Hypergraphs and the Helly property.*

Alain Bretto
UNIVERSITÉ DE CAEN.
Département d'Informatique, GREYC. CNRS UMR 6072,
Bd Maréchal Juin F14032 Caen Cedex. France.
alain.bretto@info.unicaen.fr.

Abstract

In this article we discuss about the Helly property and the strong Helly property in the hypergraphs. We give a characterization of neighborhood hypergraphs having the Helly and the strong Helly property. These properties are studied in both cartesian and strong products of hypergraphs.

1 Graph and Hypergraph Definitions

The Helly property is one of the most important concepts in hypergraph theory. Introduced in [6], this property has been extensively studied [2, 3, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 21]. Many applications of the Helly property have been developed especially in image processing [9]. In this article we give some results about this property.

The general terminology concerning graphs and hypergraphs in this article is similar to the one used in [4, 5, 9]. All graphs in this paper are both finite and undirected. One will consider that these graphs are simple; graphs with no loops or multiple edges. All graphs will be considered as connected with no isolated vertex. We denote them G = (V; E). Given a graph G, we denote the neighborhood of a vertex x by $\Gamma(x)$, i.e. the set formed by all the vertices adjacent to x is defined by:

$$\Gamma(x) = \{y \in V, \{x,y\} \in E\}.$$

The number of neighbors of x is the degree of x (denoted by dx).

A graph in which each pair of vertices are adjacent is a complete graph.

A chain in a graph is a sequence of distinct edges —one following another—, and the number of edges is the length of this chain.

A cycle is a chain such that the first vertex and the last vertex are the same.

^{*}A short part of this work has been presented to the workshop IWCIA 2001.

A chord of a cycle is an edge linking two non consecutive vertices of this cycle. A cycle with a length equal to n will be denoted by C_n .

Let G = (V, E) be a graph, a cycle C_{2n} , (n > 2) with distinct vertices:

 $x_1, x_2, x_3, \ldots, x_i, \ldots, x_{2n}$ has a well chord if there exists an edge e linking x_i to $x_{i+n}, 1 \le i < n$. An example is given in figure 1.

A cycle C_n is centered if there exists a vertex of G adjacent to every vertex of C_n . (If this vertex is on the cycle, one will consider that it is adjacent to itself.) A graph is *triangulated* if any cycle of length at least 4 has a chord.

Figure 1: This figure shows a cycle C_6 with a well chord $\{x_1, x_4\}$.

G' = (V'; E') is a subgraph of G when it is a graph satisfying $V' \subseteq V$ and $E' \subseteq E$. If V' = V then G' is a spanning subgraph.

An induced subgraph (generated by A) G(A) = (A; U), with $A \subseteq V$ and $U \subseteq E$ is a subgraph such that: for $x, y \in A$, when $\{x; y\} \in E$ implies $\{x; y\} \in U$.

A complete induced subgraph is a clique.

A graph G = (V, E) is bipartite if $V = V_1 \cup V_2$ with $V_1 \cap V_2 = \emptyset$ and every edge joins a vertex V_1 to a vertex of V_2 . We will denote a bipartite graph by $G(V_1, V_2)$.

A graph G = (V, E) is bipartite if and only if it does not contain any cycle with an odd length.

A hypergraph H on a finite set S is a family $(E_i)_{i \in I}$, $I = \{1, 2, ..., n\}$ $n \in \mathbb{N}$ of non-empty subsets of S called hyperedges with:

$$\bigcup_{i\in I}E_i=S.$$

Let us denote: $H = (S; (E_i)_{i \in I})$.

Sometimes we will denote the set of vertices of H by V(H) and the set of

hyperedges by E(H).

The rank of H is the maximum cardinality of a hyperedge.

A hypergraph is linear if $|E_i \cap E_j| \le 1$ for $i \ne j$.

A loop is a hyperedge with a cardinality equal to one.

A simple hypergraph is a hypergraph $H = (S; E = (E_i)_{i \in I})$ such that:

$$E_i \subset E_j \Longrightarrow i = j$$
.

In this article, without losing generality we will suppose that any hypergraph is both without loop and without repeated hyperedges.

For $x \in S$, a star of H -with x as a center- is the set of hyperedges which contains x, and is called H(x). The degree of x is the cardinality of the star H(x).

A partial hypergraph on S is a subfamily $(E_j)_{j\in J}$ of $(E_i)_{i\in I}$.

A subhypergraph of the hypergraph H is the hypergraph $H(Y) = (Y, (E_i \cap Y \neq \emptyset)_{i \in I})$, (with $Y \subseteq S$).

