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Abstract

Let G = (V, E) be a connected graph and S C E. S is said to be an
r-restricted edge cut if G — S is disconnected and each component in
G — S contains at least r vertices. Define A(")(G) to be the minimum
size of all r-restricted edge cuts and §-(G) = min{w(U): UCV, |[U|=r
and the subgraph of G induced by U is connected}, where w(U) denotes
the number of edges with one end in U and the other end in V\U.
A graph G with A\")(G) = &(G) (r = 1,2,3) is called a A®-optimal
graph. In this paper, we show that the only edge-transitive graphs which
are not A®)-optimal are the star graphs K 3, the cycles C,, and the
cube Q3. Based on this, we determine the expressions of N;(G) (i =
0,1,---,£&(G) —1) for edge transitive graph G, where N;(G) denotes the
number of edge cuts of size ¢ in G.
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1 Introduction

We follow [1] and [2] for graph theoretical terminology not defined here.
A well known model for network reliability consists of an undirected
graph G = (V, E) in which the vertices are reliable while the edges may
fail independently with the same probability p € (0,1). The reliability
of the network can be measured by the probability P(G,p) of G being
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disconnected (3]

m
P(G,p) =Y _N:i(G)p*(1 - p)™",

i=A
where m = |E|, A = A(G) is the edge connectivity of G, and N;(G) is
the number of edge cuts of size ¢ in G. Generally, to determine N;(G) is
difficult (3, 4, 5].

When p is sufficiently small, the problem of minimizing P(G, p) becomes

a matter of minimizing the first term

NG (1~ )™,

which can be obtained by maximizing A first and then minimizing N [6).
For a general graph G, A(G) < §(G), where §(G) denotes the minimum
degree of G. If A(G) = §(G), we call G a A-optimal graph (or mazimally
edge connected graph in some literatures). To minimize N, Bauer et al.
(7] defined the so-called super-A graphs. A connected graph G is said to be
super-) if every edge cut of size ) isolates a vertex.

For further study, Esfahanian and Hakimi (8] proposed the concept of
restricted edge connectivity. A restricted edge cut of G is a set of edges
whose removal disconnects G and every component of G — S has at least
two vertices. The restricted edge connectivity A'(G) is the minimum size
of restricted edge cuts of G. Esfahanian and Hakimi also proved that a
connected graph G with at least four vertices which is not a star graph
K n-1 has restricted edge cuts, and thus X (G) is well-defined. Further-
more, X'(G) < &(G), where §{(G) = min{d(z) +d(y) - 2| (z,y) € E(G)}
is the minimum edge degree of G. A graph G with A(G) = 6(G) and
N(G) = &(G) is called a X -optimal graph. M. Wang and Q. Li showed in
[9] that when p is sufficiently small, a k-regular X-optimal graph is more
reliable than those which are not A-optimal in the class of graphs with n
vertices and nk/2 edges.

In recent years, there are many works studying a generalization of the
above concept: r-restricted edge cuts [10, 11, 12, 13].

Definition 1 An edge subset S of a connected graph G is called a
r-restricted edge cut if G — S is disconnected and each component of G — S
contains at least r vertices. The r-restricted edge connectivity A")(G) is
the minimum size of all r-restricted edge cuts in G.

Let G = (V, E) be a graph and Uy, Uz C V. Denote by [Uy, Uz] the set
of edges with one end in U; and the other end in Us. For U C V, denote
by U the complement of U in V, and G[U] the subgraph induced by U.
Let w(U) = |[U,U]|. The following inequality is well-known [14]:

w(U1 U Us) + w(Uy NU2) < w(Uh) + w(Uz). 1)
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Let n =|V| and 1 £ r < n. Define
&(G) = min{w(U) : |U| =, G[U] is connected}.

Clearly, X\1(G) = X(G), A?(G) = X(G) and &(G) = §(G), &(G) =
&(G). So, the above upper bounds for A(G) and X'(G) can be rewritten as
M(@) < £(G) and A?(G) < £&(G), and the graphs with the equalities
are considered to be optimal with respect to these parameters.

In [10], Bonsma et al. studied the existence of 3-restricted edge cuts and
showed that A®)(@) < £3(G) holds for any graph G containing 3-restricted
edge cuts. Thus, it is natural to define a graph G to be A(®-optimal if
AXN(@) = £.(G) for r = 1,2,3. It is shown in [12] and [13] that, when p
is sufficiently small, a k-regular A®)-optimal graph is more reliable than
those which are not A(®)-optimal in the class of graphs with n vertices and
nk/2 edges. The problem is which classes of graphs are A(®)-optimal.

