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Abstract

A graph G is said to be excellent if given any vertex = of G, there is
a7y - set of G containing x. It is known that any non - excellent graph
can be imbedded in an excellent graph. For example for every graph
G, its corona G o K is excellent, but the difference v(G o K;) — ¥(G)
may be high. In this paper we give a construction to imbed a non -
ezcellent graph G in an excellent graph H such that v(H) < v(G) + 2.
We also show that given a non - excellent graph G, there is subdivision
of G which is excellent. The excellent subdivision number of a graph
G, ESdn(G) is the minimum number of edges of G to be subdivided
to get an excellent subdivision graph H. We obtain upper bounds for
ESdn(G). If any one of these upper bounds for ESdn(G) is attained,
then the set of all vertices of G which are not in any -y - set of G is an

independent set.
1. Introduction

The graphs considered here are finite, undirected, non - trivial
without loops or multiple edges. Let G = ( V, E ) be a graph. A
subset D of V is a dominating set of G if every vertex in V - D is
adjacent to some vertex in D. The domination number ¥(G) of G
is the minimum cardinality of a dominating set. A dominating set
with minimum cardinality is said to be a y(G) - set.

In[1] G. H. Fricke et al. called a vertex of a graph G to be good
if it is contained in some ¥(G) - set, and bad if it is not. They call
a graph G to be excellent if every vertex of G is good.

G. H. Fricke et al. also proved that every graph (of order n ) is an
induced subgraph of an excellent graph ( of order 2n ) i.e., the graph
G o K which is obtained from a copy of G, by adding to each vertex .
v € V(G) a new vertex v' and an pendant edge v/, is excellent.
But in some cases it might happen that v(G o K1) — ¥(G) is large.
For example, if G = Ky»,n > 2, then 4(G) = 1, but y(G o K;) =
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n + 1. We provide a construction, where a non - excellent graph G
is imbedded in an excellent graph H such that v(H) < y(G) + 2.

2. Imbedding Into An Excellent Graph

Theorem 1 Let G be a non - excellent graph. Then there ezxists a
graph H such that

1. H is excellent.

2. v(G) < y(H) £v(G) +2.

8. G is an induced subgraph of H.

Proof. Let G be a non - excellent graph. Let A be the set of
all good vertices of G, and B be the set of all bad vertices of G. As
G is non - excellent, B # ¢. Let B = {b,be,...,bm}. Let B* be a
nonempty subset of B. Then ¥(G — B*) > 4(G) — |B*| + 1. [ Other-
wise for every set S of G — B*,SUB* is a dominating set of G, and
hence a ¥(G) set of G containing all the bad vertices of B* which
is a contradiction |. If ¥(G — B*) = v(G) — |B*| + 1, then we say
that the set B* is an optimal bad set. If B* is an optimal bad set
and G — B* is excellent, then we say that B* is an extreme optimal
bad set. If |B| = 1, we observe that B is an exireme optimal bad
set. [ If|B| =1, then v(G — B) > v¥(G). As every~y - setof G is a
dominating set of G— B,¥(G— B) = v(G). As every vertex of G— B
is in some vy - set of G, ( and hence of a7y - set of G— B),G — B is
excellent |.

Case 1 : We assume that there is a nonempty subset B* of B such
that B* is an extreme optimal bad set. Let B* = {by,bo,....,b} . In
this case we construct H as follows.

V(H) = V(G)U {ul,ug,...,uk} and E(H) = E(G) U {u, bl i =
1,2,..,k}.

Then clearly,

1. G is an induced subgraph of H.

2. 7(G) < ¥(H).[ For a given dominating set S of H, we can find a
dominating set S' for H such that B* C S' C V(G),|S| = |5'| and
hence |S| = |S'| = ¥(G) + 1. Thus y(H) 2 v(G) +1].

