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Abstract

A vertex-deleted subgraph (subdigraph) of a graph (digraph) G is called
a card of G. A card of G with which the degree (degree triple) of the deleted
vertex is also given is called a degree associated card or dacard of G. To
investigate the failure of digraph reconstruction conjecture and its effect on
Ulam’s conjecture, we study the parameter degree associated reconstruction
number dm(G) of a graph (digraph) G defined as the minimum number of
dacards required in order to uniquely identify G. We find drn for some classes of
graphs and prove that for t 22, dm(tG)< 1+dm(G) when G is connected
nonregular and dm(tG) < m+2-r when G is connected r-regular of order m > 2
and these bounds are tight. drn<3 for other disconnected graphs. Corresponding
results for digraphs are also proved.

1. INTRODUCTION AND DEFINITIONS

A digraph consists of a finite set V of vertices and a set of ordered pairs of
distinct vertices. Any such pair is called an are. If uv and vu are both arcs, then
they together are called a symmetric pair of arcs. If uv is an arc and vu is not an
arc, then uv is called an unpaired outarc incident with u and an unpaired inarc
incident with v. For a vertex v of a digraph, the ordered triple (r,s,t) is called the
degree triple of v where r,s, and t are respectively the number of unpaired
outarcs, unpaired inarcs and symmetric pairs of arcs incident with v.
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A vertex deleted subgraph or card G-v of a graph (digraph) G is the
unlabeled graph(digraph) obtained from G by deleting the vertex v and all edges
(arcs) incident with v. The deck of a graph (digraph) G is its collection of cards.
The ordered pair (d(v),G-v) is called a degree associated card or dacard of the
graph (digraph) G where d(v) is the degree (degree triple) of v in G. The degree
associated deck or dadeck of a graph (digraph) G is its collection of dacards.

Ulam’s Conjecture (UC), also called reconstruction conjecture (RC)
asserts that a graph on at least three vertices is determined uniquely by its deck.
An extension of UC to digraphs—the digraph recomstruction conjecture
(DRC) proposed by Harary [1] was disproved when Stockmeyer exhibited
[10,11] several infinite families of counter examples. Ever since, a search is on
for reconstruction related properties of graphs whose analogues do not hold for
digraphs , in the hope that such properties will play a key role in proving UC if
at all it is true. Also by imposing their analogues on digraphs as additional
conditions,we can try to reconstruct digraphs. One such is the following:
Porperty P : When the deck of a graph is known, the degree of the deleted
vertex and the sequence of degrees of the neighbours (neighbourhood degree
sequence) of the deleted vertex can be determined for each card.

P is not true in the case of digraphs even though the collection of
degree triples of the vertices can be determined from the deck [4). This led to the
concept of reconstruction from dacards (N- reconstruction) and the proof that
all digraphs in Stockmeyer’s counter examples to DRC fall within classes of
digraphs that are reconstructible from their dadecks [7,8]. No pair of
nonisomorphic digraphs with the same dadeck is so far known.

For a reconstructible graph G, Harary and Plantholt [3] have defined
the reconstruction number rn(G) to be the size of the smallest subcollection of

the deck of G which is not contained in the deck of any other graph H, H % G.
Myrvold [6] referred to this parameter as ally-reconstruction number of G.

She has also studied adversary reconstruction number of G which is the
smallest k such that no subcollection of the deck of G of size k is contained in
the deck of any other graph H, H # G. However, if G and H are graphs having
the same deck, then they have the same dadeck, whereas a subcollection of the
deck of a graph need not always give the corresponding dacards. So, rn(G),
which uses partial deck can not be expected to contribute much to the ultimate
solution of UC as it ignores an important aspect (degree association) which
differentiates UC from its disproved extension DRC. To make up this deficiency
and to address UC more effectively, dm(G) covering graphs and digraphs alike
was defined in [9] as follows.