In designing networks, graphs with some symmetry are often used as the
topology for the reason that they have many desirable properties, such as
simple routing algorithms and high (edge) connectivity. For edge transitive
graphs, the following results are known:

Theorem A ([15]) Every connected edge transitive graph G is «-
optimal (that is, K(G) = §(G), where x(G) is the connectivity of G), and
thus is A(M-optimal.

Theorem B ([16, 17]) The only connected edge transitive graphs on
n vertices which are not A\(?)-optimal are the cycles C,, and the star graphs
Kin-1.

Theorem C ([12]) The only connected edge and vertex transitive
graphs which are not A(®)-optimal are the cycles C, and the cube Q3.

In this paper, we will generalize the characterization in Theorem C to
that of all edge transitive graphs. Our main result is

Theorem 2 The only edge transitive graphs with order at least 6
which are not A(®)-optimal are the star graphs K; 1, the cycles C, and
the cube Q3.

The existence of 3-restricted edge cuts in an edge transitive graph which
is not isomorphic to K ,— is fairly easy to be obtained just by the defini-
tion. Or in another way, the existence can also be seen from Theorem 2.2
in [10] which characterizes all graphs without 3-restricted edge cuts.

For edge transitive graphs, the following result is well known:

Theorem D ([1]) Let G be an edge transitive graph. If G is not vertex
transitive, then G is a bipartite graph, and all vertices in a same bipartition
have the same degree.
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In light of Theorem D and Theorem C, we see that to complete the
characterization of A(®)-optimal edge transitive graphs, we need only to
consider bipartite graphs. The key to the proof lies in the disjointness of
A®)_atoms which will be defined and shown in section 2. Then in Section
3, Theorem 2 is proved, and based on it, the expressions of N;(G) (i =
0,1,--+,&(G) — 1) for edge transitive graph G are determined.

2 Disjointness of \®-atoms

Let G = (V, E) be a connected graph, and F a non-empty subset of V. F
is called a A(")-fragment, if JF, F) is an r-restricted edge cut with w(F) =
A)(G). Clearly, if F is a A(")-fragment, so is F, and both G[F] and G{F]
are connected. A A(")-fragment with the least cardinality is called a A(")-
atom. Denote by a(”(G) the cardinality of a A(-atom in G. Clearly,
a”(G) < |V|/2. Bonsma et al. [10] showed that a graph G which contains
3-restricted edge cuts is A\(®-optimal if and only if a®)(G) = 3.

The concept of atoms, originated from M. Mader {15], is an important
tool in analyzing higher order (edge) connectivity of graphs. The following
theorem is the key to the proof of our main result.

Theorem 1 Let G be an edge transitive bipartite graph with |V/(G)| >
6 and a®(G) > 4. Uy, U: are two distinet A(-atoms of G with G[U;] =
G[Uz] IfG#Qs Cy and Ky n—1, then U1 NV, = 0.

Proof. Write G = (X,Y), where X and Y are the two bipartitions
of G. Because of Theorem D, we may assume that each vertex in X has
degree dx and each vertex in Y has degree dy. Suppose, without loss of
generality, that dx < dy. Since G 2 K n—1 and Cp, we may assume that
dx > 2 and dy > 3.

By Theorem B, G is A®-optimal, so A)(G) = &(G) = dx and
AA(G) = £&(G) = dx + dy — 2. Clearly, £(G) = 2dx + dy — 4. Since
o®(G) > 4, G is not A®)-optimal, and so A®(G) < &(G) -1 = 2dx +
dy — 5.

Set A=U;NU,, B = Ulﬂﬁz, C= Uznﬁl and D = ﬁlﬂﬁz =U;UUs.
In the following, we assume Uy N Uz # @, and derive a contradiction by a
series of claims.

U, U
| A | B
v,|C | D

Figure 1. V is partitioned into four vertex sets A, B, C and D.
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Clearly, one of the following two inequalities must hold:

IB,All <I[A,Cll+[4,D]|, ()
IlC, Al <|[A,B]+I(4,D]|. (3)

In the following, we always assume, without loss of generality, that inequal-
ity (2) holds.

Claim 1 Every component in G|[B] is isomorphic to either K or K.
First, it follows from inequality (2) that

w(B) = [B, D]| +|[B, 4]| +[B, C]| < |[U2, T1]| = X®(G).