The dual of a hypergraph $H = (E_1, E_2, \ldots, E_m)$ on S is a hypergraph $H^* = (X_1, X_2, \ldots, X_n)$ whose vertices e_1, e_2, \ldots, e_m correspond to the hyperedges of H, and with hyperedges

$$X_i = \{e_j, x_i \in E_j\}$$

The line graph, L(H) of hypergraph H is a graph whose set of vertices is the set of hyperedges of H and two vertices of L(H) are adjacent if the corresponding hyperedges have a non empty intersection.

Let $H = (S; (E_i)_{i \in I})$ be a hypergraph. The 2-section (or section) of H is the graph whose set of vertices is S and two vertices x, y are adjacent if there exists $i \in I$ such that $x, y \in E_i$. We will denote this graph by $[H]_2$.

A family of hyperedges is an *intersecting family* if every pair of hyperedges has a non empty intersection.

A hypergraph has the *Helly property* if each intersecting family has a non-empty intersection –belonging to a star–.

A hypergraph has the the strong Helly property if each subhypergraph has the Helly property.

A hypergraph H is conformal if all the maximal cliques of $[H]_2$ are hyperedges of H.

The incidence graph of a hypergraph H = (S; E) is a bipartite graph with a vertex set $V = S \cup E$, where two vertices $x \in X$ and $e \in E$ are adjacent if and only if $x \in e$. We denote it IG(H).

Let G = (S; E) be a graph; we can associate a hypergraph called *neighborhood* hypergraph to this graph:

$$\mathbb{H}_G = (\mathbb{S}, (E_x = \{x\} \cup \Gamma(x))).$$

One will say that the hyperedge E_x is generated by x.

2 Neighborhood hypergraph and Helly property.

We now characterize bipartite graphs such that the associated neighborhood hypergraph has the Helly property.

Theorem 1. Let G = (V; E) be a bipartite graph, and \mathbb{H}_G its associated neighborhood hypergraph. \mathbb{H}_G has the Helly property if and only if G does not contain C_4 and C_6 .

Proof. The condition is necessary. Suppose that G contains a C_4 . H_G has the Helly property. Consequently C_4 is centered, so G contains a cycle C_3 . Contradiction. If G contains C_6 , either C_6 is centered and G contains C_3 or there exists a vertex adjacent to three non consecutive vertices of C_6 , so G contains a cycle C_4 and thus it is a cycle C_3 . Contradiction.

The condition is sufficient. We prove this assertion by induction on the hyperedge number from an intersecting family.

Let $(E_{x_i})_{i \in \{1,2,3\}}$ be an intersecting family of three hyperedges, by hypothesis x_1, x_2, x_3 cannot be on a cycle C_n with n = 4, 5, or 6. We denote $V = V_1 \cup V_2$. Two cases arise:

- 1 $x_1, x_2, x_3 \in V_1$. We have y_i adjacent to x_i , x_{i+1} (mod3). So $y_1 = y_2 = y_3 = y$, otherwise one would have C_4 or C_6 .
- 2 $x_1, x_2 \in V_1$ and $x_3 \in V_2$ necessarily x_3 is adjacent to x_1 and x_2 .

Consequently, there exists a vertex y adjacent to x_1, x_2, x_3 in the first case, and $y = x_3$ is adjacent to x_1 and x_2 in the second case.

Suppose that any intersecting family with n-1 hyperedges is a star, and let $(E_{x_i})_{1 \leq i \leq n}$ be an intersecting family. $(E_{x_i})_{2 \leq i \leq n}$ is a star, so there exists y such that y is adjacent to $(x_i)_{2 \leq i \leq n}$. Suppose that $y \in V_1$ and $(x_i)_{2 \leq i \leq n} \subseteq V_2$.

- $x_1 \in V_1$. Then x_1 is adjacent to x_i $i \in \{2, 3, ..., n\}$. So $x_1 = y$ otherwise this would lead to a C_4
- $x_1 \in V_2$. Let u_i , $i \in \{2, 3, ..., n\}$ be the common neighbor of x_1, x_i . Suppose that for all $i \in \{2, 3, ..., n\}$, $u_i \neq y$.
 - There exists $i \neq j$ such that $u_i \neq u_j$, consequently this leads to a C_6 .
 - For all $i, j \in \{2, 3, ..., n\}$, $u_i = u_j$, consequently this leads to a C_4 .

