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Abstract

Two parameters for measuring irregularity in graphs are the degree vari-
ance and the discrepancy. We establish best possible upper bounds for the
discrepancy in terms of the order and average degree of the graph, and
describe some extremal graphs, thereby providing analogues of results of
[1], [4] and [5] for the degree variance.

1. Introduction

Let G = (V, E) be a simple graph of order |V| = n. The open neigh-
bourhood of a vertex v € V is the set I'(v) = {w : vw € E}, and the
degree of the vertex v is d(v) = |['(v)|. The average degree of G is d(G) =
(1/m) 3", cv d(v) = 2|E|/n, where clearly 0 < d(G) <n—1.

A number of parameters have been proposed as measures of graph
irregularity, particularly in the context of analysing graphs derived from
empirical observations. For example, the degree variance of G is defined to
be

var(G) = -71: > (@) - d(G))*.
vev
Bell [1] and Snijders [4],[5] produced tight upper bounds for var(G) in
terms of the order of G, and cited the extremal graphs. Moreover the latter
author used his results to derive certain ‘heterogeneity indices’ for social
networks.
In (3], the discrepancy of G was defined to be

dise(G) = rll 3 ld(v) - d(G)|.

veEV

Thus the parameter disc(G) measures the average deviation of any vertex
degree from the average degree of the graph. Note from the definitions that
G has the same degree variance and discrepancy as its complement G.
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The motivation behind [3] was to find a convenient gauge of graph ir-
regularity for use in modelling the spread of disease in population networks,
although disc(G) was not explored in any detail in this earlier paper. In
order for the discrepancy to be effective as such a measure it is necessary
to find its range of possible values. Therefore in this note we establish
sharp upper bounds for the discrepancy of a graph in terms of the order
and average degree, and describe some graphs which attain these bounds.

In the ensuing work, all notation is standard, as given in [2].

2. Bounding The Discrepancy Of A Graph

From the definition, clearly disc(G) > 0 with equality if and only if G is
regular. We now establish the following best possible upper bounds for the
discrepancy of a graph as functions of the order and average degree.

Theorem. Let G be a simple graph of order n and average degree d; then

dise(G) < % (2n —1—anp + 1) ,

where 3 = min{d,n — d — 1}.

Proof. Let G = (V, E) be a graph of order n and average degree d with
maximum discrepancy. Write S = {v € V : d(v) > d} and s = |S|; then

ndisc(G) = > (d@w) - d)+ D (d-d(v)), (1)

veS vevV.-S

where ) 5 (d(v) —d) = ), cv_gs(d—d(v)). Let e(S) and e(V — S) de-
note the number of edges with both endvertices in S and V — S respectively,
and let e(S,V —S) denote the number of edges with one endvertex in each
of Sand V - S.

First suppose s > d. If ¢(V —8) > 0, then there must exist z,y € V-8
with zy € E. Since d(z) and s are integers with d(z) < d < s, then we can
find a non-neighbour of z in S, z say. Deleting the edge zy and adding zz
produces a graph G’ of average degree d with ndisc(G’) > ndisc(G) + 2,
which contradicts the maximality of G. We conclude that if s > d then
e(V — §) = 0. Therefore from (1) and the fact that }° ¢ (d(v) —d) =

2-vev—s (d—d(v)) we have

ndise(G) =2 Y (d - d(v))

veEV-S
<2[(n-s)d—e(S,V -29). (2)

284



A lower bound for e(S,V — S) is given by

e(S,V — S) = |E| — (S) > %d - (;)

The right-hand side of the above expression is non-negative provided s <
(1+ v4nd +1) /2; if this condition holds then substituting for e(S,V - §)
in (2) yields

ndisc(G) < nd — 2sd + 52 — s = f(s).

Now f(s) is a quadratic function of s with positive coefficient of s? and
8f[0s = —2d+2s —1 = 0 for s = (d +1)/2. Thus f(s) achieves its
maximum value over the range d < s < (1 + v4nd + 1) /2 at one endpoint.
When s = (1 + Vdnd + 1) /2 we have

ndise(G) < f ((1 +Vind+ 1) /2) =d (2n —1-Vand+ 1) ,
whilst if s = d then
ndisc(G) < f(d) =d(n—d—-1) < d(2n—1— \/4nd+1)

for d < n — 1. On the other hand, if s > (1+ v/4nd + 1) /2 then using the
lower bound e(S,V — S) > 0 in (2) yields

ndisc(G) < 2d(n - s) < d (2n ~1—Vind+ 1) .

