SYMMETRIC COLORINGS OF REGULAR POLYGONS

YULIYA GRYSHKO

ABSTRACT. It is calculated the number of symmetric r-colorings of vertices of
a regular n-gon and the number of equivalence classes of symmetric r-colorings.
A coloring is symmetric if it is invariant in respect to some mirror symmetry
with an axis crossing the center of polygon and one of its vertices. Colorings
are equivalent if we can get one from another by rotating about the polygon
center.

Let G be a finite Abelian group and let + € N. An r-coloring of G is any mapping
x:G = {1,...,7}. The group G naturally acts on the set. of colorings. Given any
coloring x and element g € G, the coloring xg is defined by

x9(=) = x(z - g)

for every # € G. Colorings x and ¢ are eguinalent if they belong to the same
orbit (i.e. there exists an element ¢ € G such that x(zr — g) = @(z) for every
% € G). Obviously, the munber of all r-colorings of G equals r/®!. The number of
equivalence classes can be easily calculated by using Burnside’s Lemma (1, 1.§3]. It

equals I?l?"l 3 #lG/a) | where (g) is the subgroup generated by g.
9€G
A coloring x of G is symnetric with respect to an element g € G if

x(2¢g = =) = x(x)

for every @ € G. If x is symmetric with respect to g € G, then xh is symmetric with

_respect to g+h € G. Indeed, x2{2{g+h)—=x) = x(2(g+h)—z—h) = x(29—(x—h)) =
x{z = h) = xh(z). In particular, if a coloring is symmetric, then every coloring
equivalent to it will be also symmetric. The number of all symmetric r-colorings of
G is denoted by S,.(G). The number of equivalence classes of symmetric r-colorings
of G is denoted by 5,(G). In this note we deduce general formulae for calculating
S+(G) and 3.(G) (Theorem 1) and simplify them to elementary ones in the case
of a finite cyclic group G = Z,, (Theorem 2). A result close to Theorem 1 was
announced in [3]. Ukrainian version of Theorem 2 was published in [4].

Theorem 2 has a special interest since S.(Z,) and 3.(Z,) can be interpreted
in the following geometric sense: Sy(Z,) is the number of symmetric r-colorings
of vertices of a regular n-gon and s.(Z,) is the number of equivalence classes of
syminetric r-colorings. A coloring is symmetric if it. is invariant in respect to some
mirror symmetry with an axis crossing the center of polygon and one of its vertices.
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Colorings are equivalent if we can get one from another by rotating about the
polygon center.
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Note also that s,(Zy) is the nunber of symmetric necklaces of length n consisting

of beads of r colors. It is well known that the number of all necklaces of length n

consisting of beads of r colors equals 1 3 o(d)r¥, where ¢ is the Euler function
dln

(see, for example, [2, §3]).

Theorem 1.

W)= E 5 M g

Y, X)G/Y| 1erxisimerxy
S5:.(G) = ———e——r ,
=2, 2 “IEG
where (Y, X) is the Mobius function on a lattice of subgroups of G, B(H) = {z €
H:2c=0}.

Proof. Let Y be a subgroup of G, let C(Y') be the set of r-colorings of G symmetric
in respect to 0 with the stabilizer Y, and let x € C(Y). Obviously, the number
of r-colorings of G equivalent to x equals |G/Y|. We claim that the number of
r-colorings of G equivalent to x and symmetric with respect to 0 equals |B(G/Y)|.
Since xg = xh if and only if g — k € Y, it suffices to check that xg is symmetric
with respect to 0 if and only if 2¢g € Y. Indeed,
xy(—=) = xg(z) & xg(~(z - 9)) = x9(z - 9)

& x9(-z +9) = xy(= - g)

& x(—=) = x(z - 29)

& x(=) = x29(=)

S29eY.
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So, the munber of equivalence classes of symmetric colorings with the stabilizer
Y equals H%ﬁlﬂ Consequent]
] BG/Y) Huently,

ICY)
@)= 2, BEmy

Y<G

G/Y|-|C(Y
5 6/¥L1ew),

$(@) = 2 “|B@/v)

Y<G

On the other side
Z IC(X)' = r](‘[Y|-|B!(‘£Y!]+IB((./Y)| [('[Yl-‘-l'B!G[YH.
Y<X<G
Applying Mébius inversion (see [1, IV.§2}), we obtain
IC(Y)I — Z ,‘(Y,X)rlﬁtxl'blusﬁt.‘"’
Y<X<G

where (Y, X) is the Mébius function on a lattice of subgroups of G. Finally,

. IG/X|+|B(GX)|
50(G) = E : E : Y, X)r *
Y<G IB(G/Y)I Y<X<G

Z Y, X) lasxispex)
X<GY<X IB(G/Y)I

IG/Y| 16/ X1+| (@7 x)|
S5:(G) = —_ w, X)r 2
2 BT, 2

I Y,X)|G/Y| [G/X|4|8(E/ )]
=2 2 |B(G/Y)| NE

X<GYLX

o

From this point p is a variable of prime value. For instance, [] f(p) means a
pla
product where p takes on values of all prime divisors of «, in contrast. to }_ f(d),
dja
where d takes on values of all divisors of a.

Theorem 2. If n is odd then

""‘(Zﬂ) = rlais
Sr(Zn) =3 d]]1 (1~ I‘)T‘h"_l .
din pl%
Ifn=2m, where 1 > 1 and m is odd then
‘fr(Zn) rq"“+r+
Sr(Zn) =3 d 11 (1 - ﬂ)r"“
d3 pl3g

Proof. Applying formulae fromn Theorem 1 to Z,, we obtain
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Heunce, if n is odd, then for each d|n one has

) ifd=1
D= { otherwise,

kld
]%i AE%_E ].-I(ll - p)s
and consequently,
8r(Zn) = r
Fadl d41
Sn(Zn) = ¥ 2T1(1-p)r T =2 n a-prt.
din p|rl din p|3

If 7 is even, then

\ L ifde{1,2
Zzl_(f) {2 {1,2%}

Kl otherwise,
"( ) d H(l I)) if dl%
L) = .
k|d otherwise,

and consequently,
n m41
“r(zn) = _1_1.)-}-1 } ; 4,

S.(@n) = 2 541101 - p)r 3 = S d[I (-t
T

4% pldy

REFERENCES

1. M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

2. E. Bender and .J. Goldman, On the applications of Méhius inversion in combinatorial analysis,
The American Math. Monthly, No.8, 82 (1975), 789 803.

3. Y. Gryshko and 1. Protasov, Symmetric colorings of finite Abelian groups, Dopov. Akad. Nauk
Ukr., No.1 (2000), 32 33.

4. Y. Gryshko, On symmetric colorings of finite cyclic groups, Visnyk Kyiv Univ., Ser. Fiz.-Mat.
No.2 (2002), 22 26.

3. L. Vinogradov, Elementary Number Theory, Mascow, Nauka, 1972 (Russian).

ScnooL OF MATHEMATICS, UNIVERSITY OF THB WITWATERSRAND, PRIVATE BaG 3, WiTs 20350,

SOUTII AFRICA
E-mail address: grishko0i.com.ua, http://www.i,com.ua/"grishko

281