If this claim is not true, suppose G is a component in G[B] with |[V(G)| > 3.
Set E = V(G). Since G[U:] and G[U1] are both connected, and UsnU; # 0,
we see that G[B] is connected. Furthermore, since G is connected, every
component of G(B] is joined to G[B), and thus G(E] is connected. So [E, E)|
is a 3-restricted edge cut with w(E) < w(B) < AG)N(G). It follows that E
is a smaller A(s)-fragment than U1, a contradiction. O

Claim 2 For any vertex v € Ui, dgjp,)(v) 2> 2; and for any vertex
u € Uz, dgju,)(u) > 2.

By contradiction. Suppose there exists a vertex v € U with dgy,)(v) =
1. Set E = U;\{v}. Clearly G[E] is connected. By the assumption dx > 2,
we have |[v,T1]| > 1. Then we deduce from the connectedness of G[U1]
that G[(E] is connected. Since |Ui| = o®(G) > 4, we have |[E| > 3. It
follows from

W(E) = w(lh) + v, E]| - [, T1]| € w(U1) = 2@ (G)

that E is a smaller A\(®)-fragment than Uj, a contradiction. Similarly,
dgju,) () = 1 for u € U, is also impossible. O

Claim3 A¢ X and AC Y.

By contradiction. Suppose A C X. Then G[4] is an independent set.
Since we have assumed that |[B, A]| < |[4,C]| + |[A, D]|, there exists a
vertex v in A such that

|[v, Bl| < |[v, Cll + |[v, D]|. (4)
Set E = Uj\{v}. Then
w(E) = w(U1) - |[v, C]| = |[v, D| + |[v, B]| < w(U1) = X®(G).

Since G[Uh] is connected and G[A] is independent, we have |[v, B]| > 1.
It follows from inequality (4) that |[v,U;]| > 1. So, G[E] is connected.

301



We claim that every component in G[E] has at least 3 vertices. In fact, if
there is an isolated vertex u in G[E], then v is the only vertex adjacent to
u in G[U7}, and thus dgy,)(v) = 1, contradicting Claim 2. If there is an
isolated edge uw in G[E], suppose u € X and w € Y. It can be seen that
w is the only vertex adjacent to u in G[U1], and thus dgjy,)(u) = 1, also
a contradiction. Now, similarly as in the proof of Claim 1, a contradiction
arises, since E contains a smaller A(®)-fragment than U;. A € Y can be
proved similarly. O

Claim 4 |4] > 3.

First, it can be seen from Claim 3 that |A| > 2. In the following, we
will derive a contradiction under the assumption |A4| = 2.

If |A| = 2, then also by Claim 3, A must contain a vertex v; in X and
a vertex vz in Y. If G[B] contains an isolated vertex v, then dgju,)(v) = 1,
contradicting Claim 2. So, it follows from Claim 1 that every component
in G[B] is an isolated edge. Furthermore, it can be seen from Claim 2 that
each end of such an edge must be adjacent to either v; or v, (see Figure 2
(a)). Suppose there are t such components in G[B]. Then dx > ¢. Since

2dx +dy —52> A(s)(G) =w(lh) = (t+1)dx + (t + 1)dy — 6t — 2|[vy, v2]|,

we have
(dx +dy —6)t <dx — 5+ 2|[v,v2)]. (5)

If v; and vy are not adjacent, then
(dx +dy —6)t <dx —5. (6)

If dx + dy > 6, then since t > 1, we have dy < 1, a contradiction. So
dx +dy < 5. Since we have assumed dx > 2 and dy > 3, we can see that
dx = 2 and dy = 3. But by inequality (6), we have ¢t > 3, contradicting
t < dx. So, v; and v, are adjacent, and ¢ < dx — 1. In this case, inequality
(5) becomes

(dx +dy —6)t$dx—3. (7)

If dx + dy < 5, we can similarly show that dx = 2 and dy = 3. Since
t <dx —1 =1, we have t = 1, and thus G[Uj] is a 4-cycle. Since
G[Us] = G[Uh)], G[U3] is also a 4-cycle. But then, dx > 3, a contradiction.
So dx +dy > 6. Since ¢ > 1, it can be derived from inequality (7) that
dy < 3. It follows from 6 < dx + dy < 2dy < 6 that dx = dy = 3. Since
t <dx —1, we have t < 2. If t = 2, then dgy,)(v1) = dgy,)(v2) = 3,
and thus G[U>] is not connected, a contradiction. So ¢t = 1. In this case,
G[U1] = G[U,] = C4 (see Figure 2 (b)). Since vy, is the common edge
of two 4-cycles (namely v, vov4v3 and v1v2vgvs), by the edge transitivity of
G, this property holds for every edge. Consider vvs, it is contained in the
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4-cycle v1vovgvs. Since dg(vy) = 3, the other 4-cycle containing v1vs must
contain v1v3. Denote this 4-cycle by vjvsvyv3. Similarly, by considering
edge vovg, there is a 4-cycle vpugusvs having vavg as its common edge with
v1V2vgVs. We claim that vy, .-, vg are the only vertices in G. Otherwise
it can be seen from dx = dy = 3 that {v7,vs} is a vertex cut, and thus
£(G) < 2, but this contradicts Theorem A. Now, it is not difficult to see