So there exists $i \in \{2, 3, ..., n\}$ such that $u_i = y$ and y is adjacent to x_1 . We can conclude that \mathbb{H}_G has the Helly property.

From this theorem we have the following:

Corollary 1. Let G = (V, E) be a bipartite graph and \mathbb{H}_G its associated neighborhood hypergraph. \mathbb{H}_G has the Helly property if and only if it has the strong Helly property.

Proof. If \mathbb{H}_G has the strong Helly property then obviously it has the Helly property.

Assume now that \mathbb{H}_G has the Helly property. Let H' = (V', E') be a subhypergraph of \mathbb{H}_G , the induced subgraph G(V') does not contain neither C_4 nor C_6 . Hence H' has the Helly property, so \mathbb{H}_G has the strong Helly property. \square

On the strong Helly property we have:

Theorem 2. Let H = (S, E) be a hypergraph. H has the strong Helly property if and only if every C_6 of IG(H) is well chorded.

Proof. If H has the strong Helly property it is easy to see that any C_6 of IG(H) is well chorded.

Assume now that any C_6 of IG(H) is well chorded. Let H' be a subhypergraph, we are going to prove this assertion by induction on the hyperedge number of H'.

Let $(E_i)_{i\in\{1,2,3\}}$ be an intersecting family. This family generates a cycle $(x_1,e_1,x_2,e_2,x_3,e_3,x_1)$ in the incidence graph of H'. This cycle is well chorded, consequently there exists a vertex x_i , $i\in\{1,2,3\}$ which belongs to $\bigcap_{i\in\{1,2,3\}} E_i$. Assume that it is true for any intersecting family of H with p-1 hyperedges. Let $(E_i)_{i\in\{1,2,3,4,\ldots,p\}}$ be an intersecting family with p hyperedges. The following families: $(E_i)_{i\in\{2,3,4,\ldots,p\}}$, $(E_i)_{i\in\{1,3,4,\ldots,p\}}$, $(E_i)_{i\in\{1,2,4,\ldots,p\}}$ are stars, by induction hypothesis. So one can stand for respectively by H(u), H(v), H(w) these three stars. These three vertices are on a cycle $(u, E_{u,v}, v, E_{v,w}, w, E_{w,u}, u)$ $(E_{a,b}$ being a hyperedge containing the vertices a,b). These cycles being well chorded, u, v, or w belong to any hyperedge of $(E_i)_{i\in\{1,2,3,4,\ldots,p\}}$. Hence this family is a star. So H' has the Helly property.

Corollary 2. Let G = (V; E) be a graph, and \mathbb{H}_G its associated neighborhood hypergraph. \mathbb{H}_G has the strong Helly property if and only if G does not contain C_4 , C_5 , C_6 and any sun S_3 .

Proof. Assume that \mathbb{H}_G does not have the strong Helly property. From theorem 2 the incidence graph IG(H) contains a cycle C_6 which is not well chorded. Let $x, \{x\} \cup \Gamma(x), y, \{y\} \cup \Gamma(y), z, \{z\} \cup \Gamma(z))$ be this cycle such that the vertices x, y, z belong to the graph G. Consequently these three vertices are on a cycle C_4, C_5 or C_6 or on a sun S_3 of G.

Suppose now that G does not contain C_4 , C_5 , C_6 and any sun S_3 . Hence $IG(\mathbb{H}_G)$ does not contain any C_6 . So every C_6 of $IG(\mathbb{H}_G)$ is well chorded.

We say that the hypergraph H = (S; E) has the separation property (briefly, SP) if for every pair of distinct vertices $x, y \in S$ there exists a hyperedge $E_i \in E$ such that either $x \in E_i$ and $y \notin E_i$ or $x \notin E_i$ and $y \in E_i$.

Corollary 3. A hypergraph H with the SP property has the strong Helly property if and only if its dual H^* has the strong Helly property.

Figure 2: Sun S_3 .

Proof. It is easy to see that the incidence graph of a hypergraph with the SP property is isomorphic to the incidence graph of its dual H^* . Moreover, from theorem above, H has the strong Helly property if and only if every C_6 of IG(H) is well chorded. The corollary is proved.

Corollary 4. A hypergraph H with the SP property which has the strong Helly property is conformal.

Proof. Easy from corollary 3

For the linear hypergraphs we have:

Proposition 1. Let H = (S; E) be a hypergraph. We have the two following properties:

- (i) For a linear hypergraph H, it follows that H has the Helly property if and only if $\mathbb{H}_{IG(H)}$ has the Helly property.
- (ii) H is linear if and only if IG(H) does not contain C_4 .

