 and a is not in S*,
then take D = {u, a,v}. So assume M has length 3. If exactly one interior
vertex of M is in S*, then take D =W - §*.

So suppose M = s, m,n,t where m,n € S*. If m and n have a common
neighbor z, then D = {u,v,2} works. So we may assume that N(m) and
N(n) are disjoint. In particular, shortest m—z and n-z paths are internally
disjoint, as are shortest m—y and n—y paths. If D,, = {v, m, n} dominates S
then we are done. So we may assume there is a vertex s’ € S not dominated
by D,. This vertex is adjacent to u. Similarly, we may assume there is a
vertex ¢’ not dominated by {u, m,n}, but adjacent to v.
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Without loss of generality, s’ is in the region bounded by W and z. In
order for t’ to reach ', it follows that ¢’ is on the same side of W. Say m’
and n’ are internal vertices on shortest m—z and n—x paths, respectively.
In order for s’ to reach ¢, it follows that s’ ~ m/, m’ ~ n’ and n’ ~ t.
Similarly, s ~ m’ and ¢’ ~ n/. If a vertex in SN N(v) is adjacent to s
or m, we have a previous case. It follows that {m',n’} dominates S and
D = {m',n', u} works.

Finally, if neither interior vertex of M is in S*, then proceed as before
in [2]. O

As an immediate consequence of Lemma 9, we have the following result.

Lemma 10 Consider a planar graph G of diameter 3. Let = and y be
distinct vertices such that G+zy is planar. If every vertex not dominated by
{z,y} is at distance 2 from both z andy, then there exists a total dominating
set of G containing = and y of cardinality at most 5.

3.3 Short Special Basic Cycles

In this section, we use Lemma 10 to show that if there exists a special basic
3-cycle or a special basic 4-cycle, then G has total domination number at
most five.

Unless explicitly otherwise stated, given a special basic cycle C we draw
G such that the vertices C does not dominate are inside C. A partner of
a vertex v on C is a vertex outside C whose only neighbor on C is v. We
will denote a partner of » by v’ if it exists.

Lemma 11 Let G be a plane graph of radius 2 and diameter 3 with central
vertex z. If there exists a special basic triangle, then 7,(G) < 5.

Proof. Suppose C:z,a,b,z is a basic triangle with vertex a’ outside C
adjacent only to a. Then every vertex inside C is within distance 2 from
a (to reach a’), while every vertex outside C is dominated by C and is
therefore within distance 2 from a. Hence, a has eccentricity 2. So we can
apply Lemma 10 (with vertices z and a) to totally dominate G with five
vertices. O

Lemma 12 Let G be a plane graph of radius 2 and diameter 3 with central
vertez z. If there exists a special basic 4-cycle, then v,(G) < 5.

Proof. Suppose C:z,a,b,c,z is a special basic 4-cycle. If eccg(a) = 2,
then we can apply Lemma 10 (with the edge az) to totally dominate G
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with five vertices. So we may assume that eccg(a) = 3. Similarly, we may
assume eccg(c) = 3.

Let H be the graph induced by C and its inside. There are three cases.

Case 1: Neither a nor c has a partner.

Since C is special, the vertex b must have a partner b’. A length-2 b'~z path
separates e and c; so there can be no vertex outside C whose neighbors on
C are {a,c}. Hence, {z,b} dominates the outside of C.

Let S be the set of vertices not dominated by {z,b} (necessarily inside
C). Every vertex of S is at distance 2 from both z (since ecc(z) = 2) and b
(in order to reach b’). By Lemma 10 applied to H (with the edge zb added
outside C), there exists a total dominating set D of H containing = and
b of cardinality at most 5. Thus D is a total dominating set of G, and so
7(G) < 5.

Case 2: Both a and c have pariners.

Let o’ and ¢’ denote partners of a and c, respectively. Let S be the set
of vertices inside C' not dominated by {z,a,c}. Since every vertex of S
reaches o’ and ¢/, every vertex of S is at distance exactly 2 from each of z,
e and ¢. By Lemma 7 applied to H with the edge ac added outside C, we
can totally dominate H with {a, ¢, z} plus two additional vertices inside C
(each of which is dominated by {a, ¢, z}).

So we are done unless there exists a partner b’ of b. But then every
vertex, if any, inside C' at distance 3 from b is adjacent to z (to reach
b'). It follows that every vertex inside C that is not dominated by C is
at distance exactly 2 from each vertex of C. Hence, by Lemma 8, we can
totally dominate G with V(C) plus one additional vertex inside C (that is
dominated by C). Thus, 7:(G) < 5.

Case 3: Exactly one of a and c has a partner.

By symmetry, we may assume that vertex a has a partner a’. Since C
dominates its outside and ¢ has no partner, every vertex at distance 3 from
a is inside C and is adjacent to ¢ (in order to reach a’); further, every
partner of a is at distance 2 from ¢ (to reach the vertices at distance 3 from
a).

Let S be the set of vertices not dominated by C. Then every vertex of
S is at distance exactly 2 from each of z and a.