3. Y(H) =v(G)+1. [ For each v - set S of G — B*,SUB"* is a
dominating set for H |.

4. H is excellent. [ As G — B* is excellent, given a vertez = of
V(G — B*), find a vy - set S of G — B*, which contains . Then
SUB* and SU {u;| i = 1,2,...,k} are v - sets for H containing =
and {b;] i = 1,2,...,k}, containig z and {ui| i = 1,2,...,k} respec-
tively /.
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Case 2: Assume that no subset B* of B is an optimal bad set.
It follows that |B| > 2. We construct a graph H as follows. Let
{u1,u2, .or, Um, V1, V2, ..., Um } be a set disjoint with V ( G ). Let V(H) =
V(G) U {u1,u2, ., Um, V1, V2, ..., Um} and E(H) = E(G) U {bu;|i =
1,2,...,m} U {uv;,vv5|t # 5,4,5 = 1,2,...,m}.

Clearly G is an induced subgraph of H. Whenever S is a v - set for
G, SU{u1,n} is a dominating set for H. So v(H) < ¥(G) +2. Let
D be a minimum dominating set for H. The set D should contain al
least one element from Vi U Ve, where Vi = {u;|i = 1,2,...,m}, Vo =
{wili=1,2,..,m}. Let Vo = V(G).

Subcase 1: Let DNV, = ¢. Then either |DNV,| =2 or |DNV,| =1
and DNB # ¢. As DNV, = ¢, DNV is a dominating set for G
and hence

YG) ifDNB=¢
DNVl 2 {7<G)+1 if DN B # ¢

Thus in this case |D| > ¥(G) + 2.
Subcase 2 : Let DNV; # ¢. Then |[IDN (VLU W) > 2. Let
B’ = {bj|lu; € D}. Then DNV dominates G — B'. Hence (DN Vp)U
B’ dominates G and contains at least one bad vertex of G. Then
(DNWUB| 29%G)+1and |IDNVy| > Y(G)+1—|B'| . As
| B'| = | DNV it follows that if DNVa # ¢, then |D| > v(G) +2. As
DNV; does not dominate any vertex in Vi — D, if DNV,y = ¢, then
DNV must contain B—B’'. In this case (DNV)UB' is a dominating
set for G, containing B. We claim that |(D N V) U B'| > ¥(G) + 2.

If possible assume that |(D NVp) U B| = 4(G) + 1. Fiz any one
vertex by, € B'. Then (DN Vo) U (B’ —b;,) is a v - set of G — by,
containing B —b;,. It follows that G —b;, is excellent and {bi,} is an
extreme optimal bad set, which is a contradiction to our assumption
that no subset of B is an extreme optimal set. Then |(DNVo)UB'| >
YG)+2. So |D| = |(DNVo)|+|(DNW1)| = |DNVo|+|B’| 2 7(G)+2.

Given any vertex a € A, let S be any v(G) - set for G containing
a. Then SU {u;,vi} is a 7y - set for H containing u;,v; and a, for
alli=1,2,...,m and SU{b;,v;} is ay - set for H containing b; fori =
1,2,...,,m. So His excellent. :
Remark
If some subset B* of B is an extreme optimal bad set, then the con-
struction given in the case 2 may not yield an excellent graph. For
example consider the graph given in Fig.1 ( a ). For this graph
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B = {b1,b2} and B* = {b1} is an extreme optimal bad set. The
graph given in Fig.1( b ) constructed as in case 1 is excellent, while
the graph given in Fig.1 ( ¢ ) constructed as in case 2, is not excel-
lent.

(a) (b) (c)
Fig.1

3. Excellent subdivision graphs

If G is a graph, then a graph obtained from G by subdividing each
edge at most once is called a subdivision of G. The graph obtained
from G by subdividing each edge of G exactly once is denoted by
S1(G). The graph S1(G) need not be excellent, even for an excellent
graph G. The corona P3 o Ky of P3 is excellent, but S1(Ps o K,) is
not excellent. If G is a star K1, (n > 2), then both G and S1(G)
are not excellent. In the following theorem, we show that for each G,
there is at least one subdivision of G which is excellent.