Proof. [i] Suppose H linear.

 $\mathbb{H}_{IG(H)}$ has the Helly property. Let $I=(E_i)_{i\in\{1,\ldots,p\}}$ be an intersecting family of hyperedges of H. In $\mathbb{H}_{IG(H)}$ I is a set of vertices such that $(\{e_i\}\cup\Gamma(e_i))_{i\in\{1,\ldots,p\}}$ is an intersecting family. $\mathbb{H}_{IG(H)}$ having the Helly property $(E_i)_{i\in\{1,\ldots,p\}}$ has a non-empty intersection. Suppose that H has the Helly property and suppose that $\mathbb{H}_{IG(H)}$ does not satisfy the Helly property. From theorm 1 IG(H) contains C_4 or C_6 .

If IG(H) contains C_4 , there exists two vertices of C_4 $-e_1$, e_2 representing two

hyperedges of H- and two vertices x_1 , x_2 of S belonging to C_4 . So x_1 , x_2 belong to E_1 and E_2 . Consequently $|E_1 \cap E_2| > 1$, $(|E_1 \cap E_2|$ is the cardinality of $E_1 \cap E_2$) and H is not linear. Contradiction, IG(H) does not contain C_4 . If IG(H) contains C_6 : x_1 , e_1 , x_2 , e_3 , x_3 , e_2 , x_1 . There exists three vertices of C_6 : e_1 , e_2 and e_3 representing three hyperedges of H and three vertices: x_1 , x_2 x_3 of S belonging to C_6 . But H has the Helly property, so there exists $y \in S$ such that $y \in E_1 \cap E_2 \cap E_3$. Either $y = x_i$, i = 1, 2 or 3. For example $y = x_1$, so x_1 , e_1 , x_2 , e_3 , x_1 is a C_4 contradiction, or $y \neq x_i$, i = 1, 2 or 3, but for example $|E_1 \cap E_2| > 1$ and H is not linear, contradiction. Consequently IG(H) does not contain C_6 . We can conclude that $\mathbb{H}_{IG(H)}$ has the Helly property. [ii] obvious from the proof of [i].

3 Products of Hypergraphs.

In this section we are going to define some products of hypergraphs. These generalize the products of graphs.

Let $H_1 = (S_1, E_1)$ and $H_2 = (S_2, E_2)$ be two hypergraphs, we define a hypergraph H = (S, E) in the following way:

for each product the set of vertices is : $S = S_1 \times S_2$.

The product of hypergraph $H_1 \square H_2 = (S, E) = H$ is the *cartesian product* if:

$$E = E(H_1 \square H_2) = \underbrace{\{\{x\} \times e, x \in S_1 \text{ and } e \in E_2\}}_{A_1} \cup \underbrace{\{e \times \{x\}, e \in E_1 \text{ and } x \in S_2\}}_{A_2}.$$

The product of hypergraph $H_1 \times H_2 = (S, E) = H$ is the strong product if:

$$E = E(H_1 \times H_2) = \{e_i \times e_j, e_i \in E_1 \text{ and } e_i \in E_2\}.$$

Lemma 1. $E(A_1) \cap E(A_2) = \emptyset$. Moreover for all $e \in E(A_1)$ and $e' \in E(A_2)$ $|e \cap e'| \leq 1$, $(E(A_i)$ being the hyperedges from A_i).

Proof. Otherwise there exists $\{x\} \times e \in A_1$ and $e' \times \{y\} \in A_2$ such that $\{x\} \times e = e' \times \{y\}$, so $\{x\} = e'$ and $e = \{y\}$. Hence e' and e are both a loop. Contradiction. Suppose now that $|e \cap e'| \ge 2$. So there exists two distinct vertices (x_1, y_1) and (x_2, y_2) belonging to the intersection of e and e'. Consequently $x_1 = x_2$ and $y_1 = y_2$. Contradiction.

Theorem 3. Let $H = H_1 \square H_2$ be the cartesian product of H_1 and H_2 , H has the Helly property if and only if H_1 and H_2 have this property.

Proof. Suppose that H_1 and H_2 have the Helly property. Let F be an intersecting family of H. Suppose that $F = (\{x\} \times e_i)_{i \in \{1,2,\dots p\}}, (e_i)_{i \in \{1,2,\dots p\}}$ is an intersecting family of H_2 . So there exists $y \in S_2$ such that $y \in \bigcap_{i \in \{1,2,\dots p\}} e_i$. Consequently $(x,y) \in \bigcap_{i \in \{1,2,\dots p\}} (\{x\} \times e_i)$.

