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Abstract
In this paper, using the g-exponential operator technique

to Bailey’s 21, transformation, we obtain some interesting 313
transformation formulae and summation theorems.
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1 Introduction

Throughout this paper, let 0 < ¢ < 1 and we will use the following
equations frequently ([4]):

(@0)n = Hu - agt) = e, )
(@;9)o0 = [[ (1 — ag¥) = (a;9)n(ag™; @)oos (2)
k=0
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(a/a; gn = (~a)™ <)$‘“’(q—)2°° 3)

(@72 9)o0 = (—2)"q™ ("7 (g/2; ) (a; @)oo- (4)

We also adopt the following notation for multiple g-shifted fac-
torial:
(a1,62,...,8m; Q)n = (61;@)n(a2; D - - - (@m; P,
where n is an integer or co

The bilateral basic hypergeometric series 4, is given by

oo
Q1,Q2y...,0p (01,02,---,Gr§Q)n n
ca.z| = § 2",
ﬂbr( b1, ba,... b P ) (b1, b2, -, br;

n=-—00 ’ br: Q)n

In [1], applying Ramanujan’s 1%; summation and elementary ma-
nipulations of series, Bailey derived the following transformation

a,b (az,'ga%’ %;;Q)oo a _a‘bi_z d
’ 3 Qs = - ’ 'y — 5
212 ( g9 z) a2 i) 212 azc T3 (5)

where max(|z|, |ed/abz|,|d/al,|c/b]) < 1.

Bailey’s 242 transformation (5) can be iterated. The result is

a,b - (az,bz,ﬁ;,%;q)oo _alé_z’a%z_ . cd
2"’2( d"”z)‘ @ iedde 22\ anbz Pabz) ©

where max(|z|, |cd/abz|) < 1.

If d = bg and z = g/a in (5), then the series on the right side
reduces just to one term, 1, and we have the summation

g\ _ (9,9,59/a,c/b;q)0
212 ( c,bg '? ) "~ (g/a,bq,9/b,¢;9)oo (7)

where max(|g/al,|c|) < 1.
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In this paper, using the g-exponential operator technique to these
219 transformation and summation formulas, we obtain some inter-
esting 313 transformation and summation formulas.

To make the the paper self-contained, the g-exponential operator
due to Chen and Liu (see [2], [3] and [5]) can be restated as follows:

The g-difference operator and the g-shift operator 7 are defined
by

D{f(@)} = = (f(a) ~ f(ag)
and

n{f(a)} = f(aq),

respectively. In [2] Chen and Liu construct operator
8 =n"'D,.

Based on these, they introduce two operators:
n
T(6D,) = Z ("Dq)
n—O
and

E(59) = Z (b0)"g(3)

o (q, q)n '

Then the following operator identities are obtained.

Theorem 1.1 (Chen and Liu, [2] and [3]) Let T(bD,) and E(b9)
are defined as above respectively. Then

1 1
T(6D) { (at; q)oo} T (ot b9’ ®)
1 _ (abst; @)oo
T(bDq) { (as, at; q)oo} "~ (as,at, bs, bt; q)oo (9)
E(w) {(at; Q)oo} = (at, bt; @)oo, (10)

(as,at, bs, bt; ) oo
(abst/q;q) oo

E(b6) {(as, at; q)oo} = (11)
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2 The results and their proofs

Theorem 2.1

a, b, chz
3¢3 ( C, d, :‘I7

d .
(az, ‘;,faﬁe, ﬁ?;,q_abzaq)oo s ( a, %5, -;—’g- g -(,_i-) (12)
(2,d, %, &, ;df;,%%;q)oo az, ¢, e 'a

where max(|z|,|d/a|) < 1.

Proof. By (1), (5) can be rewritten as

Z (a'a aQ)k k {(cq ,cd/abz Q)oo} - (azad/aaqd/abz;Q)oo %

k=—o0 (d Q)k (z’da Q/b; Q)oo
a,abz k
Z ( ’(:z/:’q (2) {(ea¥,/b;9)0} - (13)
k=—00

Applying E(ef) to both sides of the equation with respect to the
variable ¢ gives

}: (o2 . pled) {(cat, b )

—0Q

(aZ,u,Q)oo 3 (@, 22 )i (L‘)kE(ea){(ch,g;q)w}-

(2,4, baQ)oo k=—o0 (az; q)k a
(14)
By (8), we have

k k .