Theorem 2 If a graph G is not excellent, then there is a subdi-
vision graph H of G which is excellent.
Proof. Let G be a graph which is not excellent. Let A and B be the
set of all good and bad vertices of G respectively. As G is not excel-
lent, B # ¢. Fix onex € B. Among the set of all 7y - sets of G, select
one 7y - set Sy such that |[N(z)NS,| is mazimum. Let Vo = N(z)NS).
Then Vo € A. For each y € N(z) NSy, subdivide the edge xy. Let
wy be the verter introduced while subdividing the edge zy. Let H, be
the graph thus obtained. V(H,) = V(G)U {wyly € N(z)N S in G}.
As Sy U {z} is a dominating set for Hy,v(H1) < ¥(G) +1. We
claim that v(H,) = 7(G) + 1. Assume that yv(H,) = v(G) and let
Dbea~ry-setof Hi. Ifc ¢ D andwy € D for ally € W,
then Vo € D [ otherwise for some y,wy is not dominated by D ],
and D must contain at least one vertez of N(z) N (V(G) — Vo). As
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|D| = ¥(G) and wy ¢ D for ally € D, the set D is a 7y - set for
G also. Hence, DN (N(z)N(V(G) —W)) € A, and |DN N(z)| >
|S1 N N(z)| which is a contradiction to the selection of Sy. Thus
D must contain either z or at least one wy. If x € D, then take
D, = (DU {y|lwy € D}) — {wy|lwy € D}. Then D, is a 7y - set for
G and as ¢ € D,z € A which is a contradiciton. Hence x ¢ D
and wy € D for some y. Fix one yo such that wy, € D. Then
Dy = (DU {yly # wo,wy € D}) — {wyly # yo,wy € D} is also a
dominating set for Hy [ ay - set for Hy |. Note that x ¢ Do, wy ¢ Do
for every y # yo and wy, € Dy. Then Dy U {2} — {wy,} is a -y - set
for G which is a contradiciton as x ¢ A. Thus v(H;) # v(G) and
y(H1) =v(G) + 1.

For each y € Vo, S1U {wy} and S1 U {z} are vy - sets of H,.
Let 2 € A and S* be a 7y - set of G such that z € S*. Then S* U {z}
is a vy - set of Hy containing 2. The set of all good vertices of H,
contains AU {z,wy|y € Vo}, and hence the set of all bad vertices in
H; is a proper subset of B. Note that if xo is a bad vertex of Hy, then
N(zo) in H; is contained in V(G) i.e., wy ¢ N(xq), for ally € Vp.

If 29 is a bad vertex of Hy, and Sy is a v - set of Hy such that
|N(z0) N So| is mazimum, then obtain a subdivision of Ho of Hy by
subdividing the edges zoy, where y € N(zo)NSz. As N(zo) of H is
contained in V (G ), the subdivision Hy of Hy is a subdivision of G,
i.e., the edges of Hy which are subdivided to obtain Hs are edges in
G and they are not subdivided while obtaining H,. Then the set of
all bad vertices in Hy is o proper subset of the set of all bad vertices
Of H;.

Proceeding like this, we obtain a finite sequence Hy, Hs, ..., Hy of
subdivision of G such that, each Hiy is a subdivision of H;, and the
number of bad vertices of H;y) is less than the number of bad vertices
of H;. Hence for some k, (< |B|), we obtain an excellent graph Hj.
Denote this Hy, by H.

Remark

An algorithm to obtain an excellent subdivision graph of a non
excellent graph can be obtained using the proof of Theorem 2. We
refer to this algorithm as Ezcellent Subdivision Algorithm ( ESA )
in the next section. The process of obtaining H;y1 from H; is called
one iteration of ESA.
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4. Excellent Subdivision Number

For a given graph G, if S(G) is a subdivision of G, |V(S(G))| —
[V(G)| is denoted by p(S(G)). The min {p(S(G)) | S(G) is a subdi-
vision of G and S(G) is excellent } is called the excellent subdivision
number of G and is denoted by ESdn(G). By Theorem 2, ESdn(G)
exists. We note that
1. If G itself is excellent, ESdn(G) = 0.

2. For G = K1n(n 2 2),ESdn(G) =n - 1.

3. Let P, be a path on n vertices. Then ESdn(P,) = 1,0, or 2
according asm =0, 1, or 2 ( mod 8 ). If P, = uy,ua,...,un, then
A={u3 | 0Si<3}ifn=0(mod ), A= {urssi,uz4a3i | 0<
i<3}ifn=(2mod 3 ).

In the following theorem, we obtain an upper bound for ESdn(G).
Theorem 3 Let G be a connected graph. The excellent subdivision
number

ESdn(G) < q —¥(G), where ¢ = |E(G)|.