that G = Q3, contradicting our assumption of the theorem. (]
Uz -[72 Uz U2
A v B AY “%B
U ‘022% U pe 4
— — Sos T e
U}
Ul C D Ul o 'vsD
(a) (b)

Figure 2. The solid dots represent vertices in X, and the small
cycles represent vertices in Y.

Claim 5 w(A) > A®)(G), and equality holds only when G[4] is con-
nected.
First,

[4] 2 |D| = |V| = |U1| = |Ua| + [U1 NT2| = [V] - 2aP(G) + |A| 2 |4] 2 3.

Clearly, G[A] is connected. If G[A] contains a component of order at least
3, then similar to the proof of Claim 1, we can show that [A, 4] contains
a 3-restricted edge cut, and thus w(4) > X®)(G) with equality satisfied
only when G[A] is connected. Now, suppose every component in G[4] is
an isolated edge or an isolated vertex. If there is an isolated edge in G[A4],
then by the fact |A| > 3, we have

w(A) > £(G) + AN(G) = 2dx +dy —2 > A3(G).
If all components in G[A] are isolated vertices, since not all vertices in A
are from the same bipartition, there must be at least one vertex from Y.
For |A| > 3, we have ‘
w(4) > dy +dx +dx > XC(G). O

Claim 6 w(D) < A®) (D) and D is an independent set contained in X
By Claim 5 and

w(A) +w(D) = w(Uy NUz2) +w(Uy UU2) < w(U1) +w(l2) = 228)(@), (8)
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we see that if w(D) > A®)(G), then w(4) = A®)(G) and thus G[4] is
connected. It follows that A is a smaller A®)-fragment than U, a contra-
diction. So, w(D) < A®)(D), and then similar to the proof of Claim 5, we
can show that D is an independent set contained in X. ]

Let s =|D|. Then s > 3 and
w(D) = sdx. (9)
Combining this with w(D) < A®)(G), we have
(s —2)dx +6 < dy. (10)

Suppose there are ¢ isolated edges and r isolated vertices in G[B]. Since
G[U] is connected, every isolated vertex in G[B] must belong to Y (see
Figure 3). So |[BNX| =t and |BNY| =t +r. Since G(U1) = G(U:), we
have |CNX|=tand [CNY|=1t+7.

V2 U,

b
}

eoxr

Uy

-ﬁl t{:E +1] '_:._',

Figure 3.

Denote by e; the number of edges in G[A). Since G is a bipartite graph,

so is G[A], and thus
e1 < (s+2t)dx. (11)
On the othg hand, vertices in BN X can contribute at most ¢ + ¢(t + r)
edges to G[A] (the first term accounts for edges in G[B), and the second
term accounts for edges between B and C with the end vertex of degree
dx belonging to B), vertices in D can contribute at most 2s(t + r) edges
to G[Z], and vertices in C'N X can contribute at most tdx edges to Gm.

So,

e1 < 28(t+7) +t+t(E+7)+tdx. (12)

Clearly,

w(A) =w(@) =) _ de(v) - 2e1 = (s + 2t)dx +2(t + r)dy — 2e;, (13)
veA

Combining this with (8) (9) and (11), we have

—(t+2)dx + (t+7—1)dy +5 < 0.
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By (10) and the fact s > 3, we have
(r—3)dx+6(t+r)-1<0, (14)

which may occur only when r < 2.
Similarly, combining inequality (8) (9) (10) (12) and (13), we have

(s=2)(t+r)dx+(6—2s—t)(t+r)—t—-1<0. (15)
If r = 2, then it can be deduced from (14) and (15) that
s(6¢% + 21t +18) — (13t% + 43t 4 33) < 0.
By the fact s > 3, we have
5t + 20t +21 < 0,

which is obviously impossible.

If r = 1, (14) becomes dx > 3t + 3. Since dx is an integer, we have
dx > 3(t +1). Combining this with inequality (15) and the fact s > 3, it
can be deduced that 2¢2 + 4¢ + 2 < 0, also impossible.