Subcase 3.1: Every vertez of S is at distance exactly 2 from b.

Apply Lemma 7 to H with the edge zb added outside C so that z,a,b,z
is the outer triangle: either one can dominate S with one vertex that is
adjacent to a vertex of C or S is totally dominated by two vertices. In the
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former case, the vertex that dominates S can be added to V(C) to totally
dominate G with five vertices. Hence we may assume the latter case.

Thus, by Lemma 7, it follows that the graph shown in Figure 2 is a
subgraph of H except for a being called y, b being called z, and the edge
zz = zb subdivided by the vertex c¢. Since the 4-cycle C*:z, w, b, ¢,z does
not dominate its outside (e.g. misses s;), it must dominate its inside. If
there were a vertex inside C* whose only neighbor on C* was c, then this
vertex would be unable to reach s;. Hence, {z, b, w} dominates every vertex
inside C*, and so {z, e, b, v, w} totally dominates H. Since c has no partner,
this set also totally dominates G, and so v,(G) < 5.

Subcase 3.2: There is a vertex of S at distance 3 from b.

Then, b has no partner, since a partner of b is unable to reach a vertex of S
at distance 3 from b. Let K be obtained from G by removing all neighbors
of z and a outside C. Since neither b nor c has a partner, every vertex of K
outside C is adjacent to both b and ¢. Thus both = and a are at distance 2
from every vertex in K outside C.

Let K’ be obtained from K by adding the edge ac outside C. Then
z has eccentricity 2 in K’. Since every vertex at distance 3 from @ in H
is adjacent to ¢ (to reach a’), the vertex a also has eccentricity 2 in K.
Furthermore, K’ is a plane graph of diameter at most 3. By Lemma 10
applied to K’ (with vertices z and a), there exists a total dominating set D’
of K’ containing z and a of cardinality at most 5. Irrespective of whether
or not cis in D', IV is a total dominating set of G, and so v,(G) < 5. This
completes the proof of Lemma 12. O

3.4 Basic 5-cycles

In this section we outline the computer proof of the final result that if there
is a basic 5-cycle then the total domination number is at most 5. Theorem 1
follows immediately from Lemmas 6, 11, 12 and 13.

Lemma 13 If there exists a basic 5-cycle, then v,(G) < 5.

Proof. Suppose C : z,a,b,c,d,z is a basic 5-cycle. If C dominates G we
are done, so we may assume that some vertex inside C is not dominated
by C. Choose C such that there is a vertex inside not dominated by C
and there is a minimum number of vertices inside C. Note that if a vertex
outside C is not adjacent to any of {z, b, c}, then it cannot be adjacent to
both a and d; for, the vertex f outside not adjacent to {z, a, d}—which is
guaranteed by C being basic—must reach z in 2. There are therefore three
cases.
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Case 1: There is a vertex o’ outside adjacent only to a on C and a
vertez d' outside adjacent only to d on C.

Computer proof.

Case 2: There is a vertex a’ outside adjacent only to a on C and
{z,a,b,c} dominates the vertices outside C.

Computer proof.
Case 3: Every vertez outside C is dominated by {z,b,c}.

Let S be the set of vertices not dominated by {z,b, c}; S is inside C. Note
that if S U {z} is totally dominated by two vertices we are done.

We follow the argument in the proof of Lemma 9. A connector now
connects either b and z, or c and z. That is, for s € S if N(s)N N(z) N
(N(b) U N(c)) is nonempty, then an s-connector is an z-b or z—c path of
length 2 via a neighbor of s; otherwise, an s-connector consists of an z-s
path of length 2 and either an s-b or s—c path of length 2. By a similar
argument to that of the claim, there is again a leftmost and a rightmost
connector.

Now, assume b and z have a common neighbor » inside C. Since
{z, a, b, c, v} does not totally dominate G, there is a vertex s inside C not
dominated by {z,a,b,c,v}. We claim that the vertex s is not inside the
4-cycle C'": z,a,b,v,z. If it is, then either v o a, in which case C’ is a
special basic 4-cycle, or s is in one of the triangles z, a, v, z or b,v,a, b and
thus too far from either d or c.

It follows that if the leftmost connector is short, it starts at ¢. In fact
it is ¢, d, z: if it is ¢, v, z, then replacing d by v contradicts the choice of C.
Similarly, if the rightmost connector is short, then it is b, e, z. In particular,
every element of S lies on or between the leftmost and rightmost connectors.

Let u, v, s and ¢t be as in the proof of Lemma 9 and consider a shortest
s-t path W (necessarily inside C). There are three cases.

Subcase 3.1. Both connectors are long. If W has length 2, the vertex
f can only reach the middle vertex w of W via b or ¢ and a vertex on
one of the connectors. (A path such as f,b, z,w with z not on one of the
connectors does not work since z must reach z in two.) Then S U {z} is
totally dominated by two vertices. '

The case W has length 3 is handled by a computer proof.
Subcase 3.2. One connector short and one long. Computer proof.