Proof. If G is excellent, then ESdn ( G ) = 0. So assume that G is
not excellent. Let A and B be the set of all good and bad vertices of
G respectively. Let v(G) = m. Fiz one «y - set S = {£1,Z2,...,Zm}
for G. Then S = X UY, UY>, where

X={zeS|Nz)n(A-S)# ¢}

Yi={zeS|Nz)n(A-S)=¢, but N(z)NS # ¢} and

Yo={ze€S|Nxz)nA=¢}. LetY =Y, UY>.

Ifue S, lee PNu)={veV-S|NwNS = {u}}. We
claim that [PN(u)] > 2, forallu e Y. Ify ey, as Ny)N S #
¢,PN(y) # ¢. If |[PN(y)| =1 and |PN(y)| = {v}, then v € B,
(as Ny)Nn(A=S) = ¢), and (S —y) U {v} is a v - set for G,
which is a contradiction to v € B. So |PN(y)| 2 2 for ally € Y}.
If z € Y5 ,( and as G is connected ), N(z) is a nonempty subset
of B. As N(2) # ¢ and N(z) C B,PN(2) # ¢. If PN(z) = {w},
then (S — {z}) U {w} is a vy - set for G, which is a contradiction as
w € N(z) € B. So |PN(z)| =2, for dll z € Ya.

Now we show that there is a subdivision graph H of G which
is excellent and to each u € S, there is one g(u) € (V — S)N (N(u))
such that the edge ug(u) is not subdivided in the process of obtaining
the graph H.

To each x € X, select one vertez g(z) € (A—S)NN(z). (It
may happen that g(z1) = g(x2), 21 # 22 in X ).

IfY = ¢, apply ESA to obtain a subdivision graph H of G
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which is excellent. In any iteration of the ESA the edges zg(z),z € X
are not subdivided . Thus in this case, ESdn(G) < g—v(G),as|S| =
| X] =~(G).

So assume that Y # ¢. LetY = {y1,¥2, .-, Yx}. ThenasY C
S, k <m. To eachi,1 <i<k,let PN(y:) = {wi, Wi, ..., Wis; },
where s; = |PN(y;)l.

Start the first iteration of the ESA by selecting the vertex
wyy. At the end of this iteration, wy has become a good vertez.
Possibly some other wy;(j > 1) have also become good in the process.
If unj has become a good vertex, for some j > 1, select one such
vertez and call it g(y1). In future iterations of ESA, the edge y19(y1)
remains unsubdivided. If all wy;(j > 1) remain bad at the end of the
first iteration, start the next iteration of ESA by selecting the vertex
wie. Proceed similarly till one of the vertices wi; has become a good
vertez for some j >t at the end of the t*F iteration for some t < s;.
Once we get a good vertex w; for some j >t at the end of the t*
iteration, for some t < 8, select one such good vertex and call it
g(11). We claim that there is one t < s, such that at the end of the
tth iteration, PN(y1) contains atleast t + 1 good vertices. Assume
that for every t < s; — 1, at the end of the t™hiteration PN(y;)
contains exactly t good vertices. Then at the end of the (s — 1)*
iteration, SU{wi1, w12, ..., Wy(s,~1)} 15 @y - set of the resulting graph
and SUPN (y1)—{y1} is also a -y - set and hence, in this case PN (y;)
contains s, good vertices.

Thus starting the first iteration of ESA by selecting the bad
vertex wyy, continue the iterations until PN(y,) contains more num-
ber of good vertices than the number of iterations completed ( i.e.,
until we get a vertex g(y1) in PN(y1)). We call this process one
cycle of iterations of ESA at PN(y1). Thus at the end of the first
cycle of iterations of ESA we get a vertex g(y1) in PN(y1) such that
the edge y19(y1) ( of G ) is not subdivided in all the iterations of this
cycle and also in future iterations. .

At the end of this cycle of iterations at PN(y;), there may
be some i > 1 such that some of the vertices of PN (y;) have become
good. For each such i, select one such vertex in PN(y;) and call it
9(yi). Select aleast j > 1, if it exists, such that PN(y;) contains only
bad vertices even at the end of the previous cycle of iteration, and do
the cycle of iterations of ESA at PN(y;) till we get g(y;). Continue
the cycle of iteration process till we get g(y1), 9(y2), ---, 9(Ym).