Otherwise s < d, and as each vertex of S has at most s — 1 neighbours
in S, then

e(S,V-5)2) (dw)-s+1)

vES

>y (dw) —d) +s(d — s +1). (3)
vES

In addition, counting degrees of vertices in V — S we have

> (d-d@) < (n—s)d—e(S,V - §) —2e(V - S). (4)
veEV-§

Therefore eliminating e(S,V — S) between (3) and (4) implies

Do (dv)—d)+ Y (d—d(v)) Snd—2sd+ s~ s—2e(V - S),
vES vEV-S
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and applying (1) gives
ndisc(G) < nd — 2sd + s* — s — 2e(V - §). (5)

A lower bound for e(V — S) is given by

e(V - S)=|E|—e(S)—e(S,V - 5) > %d— (;) —s(n—s).

Now if s < (2n ~1-Inn—d-1)+ 1) /2 then the right-hand side of
this last expression is positive, in which case substituting for e(V — S) in
(5) yields
ndisc(G) < 2(n —d - 1)s
<(n-d-1) (2n-1- \/4n(n—d—1)+1).

We are left to dispose of the case s > (2n —1-yA4n(n-d-1)+ 1) /2.

Using the bound e(V - S) > 0, the right-hand side of (5) becomes f(s),
with 8f/8s = —2d + 25 — 1 < 0 for s < d. Hence we may assume that s is
minimum possible, i.e.

ndisc(G) < f ((2n —1-Vanm—d=DF 1) /2)
=(n-d-1) (2n-1-\/4n(n—d—1)+l).

Thus we have obtained two different upper bounds for disc(G), and in
order to complete the proof it remains to compare them over the range 0 <
d < n—1. Straightforward calculations reveal that d (2n — 1 — Vdnd +1) >

n-d-1) (2n—1— \/4n(n—d—1)+1) for 0 < d < (n—1)/2, which
implies the result. O

3. Extremal Graphs & Maximum Values

Let H(n,d) be the graph of order n and average degree d with vertex and
edge sets

V={'U],...,'vn},
E={vv;:1<i#j<q}U{vg41vi:1<i<r},

where ¢ and r are integers defined by [E| =nd/2=(§) +r,0<r <q.
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Note that when r = 0 from the definition we must have H(n,d) =
K, U (n — q)K,, where (§) = nd/2, so ¢ = (1 + V4nd +1)/2; similarly
Hn,n—-d—-1) = K, + (n — t)K1, where (3) +t(n—t) = nd/2, so t =
(2n 11— Inn—d=1)+ 1) /2. 1t is easily checked that in this case if
0 <d < (n—1)/2 then H(n,d) is extremal and if (n —1)/2<d <n-1
then H(n,n — d — 1) is extremal (although we do not claim uniqueness for
either of these extremal graphs).

In (1], [4] and (5] it is shown that graphs of the type H(n,d) and
H(n,n—d —1) are also extremal for var(G), although the proof techniques
employed are very different to the one given here, and the ranges of d for
which H(n,d) and H(n,n — d — 1) are extremal are also different. With
respect to var(G), H(n,n — d — 1) is extremal for 0 < d < (n — 1)/2 and
H(n,d) is extremal for (n — 1)/2 < d < n — 1. Furthermore, in [5] it is
proved that

var(G) < q(g - 1)*(n — q)/n?
< (n = 2)(3n + 2)(3n — 2)?/256n2
= Varmax(G):

with this maximum value being attained when r = 0 and max{d, n—-d-1} =
(9n2 —4)/16n. Clearly varmax(G) = 27n%/256 + o(n2). An analogous upper
bound for the discrepancy may be obtained by observing that, as a function
of ¥ in the range 0 < ¢ = min{d,n—d -1} < (n—1)/2, the upper bound of
the Theorem is maximised at ) = (2n% = 2n — 1 4 (2n — 1)v/n? —n + 1) /9n,

whence
: : 2 3/2 2
dise(G) < 2 ((2n —D(n+1)n=2)+2(n% -n+1) ) /2Tn
= discmax(G),
with discmax(G) = 8n/27 + o(n).
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