If $F = (e_i \times \{x\})_{i \in \{1,2,\dots p\}}$ one will proceed as above.

Suppose now that $F = (\{x\} \times e_i)_{i \in \{1,2,\ldots p\}}, (e_j \times \{y\})_{j \in \{1,2,\ldots k\}})$ is an intersecting family. It easy to see that $(x,y) \in \bigcap_{i \in \{1,2,\ldots p\}} (\{x\} \times e_i) \bigcap_{i \in \{1,2,\ldots p\}} (e_i \times \{y\})$ and hence H has the Helly property.

Suppose now that H has the Helly property. Let $(e_i)_{i \in \{1,2,\ldots p\}}$ be an intersecting family of H_2 , $(\{x\} \times e_i)_{i \in \{1,2,\ldots p\}}$ is an intersecting family of H. So there exists $(x,y) \in S_1 \times S_2$ such that $(x,y) \in \bigcap_{i \in \{1,2,\ldots p\}} (\{x\} \times e_i)$. Consequently $y \in \bigcap_{i \in \{1,2,\ldots p\}} (e_i)$ and H_2 has the Helly property.

If $(e_i)_{i \in \{1,2,\dots,p\}}$ is an intersecting family of H_1 in the same way there exists $x \in S_1$ such that $x \in \bigcap_{i \in \{1,2,\dots,p\}} (e_i)$, and H_1 has the Helly property.

Theorem 4. Let $H_1 \square H_2 = (S, E) = H$ be the cartesian product of $H_1 = (S_1, E_1)$ and $H_2 = (S_2, E_2)$ H is conformal if and only if H_1 and H_2 are conformal.

Proof. Let us suppose that K is a maximal clique of $[H]_2$. Let (x_1, y_1) and (x_2, y_2) be two vertices of V(K). From lemmal these vertices belong to either a hyperedge of $E(A_1)$ or a hyperedge of $E(A_2)$. Without losing generality one can suppose that they belong to a hyperedge of $E(A_1)$. Hence $[(x_1, y_1)(x_2, y_2)] \in E(K)$ if and only if $x_1 = x_2$ and $[y_1, y_2] \in E([H_2]_2)$. So to every clique K of H one can associate a clique K' of H_2 (resp. H_1) and K' is contained in a hyperedge e of H_2 (resp. H_1) (by hypothesis). So K is contained in $\{x\} \times e$ (resp. $e \times \{x\}$).

In the same way we have the converse.

Theorem 5. Let $H = H_1 \times H_2$ be the strong product of H_1 and H_2 , H has the Helly property if and only if H_1 and H_2 have this property.

Proof. Let $F = (e_p \times e_q)_{(p,q) \in P \times Q}$ be a family of hyperedges of H. This family is an intersecting family if and only if the families $(e_p)_{p \in P}$ and $(e_q)_{q \in Q}$ are intersecting. Suppose that H has the Helly property. There exists $(x,y) \in S_1 \times S_2$ such that $(x,y) \in \bigcap_{(p,q) \in P \times Q} (e_p \times e_q)$ this is equivalent to $x \in \bigcap_{p \in P} e_p$ and $y \in \bigcap_{q \in Q} e_q$, and this is equivalent to say that H_1 and H_2 have the Helly property.

Recall that a hypergraph is *arboreal* if and only if it has the Helly property and its line graph L(H) is triangulated. So we have the following:

Corollary 5. Let $H = H_1 \times H_2$ be the strong product of H_1 and H_2 , H is arboreal if and only if H_1 and H_2 are.

Proof. It is sufficient to prove that L(H) is triangulated if and only if both $L(H_1)$ and $L(H_2)$ are.

Let $C = \{(e_1 \times e'_1), (e_2 \times e'_2)\}; \{(e_2 \times e'_2), (e_3 \times e'_3)\}; \{(e_3 \times e'_3), (e_4 \times e'_4)\}; \dots \{(e_{k-1} \times e'_{k-1}), (e_k \times e'_k), (e_1 \times e'_1)\}$ be a cycle of L(H). This cycle gives rise to a cycle of $L(H_1)$: $C' = \{e_1, e_2\}; \{e_2, e_3\}; \{e_3, e_4\}; \dots \{e_{k-1}, e_k\}; \{e_k, e_1\}$ and a cycle of $L(H_2)$: $C'' = \{e'_1, e'_2\}; \{e'_2, e'_3\}; \{e'_3, e'_4\}; \dots \{e'_{k-1}, e'_k\}; \{e'_k, e'_1\}.$ Conversely

a cycle of $L(H_1)$ and a cycle of $L(H_2)$ give rise to a cycle of L(H). It is easy to see that C has a chord if and only if both C' and C'' have a chord.