The degree (degree triple) associated reconstruction number drn(G) of a
graph (digraph) G which is reconstructible from its dadeck is the size of the
smallest subcollection of the dadeck of G which is not contained in the dadeck

of any other H, H # G. An s-blocking set of G is a family F of graphs(digraphs)

such that G ¢ F and each collection of s dacards of G will also appear in the
dadeck of some graph (digraph) of F.
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There are graphs for which m and drn have different values. As an
example, m(2K,)=5 whereas drn(2K;)=3. We find upper bounds for the value of
drn for some classes of graphs and digraphs and evaluate drn for some classes.
We use the terminology in [2].

2. drn(G) FOR GRAPHS G
The following observations are obvious,
1. If G and H have a common dacard, then the number of vertices in G
and H are equal as also the number of edges in G and H.

2. dm(G) =dm(G ) £m(G)

3. dm(K,) =1and drn(nK,) =3 forn>2.
Result 2. 1[9]: drn(C,) = 3 for n>5.
Result 2.2;: dr(K,,.,,) =3 form 2 2.
Proof: All dacards of K, are (m,K,.,.,). Let A and B denote the parts of K.y
containing m-1 and m vertices respectively. All graphs having a dacard
{m,K.1.m) can be obtained by adding a vertex w to K,.;,, and joining it with m
vertices in AUB. In this process, w is joined to at least one vertex v, of B. If w is
joined to no vertex of A, the graph obtained is K, .. If w is joined to at least one
vertex v, of A, then the resulting graph G has a triangle v,vow and hence at
most three dacards of G’ are triangle-free. Of these, deg v, = m+1 and hence G
has at most two dacards in common with K., Hence dm(K,.) = 3.
({Km.1ms1+€} where e joins a pair of vertices each of degree m-1 is a 2-blocking
set).

Similarly we can prove
Result 2.3: drn(K,,;,) = 2 for 2<m<n.
Result 2.4: For =2, dm(tC,) = 3, n=3, n#4 and drn(tC,) =4.

For disconnected graphs, Myrvold and Molina have proved the following.

Theorem 2.5[5,6): If G is a disconnected graph and the components are not all
isomorphic, then m(G) < 3.

" Theorem 2.6[5,6): m(tG) < m+2 for t 2 2 where G is a connected graph of
order m.

For disconnected graphs all whose components are isomorphic, we prove
the following results.

Theorem 2.7: For t 2 2, dm(tG) < 14+dm(G) where G is a connected nonregular
graph which is reconstructible from its dadeck and has at least 3 vertices.

Proof: Let ¢ be the order of G. Each dacard of tG has at least t components, t-1
of which are isomorphic to G. Let F be a collection (d;,G;), i=1.2,....m of
m = drn(G) dacards that identify G uniquely. From the dadeck of tG, we select a
subdeck S of size at most m+1 as follows.

Case 1: At least one of the G; in F is connected.
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If di=d,=...=d,, let (dn:1.Gms1) be a dacard of G with d,, #d;. LetS be the
collection (d;,Gju(t-1)G), i=1,2,... .k where k=m+1 or m according as
dy=dy=...=d, or not.

Case 2: G; is disconnected for all i.

Let (dm+1.Gme1) be a dacard of G which is connected. Let S be the collection
(d;,Gu(t-1)G), i=1,2,....,m+1.

Now let A be a dacard in S having exactly t components and associated
degree d;. S has either a dacard B, with associated degree d; different from d; or
a dacard B, with at least t+1 components. We will prove that every graph whose
dadeck contains {A,B,} or {A,B;} has exactly t components, each of order ¢ of
which t-1 are isomorphic to G .1

A graph R having dacard A can be obtained by annexing a vertex v to A
and joining v to suitable vertices of A.

(i) Ifvisjoined to at least two components of order c, all dacards of R other
than A have a component of order at least c+1. So neither {A,B,} nor {A,B,} is
contained in the dadeck of R.

Gi) If v is joined to a component of order ¢ and the component H of order c-1

then in R, <V(H)U{v]}> £ G as it has less number of edges than G. Hence an

arbitrary dacard of R other than A either has a component of order at least c+1
or does not have t-1 components each isomorphic to G. Hence neither {A,B,}
nor {A,B,} is contained in the dadeck of R.