Let Hy be the graph thus obtained from G after performing
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these cycle of iterations. Untill now the edges yig(yi) of G are not
subdivided. H, need not be an excellent graph. So apply ESA al-
gorithm to H, to get an excellent graph Ha which is the subdivision
graph of Hy (and hence of G). In Hy, the edges y;ig(y:)(1 < i < m) re-
main unsubdivided.So ESdn(G) < ¢—(G).

Remarks

1. We observe that in addition to the v(G) edges obtained above,
every edge in the induced graph< S > of G remains unsubdivided.
By considering a v - set S of G, for which |E < S > | is mazimum,
we obtain the following bound.

ESdn(G) < q—v(G)— maz{|E <S> |:S is ay - set of G}.....(1)

2. As in no iteration of ESA algorithm, the edges in < A >, the
subgraph in G induced by the set of good vertices A, is subdivided, we
have

ESdn(G) <q-|E<A»>|....(2)

3. The upper bound given in (1 ) and ( 2 ) are the best , as there
are many graphs for which ESdn(G) attains these upper bounds.

L1 N\

(a) (b)
Fig.2

e For example the graph given Fig.2( a ), |A| =10,|B| =1,
|[E<A>|=8,max |[E<S>|=3,7G) =5 and ESdn(G) =2.
For the graph given in Fig.2( b ), |B|=1,|E <S> | =3,
g=5v=2, max|E<S>|=1.

AVA/EAV4

(a) ()
Fig.8
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e The graph in Fig.8( a ) is an example for which the upper bound

( 1) is attained but ( 2 ) is not attained. Here |A] =3,
|B|=9,¢g =11, maz |E < S = | =2,7(G) =3,ESdn(G) = 6.

o The graph in Fig.3( b ) is an example for which the upper bound

( 2 ) is attained but ( 1 ) is not attained. Here v =3,|E < S > |
=0,g=8,ESdn =2,E < A >=86.

Theorem 4 If ESdn(G) =q¢—|E < A>| or ¢g—v(G) —maz{|E <
S |:Sisa~ -set of G}, then in G, the set B of bad vertices in
G is an independent set.

Proof. Assume that there exist b;,b2 € B such that b1be € E(G).
It is enough to prove that ESdn(G) does not attain any of these two
upper bounds. Let Sp be a v - set of G such that |[E < Sp > | =
maz{|E <S> |:S5 is a -y set of G}. Now subdivide the edge by b,
by introducing a new vertex w. Let the resulting graph be H;.

As S is a v - set for G, each b;(i = 1,2) is adjacent to some
vertex in S. Let |N(b2) NS| < |[N(b))N S| and A = |[N(b)) N S|.
Clearly A > 1. Now let S’ = SoU {b1}. Then &' is a « - set for H;
and [E <S8 > |=|E <S5 >|+A>|E <S5 > | The vertices
b1, b2, w are good in H;. So the edges byw, wbs remain unsubdivided
under ESA algorithm.

Now apply ESA to H, as given in the proof of the Theorem
3, using the 7 - set S’. At the end we get an excellent graph H,
which is a subdivision of Hj, and hence of G ( as the edges byw, bow
are not subdivided in the process ). As in the proof of the Theorem
3, for each u € S, A g(u) € V(H,)— S such that the edges ug(u) are
not subdivided. Out of these edges the edges ug(u),u € So, are the
edges in G also. So these v(G) edges together with E < S’ >, also
remain as edges in Hy. So ESdn(G) <q—v(G)=|E<Sp > |- A
Thus ESdn(G) does not attain the upper bound given in ( 1 ).

Let A’ be the set of edges of G whose one end is in {b1, b2}
and other end in A. As S is a 7 - set for G, A’ contains atleast two
edges. These edges along with E < A > are not subdivided in the
process of obtaining the excellent graph Hy. So ESdn(G) < ¢—|E <
A>|—-|Al<qg—|E < A>|and ESdn does not attain the upper
bound given in ( 2 ). '
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