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ABSTRACT. Let 4(G) be the domination number of a graph G. A
class P of graphs is called y-complete if the problem of determining
7(G), G € P, is NP-complete. A class P of graphs is called -
polynomial if there is a polynomial-time algorithm for calculating
~(G) for all graphs G € P.

We denote I' = {P, UnK1 : k < 4 and n > 0}. Korobitsin [4] proved
that if P is a hereditary class defined by a unique forbidden induced
subgraph H, then

(i) when H €T, P is a y-polynomial class,

(ii) when H ¢ T', P is a y-complete class.

‘We extend a positive result (i) in the following way. The class I is
hereditary, and it is characterized by the set

Z(T) = {2K2, K1,3,C3,C4, Cs}

of minimal forbidden induced subgraphs.

For each Z C Z(I") we consider a hereditary class FIS(Z) defined by
the set Z of minimal forbidden induced subgraphs. We prove that
FIS(Z) is y-complete in 16 cases, and it is y-polynomial in the other
16 cases. We also prove that 2K;-free graphs with bounded clique
number constitute a y-polynomial class.
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1. Intoduction

We use standard graph-theoretic terminology, see, for example, [6]. Let
G be a graph with the vertex set V(G) and the edge set E(G). The notation
z ~ y (respectively, 2 # y) means that vertices z,y € V(G) are adjacent
(respectively, non-adjacent). The neighborhood of a vertex z € V(G) is the
set N(z) = Ng(z) = {y € V(G) :  ~ y}. The degree of a vertex z € V(G)
is degz = |N(z)|. ,

We use the notation P, for a path with n > 1 vertices, C,, for a cycle
with n > 3 vertices, Ky, n > 1, for a star, and K, for a complete graph
of order n > 1. The union G U H of graphs G and H is assumed to be
disjoint. The union of n disjoint copies of a graph G is denoted by nG.
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A set D C V(G) is a domination set in a graph G if every vertex of
V(G)\ D is adjacent to a vertex of D. In other words, D dominates V(G).
The domination number ¥(G) of a graph G is cardinality of a minimum
domination set in G.

Definition 1. A class P of graphs is called «y-complete if the problem of
determining ¥(G), G € P, is NP-complete. A class P of graphs is called
v-polynomial if there is a polynomial-time algorithm for calculating v(G)
for all graphs G € P.

An induced subgraph H of a graph G is obtained from G by deleting a
vertex set [possibly, empty]. Let ISub(G) be the set of all induced subgraphs
of a graph G. A class P is hereditary if ISub(G) C P for every graph G € P.

Let Z be a set of graphs. We put FIS(Z) = {G : ISub(G)NZ =0}; Z is
called a set of forbidden induced subgraphs for FIS(Z). A forbidden induced
subgraph G for a hereditary class P is minimal if ISub(G) \ P = {G}.

We denote by Z(P) the set of all minimal forbidden induced subgraphs
for P. It is well-known that P = FIS(Z(P)) for any hereditary class P. If
|Z(P)| =1 then P is called a monogenic class. We denote

F'={PrUnK;:k<4andn>0}.

Theorem 1 (Korobitsin [4]). If P is a monogenic hereditary class defined
by a unique forbidden induced subgraph H, then

(i) when H € T, P is a y-polynomial class,
(ii) when H ¢ T, P is a y-complete class.

Proposition 1. T is a hereditary class and
Z(P) = {2K2s K1,31 C3a 04) 05}'

Proof. It is easy to see that I is a hereditary class, and each of 2K, K} 3,
Cs, Cy4, Cy is a minimal forbidden induced subgraph for I'.