(iii) If v is joined to only one component of A and it is a component of order c,
then dacard B, or B, is obtained from R by deleting a vertex w of the component

M of R with c+1 vertices. If M-w = G, the dacard is isomorphic to A and is
different from B, and B,. If M-w % G, the dacard does not have t-1 components

isomorphic to G and hence neither {A,B,} nor { A,B,} is contained in the dadeck
of R.

In the only other option, v is joined only to the component of order c-1 of A
and this proves (1).

We now prove that the collection S identify tG uniquely among graphs of
the type given in (1).

Let J=HU(t-1)G have the collection S in its dadeck.

(i) If S is contained in the subdeck of J obtained by deleting vertices of H, then
(d;,Gy), i=1 to m are in the dadeck of H also and hence H =G.
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(ii) If some dacard (d;,G;U(t-1)G) in S is obtained by deletion of a vertex w of
J which is not in H, then Gu(t-1)G = HU(t-2)GU(G-w) and hence H = G since
G and H have the same order.

Thus J=1G and hence dm(tG) < | S|< 1+dm(G).

Note: The inequality in the above theorem can not be improved (dm(K, »)=1
and dm (2K, »)=2).

Theorem 2.8: For t >1, dm(tG)< m-r+2 where G is a connected r-regular (r 22)
graph of order m>2.

Proof: Each dacard of tG has exactly t-1 components of order m, exactly r
vertices of degree r-1 and all other vertices of degree r.Let S be a chosen
collection of m-r+2 dacards of tG. Let C, C,, and C; be any three members
of S. As in the proof of Lemma 4 in [6], a graph having the dacards C; ,C, .
and C; in its dadeck must have either (i) all components of order m or (ii) t-2
components of order m, one of order m+1 and one of order m-1.

A graph of type (i) having dacard C, is obtained from C, by adding a new
vertex w and joining it only with components of C, of order less than m. If the
resulting graph R is regular, then it must be tG. If it is not regular, then the
component H of R containing w has order m and has a vertex v of degree r-1.

So H# G and the dacards of R that are in S must be obtained by deletion of
vertices of H (since no member of S has H as a component). However, the
dacards of R obtained by deleting v and its neighbours can not be in S. So at
most m-r dacards of R are in S. So S is not contained in the dadeck of R.

A graph of type (ii) having a dacard C, is obtained from C, by adding a
new vertex w and joining it with vertices of a single component G of C,. The
* resulting graph R has a component H of order m+1. So dacards of R that are in
S must be obtained by deletion of vertices of H, However, H has r vertices each
of degree r+1 and the dacards of R obtained by deleting these vertices are not in
S. So at most m+1-r dacards of R are in S. So S is not contained in the dadeck
of R.

Thus a graph containing S in its dadeck is tG and hence
drn (1G) £ ISl = m-r+2.

The inequality in the above theorem can not be improved
as seen from the following.
Corollary 2.9: Fort>1, dm(tK,)=3forn=>2.
(The graph K,.;u(t-2)K UK, .;-e constitute a 2-blocking set).

Corollary 2.10: Fort> 1 and m>1, dm(tK, ;) = m+2.

Proof: By Theorem 2.8, dm(tK;, ) <m+2. Also tK,,, has
{(t-2)K e Ky met K 1.m } as an (m+1)-blocking set.
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3.drn(D) FOR DIGRAPHS D

If two digraphs have a dacard in common, then they have the same number
of vertices, arcs and symmetric pairs of arcs.
A digraph is called connected or disconnected according as its underlying
graph is connected or not.

The proofs in [5,6] can be easily extended to prove the following for digraphs.

Theorem 3.1: If D is a disconnected digraph and the components are not all
isomorphic, then drn(D) < 3.

Theorem 3.2: For t > 1, dmn(tD) £ m+2 where D is a connected digraph
of order m, m 2 3.

The proof of Theorem 2.7 above, which is based mainly on the number of
edges incident with vertices can be easily extended to prove the following.

Theorem 3.3: For t > 1, dm(tD) < 1 + drn(D) where D is a digraph whose
underlying graph (multigraph) is connected and nonregular.