Subcase 8.3. Both connectors short. Computer proof. O
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3.4.1 Computer Proof

We have narrowed things down to proving a list of cases, all of which take
the form: Let G be a plane graph of diameter 3 and radius 2 with central
vertex z. Prove that if G contains a certain subgraph H then +,(G) < 5 or
there is a contradiction.

The computer proof uses exhaustive search to try all possibilities looking
for a counterexample. The basic algorithm we use is the following recursive
procedure, which takes as parameter a plane subgraph of G:

procedure Check(plane-subgraph H)

Step 1: If H does not satisfy the distance constraints, then consider
all possible completions H' that satisfy the distance constraints and
call Check(H') recursively on each of them.

Step 2: Else, if H has a total dominating set S of cardinality at
most 5, then form H' by adding a new vertex not dominated by S,
and call Check(H') recursively.

Step 3: Else, H is a counterexample.

In order to improve efficiency and avoid infinite recursion, one can termi-
nate a branch of the computation at any stage if either (1) the assumptions
of the particular case are contradicted, or (2) it is impossible for the dis-
tance constraints to be satisfied. For example, we may have assumed that
outside the cycle every vertex is adjacent to both b and ¢ but this is vio-
lated in the current subgraph. Or, vertices r and s are distance 4 apart and
cannot be any closer given the planarity and the edges assumed not to be
present. '

Step 1 is implemented as follows. If H does not obey the distance
criteria, then there is a pair of vertices that are too far apart in H. So one
tries all ways of fixing that pair, subject to the constraints of planarity and
the assumptions so far. For example, a pair that should be at distance at
most 3 can be fixed by (a) an edge joining them, (b) a path of length 2
that goes via an existing vertex, (c) a path of length 2 that goes via a new
vertex, (d) a path of length 3 that goes via two existing vertices, (e) a path
of length 3 that uses one existing vertex, and (f) a path of length 3 that
uses two new vertices. Note that in all cases other than (a), the edge cannot
be inserted later (to avoid duplication of cases).

An important idea for efficiency in Step 1 is to rectify only the distances
of the current set of vertices, ignoring for the time being any new vertices
introduced. Then Step 3 is modified so that if an alleged counterexample
is found, the full distance constraint is then checked, and if it fails, the
recursion continues.
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The subgraph itself is represented by an object with fields that record
its order, its embedding (the cyclic ordering of the edges at each vertex) and
the status of each pair of vertices (adjacent, maybe adjacent, not adjacent,
distance at least 3). Before an edge is added, it is checked that the two
endpoints are in the same region, so a planar embedding is maintained
throughout.

The computer program took about an hour to run on a typical PC and
found no counterexample.

4 Proof of Theorem 4

In this section we prove Theorem 4. We use the same approach used to
prove Theorem 5 in [2)].

Asin [2], we recall a family of graphs known as lanterns (or theta graphs).
For s > 3, an s-lantern is a graph obtained from the complete bipartite
graph K (2, s) by subdividing each edge any number of times (including the
possibility of none). The two vertices of degree more than 2, say = and y,
we call the hubs of the lantern and the z—y paths of the lantern we call
the azes of the lantern. A lantern with hubs z and y we also call an z-y
lantern. A region of a lantern is a portion of the plane bounded by two
consecutive axes in the lantern.

The following lemma establishes for any s > 3 the existence of an s-
lantern in a graph of sufficiently large order.

Lemma 14 ([2]) Let d be a positive integer. In a sufficiently large graph
of diameter d and radius d there exists an arbitrarily large lantern.

Lemma 15 Let G be a planar graph of radius 3 and diameter 3. If G
contains a 10-lantern L, then there is an axis of L whose contraction to a
single vertex produces a planar graph G’ of radius at most 2 and diameter
at most 3 whose total domination number is at least v:(G) — 2.

Proof. Let G’ be the graph constructed exactly as in the proof of Lemma 10
from {2]. Then, G’ is planar with diameter at most 3 and radius at most 2.
Now, consider a minimum total dominating set D of G’. Let w be a vertex
of D adjacent to a vertex of B. Let D' = (D — {w}) U {z}. Suppose some
vertex s of G’ is not adjacent to a vertex of D’. Then s € S and s is adjacent
to w. However, w is at distance at most 1 from B so that s is at distance
at most 2 from B, a contradiction. Hence D’ is also a total dominating set
of G'. Since z is adjacent to some vertex of D’ in G/, at least one of z and
y is adjacent to some vertex of D' in G. Thus (D — {2})U {z,y} together
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with some neighbor of z or y is a total dominating set of G. Consequently,
7%(G) < |D| + 2 = v:(G’) + 2, as required. O

A consequence of the above two lemmas is:

Lemma 16 For a sufficiently large planar graph G of radius and diame-
ter 3, there exists a planar graph G’ of radius at most 2 and diameter at
most 3 such that v(G) < %(G") +2.

Theorem 4 now follows immediately from Theorem 1 and Lemma 16.
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