Let G € Z(T'). If G contains a vertex u with degu > 3, then either
K, 3 € ISub(G), or C; € ISub(G). By minimality, G € {K,,3,C3}-

Suppose now that all vertex degrees in G do not exceed 2. Then G
is a disjoint union of paths and cycles. If G has at least two nontrivial
components, then 2K, € ISub(G) and G = 2K,. Therefore we may assume
that G has at most one nontrivial component. By the minimality, G does
not contain isolated vertices. It follows that either G = C,, n > 3, or
G = Pp, m 2 5. Indeed, if G = P, and m < 4 then G € T, a contradiction
to G € Z(I).

If either G = C, (n > 6) or G = Py, (m 2> 5), then 2K, € ISub(G)
which contradicts to the minimality of G. Hence G € {C3,C4,Cs}. a
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By Theorem 1, the class FIS(H) is «y-complete for any graph
He Z(P) {2K2,K1,3,03,C4,05}

and Z(I") is the set of all minimal graphs with this property. We find
conditions for FIS(Z) to be y-polynomial/ y-complete for each subset Z C
Z(D).

2. Main result

Here is our main result.

Theorem 2. For Z C {2K3, K, 3,C3,C4,Cs} and P = FIS(Z),

(i) #f Z contains at least two graphs of 2K, K1 3,C3, then P is a -
polynomial class,

(ii) otherwise P is a y-complete class.

Proof. (i) Let G be an arbitrary graph in P = FIS(Z).
(i1) If K ,3,C3 € Z then vertex degrees in G are at most two. Clearly,
the class P is y-polynomial in this case.

(i2) Let 2K5,Cs € Z. Without loss of generality we may assume that G
has no isolated vertices. If G does not contain P; as an induced subgraph,
then by Theorem 1(i) there is a polynomial-time algorithm for computing
7(G). Otherwise we choose an induced path H = Py = (u;, u2,u3,u4) such
that V(H) dominates a maximum number of vertices [among all induced
Py’s in G). If V(H) dominates all vertices of G, then y(G) < 4 and the
proof is complete. Otherwise there exists a vertex w which is not dominated
by V(H). We choose a vertex z € N(w).

Since 2K, and Cjs are not induced subgraphs of G, z is adjacent to
exactly two vertices of H, namely, to either u; and ug, or us and u4. By
symmetry, let z ~ u2 and z ~ u4. The path F = (u;,us,z,uq) dominates
w. Hence there is a vertex y which is dominated by V(H) and is not
dominated by V(F). Clearly, y is adjacent to u; and y is not adjacent to
1,2,z and u,. Since the set {u3, w,,y} does not induces 2Ks, y ~ w.
Then {u;,us,w,y} induces 2K>, a contradiction.

Thus, we have proved that 4(G) < 4. Hence P is a y-polynomial class.
Note that max{y(G) : G € FIS(2K;,C3) and G is connected } = 3.

(13) Now let 2K, K1 3 € Z. As before, we assume that G has no isolated
vertices. First we show that if C5 € ISub(G) then v(G) < 5. Let H=C; = -
(41, U2, us, ug, us). Suppose that V(H) does not dominate a vertex w and
w ~ z. Since {u;,uz,w,2} does not induce 2K,, we may assume that
z ~ u;. Since {us,uq,w,z} does not induce 2K, either z ~ u3 or z ~ u,.
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Let z ~ u4. Then {u;,u4,w,z} induces Kj 3, a contradiction.

Now we show that if C4y € ISub(G) then ¥(G) < 4. Let H = Cy =
(u1,u2,us, ug). Suppose that V(H) does not dominate a vertex w and
w ~ z. It follows from 2K, ¢ ISub(G) that z is adjacent to either u; and
ug or uz and u4. Then either {u,us, w,z} or {u1, us,w,z} induces K 3, a
contradiction. Thus, we may assume that G does not contain 2K,,Cy; and
Cs as induced subgraphs.

A graph G is called split if there is a partition AU B = V(G) [a split
partition of G] such that A induces a complete graph, and B is a stable set.

Fact 1 (F6ldes and Hammer [2]). A graph is split if and only if it does not
contain each of 2K,,C4,Cs as an induced subgraph.