So 7 = 0, and (14) becomes dx > 2t — 3. Since dx is an integer, we
have dx > 2t. Similarly as above, we have {2 —t — 1 < 0, which may occur
only when ¢ = 1. In this case, (15) becomes

(s —2)dx —2s+3 <0.

It follows that 1
dx <2+ ——<3.
$s—2

Now it can be seen that e1 < 2(s+2). Similarly as above, we have
(s—1)dx —2s+1<0.

If dx = 3, then s < 2, a contradiction. So, dx = 2. Denote the vertex
in Y N B as v (see Figure 3 (b)). Since dg(y,)(v) > 2, there is a vertex
u € A adjacent to v. Clearly v € X, and thus dg(u) = 2. It follows that
de(u,)(u) < 1, contradicting Claim 2. The theorem is proved. O

3 A®-optimal edge transitive graphs
To characterize A(®)-optimal edge transitive graphs, we need the concept

of imprimitive block [14]. Let A be a non-empty proper subset of V(G). If
for any automorphism ¢ of G, either ¢(A) = A or $(A) N A = @, then A
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is said to be an imprimitive block of G. The following theorem shows the
importance of imprimitive blocks:

Theorem E ([14]) Let G = (V, E) be a connected graph and A be an
imprimitive block of G. If G is edge transitive, then A is an independent
set of G.

We are ready to prove the main theorem.

Theorem 2 The only edge transitive graphs with order at least 6
which are not A(®)-optimal are the star graphs K. 1,n—1, the cycles C,, and
the cube Q3.

Proof. In light of Theorem C and Theorem D, we only need to show
the truth when G is an edge transitive bipartite graph. By contradiction.
If A8(G) < &(G), then a®(G) > 4, it follows from Theorem 1 that
distinct A(®-atoms which induce isomorphic subgraphs are disjoint. So,
every A®-atom of G is an imprimitive block. Let U be a A®)-atom of G.
By Theorem E, U is an independent set, contradicting the fact that G[U]
is connected.

As a corollary, in an edge transitive graph G which is not isomorphic to
Cn, K1 n—1 and Q3, N;(G) can be determined for i = 0,1,.--,£(G) — 1.
In fact, since G is A(®-optimal, the deletion of any edge set S of size i
(¢ < &(G)) may create either isolated vertices or isolated edges. So N;(G)
can be counted as indicated in the following corollary:

Corollary 1 Let G be a connected edge transitive graph with n > 6
vertices and m edges, where G is not isomorphic to K »—1, Cn, and Q3.
(1) If G is a k-regular vertex transitive graph, then

0, 0<5i<k,
n(725), k<i<2k-2
N' G = t_f n— — —_ ._,
(@) m(?—gkk:ll) + (ﬂT—ll —m) (T—zzkk) + n[(T—kk) - k(?—zzlffll)_

—(n—k-1) ?:22;5)] + m(?-—zzkl:'-zl)’zk -22i<&(G) -1

(2) If G is a bipartite graph with bipartition X and Y, where the degrees
of vertices in X and Y are dx and dy, respectively, with dx < dy, then

(0, 0<i<dy,

Lix7) L .
-21 (120 (Pix) + 1Y (7 ) dx < i < dx +dy -2,
=

i—jdx i—dy
—(dx +dy—1 —d —2d
Ni(G) = ¢ m(?—(fg;:d:-z))) + |Y'(T-d:) - C|2Y| ?-2243')
1l .
j— —jd —(dx-+d
+ 3 (P70 (15 - XY - d) (i)
—1X|dx (PG5 oY), dx +dy —2<i<2dx +dy — 4.
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Here (7) =0 when y < 0. O

Remark The proof of disjointness of atoms is a key to the study of
higher order (edge) connectivity. It is known that distinct A()-atoms are
disjoint for any connected non-A(!-optimal graph [15, 14]. In [17], J.M.
Xu and K.L. Xu proved the disjointness of A\(®-atoms for any non-A(?)-
optimal graphs containing 2-restricted edge cuts. But such a property no
longer holds for A®)-atoms. A counter example is given in [10]. In [12],
Meng showed that for a non-A(®-optimal vertex transitive graph which is
not isomorphic to Cp,(K?2) (the lexicographic product of C,, with K3) or
Cm X K2 (the cartesian product of Cr, and K3), distinct A(®)-atoms are
disjoint. In this paper, we show the disjointness of A(®)-atoms for edge
transitive graphs. It remains a problem of characterizing general graphs in
which A®)-atoms are disjoint.
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