B(e9) {(cq* cd/abz; g)oo } = & azg::k;gabzd(/] ;‘:’: Dee) - (15)
and

) (cg*,c/b,eq ,e/b,q)oo

E(ef) {(cq*,c/b; 9)oo } = I (16)
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Substituting these two identities to (14) and then using (2), we
obtain the proof of the theorem. O

Theorem 2.2

cde
3¥3 ( % Z’ qabz ;q,z)
€

¢ q
d c e dg ge _cde.
(az’ a?b? b abz? ﬁi’ qEEz"I)OO a3 ( Q, %‘Ia a_zz :q q)
cd de . 2 1 4,
(Z,d, ¢, %, m'a';_i" vaQ)OO az, ¢ 4qa bz/de

(17)

where max(|z|, [¢/b]) < 1.

Proof. By (1), (5) can be rewritten as

5 Gt (g ctjabso)

(az ¢/bi @)oo Z (a; g
(az,

(2,2/5;9)00 : q)kq(z)( —bz)* . {(q *qd/abz,d/a; q)oo }
1TV EI0 p=—00 )

(18)

Applying E(ef) to both sides of the equation with respect to the
variable d gives

S @BDk k. peg) {(agt,cafabs; g)en}

M (1 )%
e 5 e e (5 f0a)
(19)

By (8), we have

E(e0) {(dg", cd/abz; g)oo } = (qu’Cd(/ o ez)ﬂ‘m”, (20)
gabz ) )0

261



and

E(e8) {(g7*qd/abz,d/a; g)oo }
(q“kqd/abz,d/a,q‘kqe/abz,e/a;qL».
(L5222 g) o)

(21)

Substituting these two identities to (19) and then using (2), we
obtain the proof of the theorem. 0O

Corollary 2.3

abz ce
a, <& = d
3¥3 ( »odr ab g -)

GZ, C’ e a
(qui%’ %; 7)o a, %’ &Zg
= eign P 2l 1ge 100 (22)
(e, a2bz) q)oo az, ¢, qa Z/ e

where max(|d/al,|c/b]) < 1.
Proof. Compare (12) and (17). O

Theorem 2.4

cde
a, b’ gabz .
3¥3 ( i e q,2

c’
e e gc gd _cde,
_ (az,b2, 2, §» 2z a.bz’qabz’Q)°° " ( Q_:;’ _gs_z’ % iq ﬁ)
de. _ce . T
(_g., %’ c,d, & 2 %,q)oo az, bz, e abz

(23)

where max(|z|,|cd/abz|) < 1.

Proof. Iterate Theorem 2.1. O

Theorem 2.4 is a generalization of Bailey’s 212 transformation
(6). Next we give another generalization.
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Theorem 2.5

a, ba

33 ( ¢ d,
d

’Q’ z)
c

(a'z’ bz? q b fb;’ -aqbrz-’ abz? q) ¢ %, T, q
3¥3
(g'a b,c,d €, abza‘l)oo bz, M "7 abz
(24)

® -nla

where max(|z|, |gd/abz|) < 1.
Proof. By (1), (6) can be rewritten as
2 %?—;gz—kzk {(eg* ¢ 9)oo }
(a2,b2, Bt g0 X “52,(1)) (_g)kq(k;ﬂ) . {(L;"_g,c;q)m}.
q abz

(£, 4,490 L (az,bz5q
(25)
Applying E(ef) to both sides of the equation with respect to the
variable c gives
@,6:9)k & (az, bz, qd/abz; 9) o
-E(ef) < (cqg”,c;q
2 G B [ icaa} = LD
(abz/d,fI)k( _) (k31) 1-k .
Z . ez bz 0 a2 ) B(et) {(¢" Fc/abz,c; 9)co } -
(26)
By (8), we have
(ca®, ¢, eq", €;9)o0
E(ef , G , 27
(@) {(ed", @)} = =272 (27)
and
1-k , _ (@' *c/abz,c,g'"*e/abz, €; ¢)oo
E(ef) {(¢"c/abz,c;q)oo } = ol 29)
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Substituting these two identities to (26) and then using (4), we
obtain the proof of the theorem. O

Theorem 2.6
sts a, b, % .q,2 q (Q7q,qb/a1 c/b,d/b, cd/q; g)oo (29)
e, d, gb’"a)  (g/a,q/bgb,cd/gb,c,d;q)oo
where |g/a| < 1.

Proof. By (1), (7) can be rewritten as

PR N ORCALS

(q, 2,9b/8;9) o .
(a/a,q/b,qb; @)oo {(c/b,6;9) 0} - (30)

Applying E(d8) to both sides of the equation with respect to the
variable c gives

S e (8) mn {0}

(9,9,95/9; Q)00 .
(/2 a/bgb ) I (c/b,c0)o0} (31)

By (8), we have

ko _ (qua C, qu7d; 9)00

and

(c/b,c.d/b,d; q)oo
(cd/gbj@)o

E(db) {(c/b,c;9)e} = (33)

Substituting these two identities to (31) and then using (2), we
obtain the proof of the theorem. 0O
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