By Fact 1, G is a split graph. We choose a split partition A U B of
G. We construct a graph H with the vertex set B in the following way:
vertices u,v € B (possibly, u = v) are adjacent in H if and only if {u,v} =
Ng(w) N B for some vertex w € A.

Note that G € FIS(K},3) that |[Ng(w) N B| < 2 for every vertex w € A
[since K 3 is a forbidden induced subgraph]. In case of © = v, H has a loop
at u. Therefore H is a graph with possible loops. Since G has no isolated
vertices, H has no isolated vertices, i.e., every vertex in H is incident to
some edge [possibly, a loop).

It is evident that there exists a minimum dominating set D C A in G.
It can be easily seen that there is a natural bijection between domination
sets D C A of G and edge coverings of H, with corresponding sets being
equal cardinality. Denote by H' a subgraph of H obtaining by deleting all
loops of H and arising isolated vertices. Let p(H) be the cardinality of a
minimum edge covering of H [the edge covering number]. If all edges in H
are loops then p(H) = |V(H)| and v(G) = |V (H)|.

Suppose that G has an edge uv with © # v. There is a vertex w €
A which is adjacent to both u and v. For every vertex z € A, the set
{u,v,w, z} does not induce K 3. Since w,z € A, w ~ z. Therefore either
w ~ uor w ~ v. It follows that each edge in H [including loops] is adjacent
to wv. Any loop in a minimum edge covering may be changed by uv. So
we may consider that H does not contain loops.

Since H has no independent edges, by Gallai’s identity, see Lovéasz and
Plummer [5), p(H) = |V(H)| - 1 and y(H) = |V(H)| - 1.

(ii) (iil) Let K;3,C3 € Z. Then Z C {2K,,C4,C5}. By Fact 1, P
contains all split graphs.

Fact 2 (see Bertossi [1] and Johnson ([3]). Split graphs constitute a -
complete class.
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By Fact 2, P is a y-complete class.

(ii2) Let 2K, K1 3 € Z. Then Z C {C3,C4,Cs}. We denote by T} the
class of all graphs in which each component is either homeomorphic K 3
or a path.

Fact 3 (Korobitsin [4]). If P is a hereditary class, Z(P) is finite and
Z(P)NTy =0, then P is a y-complete class.

In our case, |Z] < 3 and ZNT, = 0. By Fact 3, P = FIS(Z) is -
complete.

(ii3) Fina.lly, let 2K2, Cs &’ Z. Then Z (_: {K1,3, C4,C5}.

Let Py, , Pn, and P,,, be three disjoint paths, n; > 1, and u; be a pendant
vertex of Py, i = 1,2,3. Add edges u;u3, uju3 and usus to produce Cs-
eztension. We denote by T5 the class of all graphs in which each component
is either C3-extension or a path.

Fact 4 (Korobitsin [4]). If P is a hereditary class, Z(P) is finite and
Z(P)NTy =0, then P is an y-complete class.

In our case, |Z| < 3 and ZNT; = @. By Fact 4, P = FIS(Z) is -
complete. O

Problem 1. Let P be a hereditary class with the set Z(P) of minimal
forbidden induced subgraphs. Is P a -y-polynomial class or not?

Here and below we assume that P # NP.
3. a-Complete and w-bounded classes

A set I C V(G) is stable if there are no adjacent vertices in I. The
stability number a(G) of a graph G is the maximum cardinality of a stable
set in G.

Definition 2. A class P is a-complete if the problem of computing a(G),
G € P, is NP-complete.

A class P is a-polynomial if there is a polynomial-time algorithm for
computing a(G) for each G € P.