Theorem 3.4: For t > | and r>0, drn(tD) £ 1 + max{IDI-2r+1.r+1} where D
is a connected digraph all whose vertices have degree triple (r,r,0).

Proof: All the dacards of tD will be of the form ((r,r,0),(D-v)J(t-1)D) where v
is a suitable vertex of D. Let A be a dacard of tD containing exactly t
components. Let S be a subdeck of the dadeck of tD consisting of
14 max{IDl-2r+1, r+1} dacards including A.

All digraphs E having the dacard A can be obtained by adding a vertex w to
A and suitable arcs. If w is joined to a component of A isomorphic to D and
another component, then the resulting digraph will have only the dacard A
common with tD ( as all others have either a component with more than IDI|
vertices or the degree triple associated is other than (r,r,0)) and hence the
dadeck of the resulting digraph do not contain S.

If w is joined only to vertices of a component D of A, then in E, the
component H containing w has r vertices of degree triple (r+1.r,0) and r vertices
of degree triple (r,r+1,0). As H has IDl+1 vertices, a dacard of E will be
isomorphic to a dacard of tD only when the deleted vertex belongs to H. As H
has at most IDI+1-2r vertices with degree triple (r.r,0), the dadeck of E cannot
contain S.

If w is joined to no component of A isomorphic to D, then w must be joined
only to the component of A corresponding to D-v, resulting in a component H
with IDI vertices. If all the vertices of H have the same degree triple (r,r,0), then
H =D and E = tD. Otherwise, H is not isomorphic to D and hence dacards of E
isomorphic to dacards of tD must come only by deletion of vertices of H.

Case 1. E has a vertex u with degree triple (r+1,r-1,0).

A dacard of tD can be got from E only by deleting a vertex of E lying on
an outarc incident with u. Hence E has at most r+! dacards common with tD.
Hence the dadeck of E cannot contain S.
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Case 2. E has a vertex u with degree triple (r-1,r+1,0).

As in case 1 above , the dadeck of E cannot contain S.
Case 3. Some vertex u of E has degree triple (r-1,r,0) or

(r,r-1,0) .

By deleting u or any of the 2r-1 vertices joined to u, we cannot get a dacard
of tD. Hence E has at most IDI-2r dacards common with tD and the dadeck of E
does not contain S.

So the dadeck of a digraph E containing dacard A does not contain S

whenever E % tD. Hence drn(tD)<ISI.

The inequality in the above theorem cannot be improved as seen from the
following result.

Result 3.5: For t2 2 and m > 0, drn(tD) = m+2 where D is a digraph with 3m
vertices and 3m’ arcs such that the vertex set of D can be partitioned into sets
A, B and C of equal size and arcs of D are precisely those directed from A to
B,BtoC andCto A.

Proof: By the above theorem, dm(tD) £ m+2.
Let E be a digraph with 3m+1 vertices and 3m’+2m arcs such that its vertex
set can be partitioned into sets X,Y and Z of cardinality m+1,m and m
respectively and arcs are precisely those directed from Xto Y, YtoZand Z to
X. All dacards of tD are identical and the digraph E\(D-v)U(t-2)D has m+1
dacards in common with tD so that dm(tD) 2 m+2. This completes the proof.

4.CONCLUSION

In our attempt to investigate the failure of DRC and the possible truth of
Ulam’s conjecture, we have defined reconstruction from dacards and dm(G) of
graphs and digraphs. There are graphs and digraphs G with given value for
drn(G). However, all those with high dm(G) so far known are regular with all
dacards identical and either they or their complements are disconnected with
isomorphic components and hence are easily reconstructible. This suggests the
following:

hH The conjecture in {3] that if G has odd prime order, then m(G)_3 can
be first tried for drn(G) of graphs and digraphs.

) Some more information that is derivable from the full deck of graphs
may be attached with the cards while trying reconstruction from
partial decks .

3 The pre 1964 approach of establishing G=H to settle Ulam’s
conjecture deserves more attention. Unless sufficient conditions for
legitimate decks are found and used . “reconstruction from deck’
approach is  not likely to settle Ulam’s conjecture in full.
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