Theorem 6. Let $H = H_1 \times H_2$ be the strong product of H_1 and H_2 , H is conformal if and only if both H_1 and H_2 are.

Proof. Let (x_i, y_i) ; (x_j, y_j) be two vertices of $H = H_1 \times H_2$. These two vertices belong to a hyperedge e if and only if there exists a hyperedge e_1 of H_1 and a hyperedge e_2 of H_2 such that $x_i, x_j \in e_1$ and $y_i, y_j \in e_2$. Consequently K is a clique of $[H]_2$ if and only if there exists a clique K_1 of $[H_1]_2$ and a clique K_2 of $[H_2]_2$ such that $K = K_1 \times K_2$. Hence $K = K_1 \times K_2 \subseteq e = e_1 \times e_2$ if and only if $K_1 \subseteq e_1$ and $K_2 \subseteq e_2$

Acknowledgements

I am very grateful to the anonymous referee who suggested helpful remarks and improvements.

References

- [1] N. Alon, R. Yuster, and U. Zwick "Finding and Counting Length Cycles." Algorithmica 17.(1997). 209-223.
- [2] H. J. Bandelt and E. Pesch, "Dismantling Absolute Retracts of Reflexive Graphs." Europ. J. Combinatorics 10,(1989), 211-220.
- [3] H. J. Bandelt and E. Prisner, "Clique Graphs and Helly Graphs." J. Combinatorial Theory B, 51, (1991), 34-45.
- [4] C. Berge. "Graphs." North-Holland 1983.
- [5] C. Berge. "Hypergraphs." North-Holland 1987.
- [6] C. Berge. "The Helly property." South-East Asian. Math. Soc. Bull. 1, (1979), 16-19.
- [7] A.Brandstadt, F. Dragan, V. Chepoi and Voloshin. "Dually Chordal Graphs." SIAM J. Discrete Math. 11, (1998), 437-455.
- [8] A. Bretto and B. Laget, "Helly Type Theorem for Graphs." Rendiconti di Circulo di Matematica di Palermo, 65, Ser. II, (2000), 59-65.
- [9] A. Bretto. "Introduction to Hypergraph Theory and their Use in Engineering and Image Processing." Advances in Imaging and Electron Physics, (Monographic serie) Academic Press. (to appear in March 2004).
- [10] A. Bretto and S. Ubéda and J. Žerovnik, "A Polynomial Algorithm for the Strong Helly Property." Information Processing Letters, 81, 1, (2002), 55-57.

- [11] M. Didier. "Communications personnelles." C. E. L. Université de Montpellier II.
- [12] F. F. Dragan. "Domination in quadranble-free helly graphs." Cybernetics and Systems Analysis, 29, 6, (1993), 822-829.
- [13] P. Duchet. "Propriété de Helly et problèmes de représentations." in : Problèmes combinatoires Cd int CNRS 260 Paris (1978) 117-120.
- [14] K. Kazuaki and O. Toshinao. "On vector-valued function spaces with Helly's property." Approximation Theory Appl., 17, No.2, (2001), 86-100.
- [15] J. Lehel and Z. Tuza. "Neighborhood perfect graph." Discrete Math, 61, (1986), 93-101.
- [16] Y. Metelsky and R. Tyshkevich. "Line graph of Helly hypergraphs." Siam J. Discrete Math, 16, 3, (2003), 438-448.
- [17] E. Prisner. "Hereditary clique-Helly graphs." J. Combin. Math. Combin. Comput., 14, (1993), 216-220.
- [18] A. Quilliot. "On the Helly property working as a compactness criterium on graphs." Extremal problems for finite sets, Visigrad 1991, Bolyai Soc. Math. Stud., 3, (1994) 479-514.
- [19] J. L. Szwarcfiter. "Recognizing clique-Helly graphs." Ars Combinatoria, 45, (1997), 186-193.
- [20] Zs. Tuza. "Applications of the set-pair method in extremal hypergraph theory." J. Combin. Theory Ser. A, 40, no. 1, (1985), 186-193.
- [21] Zs. Tuza. "Helly property in finite set systems." J. Combin. Theory Ser. A, 62, no. 1, (1993), 1-14.