In contrast to y-polynomial classes, many hereditary classes are proved
to be a-polynomial. )

Problem 2. Let P be a hereditary class with the set Z(P) of minimal
forbidden induced subgraphs. Is P an a-polynomial class or not?
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We may compare Problem 1 and Problem 2. For a graph G, we construct
a split graph H = Sp(G) as follows: A = V(G) is a complete part of H,
B = E(G) is an empty part of H, and every vertex e € B, e = uv € E(G),
is incident to exactly two edges, namely, eu and ev [u,v € A = V(G)]. In
other words, Sp(G) is obtained from G by subdivision of every edge in G
by a new vertex and constructing complete subgraph on V(G). We put
Sp2 = {Sp(G) : G is a graph}.

For each connected split graph G there is a minimum dominating set
D that is contained in the complete part A of G. If H = Sp(G) then D
is a minimum vertex covering of G. By Gallai’s identity (see Lovdsz and
Plummer [5]), a(G) = |V(G)| - |D|-

Thus, computing of a(G), G € P, is equivalent to finding y(H), where
H € Sp(P) = {Sp(G) : G € P}. Clearly, Sp(G) is a very special subclass of
split graphs. In general, the problem of finding a(H) is equivalent to finding
v(G) for a split graph G. When H has a bounded order [equivalently, the
clique number w(G) of G is bounded above], both problems can be solved
in polynomial time. We consider an extension of split graphs [2K,-free
graphs] and show that the condition w(G) < const implies the existence of
a polynomial-time algorithm for finding ¥(G).

The clique number w(G) is the maximum order of a complete subgraph
in G.

Definition 3. A class P is w-bounded if there is a constant ¢ such that
w(G) < c for each G € P.

Theorem 3. Any w-bounded class of 2K,-free graphs is y-polynomial.

Proof. Let w(G) < c for each G € P. We consider an arbitrary graph
G € P. Without loss of generality we may assume that G is connected.

If w(G) < 2 then G € FIS(2K>,C3) and, by Theorem 2, there is a
polynomial time algorithm for finding y(G). So we assume that w(G) > 3.
We choose a maximal complete subgraph H in G such that |V(H)| =t > 3.

We show that D = V(H) is a domination set in G. Suppose that D
is not dominate a vertex u € V(G). By the connectivity of G, there is a
shortest path (u,...,w,z,d), where d € D, connecting u with D. Clearly,
w is not adjacent to all vertices in D.

Since H is a maximal complete subgraph, there is a vertex y € V(H)
that is not adjacent to z. For every vertex y' € D\ {y} the set {w,z,y,y'}
does not induce 2K3. So z ~ y'. Hence D' = (D \ {y}) U {z} induces a
clique in G and |D'| = |D|. The set D' dominates DU {w} and D does not
dominate w. By the choice of H, there is a vertex z which is dominated by
D and does not dominated by D’. Clearly, z ~ y and z does not adjacent
to all vertices of D'.
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Since {w, 2,y, 2} does not induce 2K, w ~ z. It follows from |D| =¢ > 3
"that there are two vertices u,v € D \ {y}. Then {u,v,w,z} induces 2K,
a contradiction.
Thus, D = V(H) is a domination set in G. We have v(G) < |D| <
w(G) < c. Since v(G) < c for each G € P, P is a y-polynomial class. O

4. Further research

In conclusion, we propose some hereditary classes for further investiga-
tion. We suppose that most of them are y-polynomial.

LetThy = {HUnK; :n >0, H € {P,2K>,K,,3,C3},k < 4}. It can be
checked that Z(T'y) = {G4,G?2,...,Gu} (Figure 1).

Research Problem 1. Let P = FIS(Z), where Z C Z(I'). Is P a -

polynomial (y-complete) class when Gi,G; € Z in the following cases:
(4,5) = 1,5),(1,7),(1,9),(1,11),3,5), (3,7), (3,11), (4,5), (4,7),
(4,11),(5,8),(5,9),(6,9),(7,8),(7,9),(8,11),(9,11) #

In other cases, P is a y-complete class. We only have checked that P is
a y-polynomial class when (2, j) = (1,7),(1,9) and (3, 7).
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