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Abstract

In this article we discuss about the Helly property and the strong Helly
property in the hypergraphs. We give a characterization of neighborhood
hypergraphs having the Helly and the strong Helly property. These prop-
erties are studied in both cartesian and strong products of hypergraphs.

1 Graph and Hypergraph Definitions

The Helly property is one of the most important concepts in hypergraph theory.
Introduced in [6], this property has been extensively studied {2, 3, 7, 8, 10, 13,
15, 16, 17, 18, 19, 20, 21]. Many applications of the Helly property have been
developed especially in image processing [9]. In this article we give some results
about this property.

The general terminology concerning graphs and hypergraphs in this article is
similar to the one used in [4, 5, 9]. All graphs in this paper are both finite
and undirected. One will consider that these graphs are simple; graphs with
no loops or multiple edges. All graphs will be considered as connected with no
isolated vertex. We denote them G = (V; E). Given a graph G, we denote
the neighborhood of a vertex z by I'(z), i.e. the set formed by all the vertices
adjacent to z is defined by:

I'(z) = {y e V,{z,y} € E}.

The number of neighbors of z is the degree of x (denoted by dx).

A graph in which each pair of vertices are adjacent is a complete graph.

A chain in a graph is a sequence of distinct edges —one following another-, and
the number of edges is the length of this chain.

A cycle is a chain such that the first vertex and the last vertex are the same.

* A short part of this work has been presented to the workshop IWCIA 2001.
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A chord of a cycle is an edge linking two non consecutive vertices of this cycle.
A cycle with a length equal to n will be denoted by C,,.

Let G = (V, E) be a graph, a cycle Cy,,, (n > 2) with distinct vertices:
T1,%2,T3,...,Ti,...,Ton has a well chord if there exists an edge e linking z; to
Tit+n, 1 i < n. An example is given in figure 1.

A cycle Cy, is centered if there exists a vertex of G adjacent to every vertex of
Cn. (If this vertex is on the cycle, one will consider that it is adjacent to itself.)
A graph is triangulated if any cycle of length at least 4 has a chord.
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Figure 1: This figure shows a cycle Cg with a well chord {z),z4}.

G' = (V'; E') is a subgraph of G when it is a graph satisfying V! C V and
E'CE. IfV'=V then G' is a spanning subgraph.
An induced subgraph (generated by A) G(A) = (A;U), with ACV andUCE
is a subgraph such that: for z,y € A, when {z;y} € E implies {z;y} € U.
A complete induced subgraph is a cligue.
A graph G = (V, E) is bipartite if V = V; UV, with Vi NV, = B and every
edge joins a vertex Vj to a vertex of V5. We will denote a bipartite graph by
G(Vi, Va).
A graph G = (V, E) is bipartite if and only if it does not contain any cycle with
an odd length.
A hypergraph H on a finite set S is a family (E;)ies, I = {1,2,...,n} n€eN
of non-empty subsets of S called hyperedges with:

|JEi=s.

i€l

Let us denote : H = (S; (Ei)ies)-
Sometimes we will denote the set of vertices of H by V(H) and the set of
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hyperedges by E(H).

The rank of H is the maximum cardinality of a hyperedge.

A hypergraph is linear if |[E; N E;j] <1 for i # j.

A loop is a hyperedge with a cardinality equal to one.

A simple hypergraph is a hypergraph H = (S; E = (E;)ier) such that:

E;CE;j=i=j.

In this article, without losing generality we will suppose that any hypergraph is
both without loop and without repeated hyperedges.
For r € S, a star of H -with z as a center- is the set of hyperedges which
contains r, and is called H(x). The degree of x is the cardinality of the star
H(z).
A partial hypergraph on S is a subfamily (E;)jes of (E:)ies.
A subhypergraph of the hypergraph H is the hypergraph H(Y) = (Y, (EinY #
Pier), (With Y C S).
The dual of a hypergraph H = (Ey, E2,...,Epn) on S is a hypergraph H* =
(X1, X2,...,X,) whose vertices ey, €z, ...,en correspond to the hyperedges of
H, and with hyperedges

X; = {ej,a:,- € EJ}

The line graph, L(H) of hypergraph H is a graph whose set of vertices is the set
of hyperedges of H and two vertices of L(H) are adjacent if the corresponding
hyperedges have a non empty intersection.

Let H = (S;(E:)ies) be a hypergraph. The 2-section (or section) of H is the
graph whose set of vertices is S and two vertices z, y are adjacent if there exists
i € I such that z,y € E;. We will denote this graph by [H]>.

A family of hyperedges is an intersecting family if every pair of hyperedges has
a non empty intersection.

A hypergraph has the Helly property if each intersecting family has a non-empty
intersection -belonging to a star-.

A hypergraph has the the strong Helly property if each subhypergraph has the
Helly property.

A hypergraph H is conformal if all the maximal cliques of [H], are hyperedges
of H.

The incidence graph of a hypergraph H = (S; E) is a bipartite graph with a
vertex set V = S U E, where two vertices z € X and e € E are adjacent if and
only if z € e. We denote it IG(H).

Let G = (S; E) be a graph; we can associate a hypergraph called neighborhood
hypergraph to this graph:

He = (S,(E: = {z} UT(x))).

One will say that the hyperedge E. is generated by z.
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2 Neighborhood hypergraph and Helly property.

We now characterize bipartite graphs such that the associated neighborhood
hypergraph has the Helly property.

Theorem 1. Let G = (V; E) be a bipartite graph, and Hg its associated neigh-
borhood hypergraph. H has the Helly property if and only if G does not contain
Cy4 and Cs.

Proof. The condition is necessary. Suppose that G contains a C;. Hg has the
Helly property. Consequently C; is centered, so G contains a cycle C3. Con-
tradiction. If G contains Cg, either Cg is centered and G contains C3 or there
exists a vertex adjacent to three non consecutive vertices of Cg, so G contains
a cycle C4 and thus it is a cycle C3. Contradiction.

The condition is sufficient. We prove this assertion by induction on the hyper-
edge number from an intersecting family.

Let (Ez,)ie(1,2,3) be an intersecting family of three hyperedges, by hypothesis
zy, T9, T3 cannot be on a cycle C, with n =4,5,0r 6. We denote V =V, U V,.
Two cases arise:

1 1,%9,z3 € V1. We have y; adjacent to z;, zi41 (mod3). So y; = yo =
y3 = y, otherwise one would have Cy or Cs.

2 z),z2 € V; and x3 € V; necessarily z3 is adjacent to x; and z,.

Consequently, there exists a vertex y adjacent to x;, 2, z3 in the first case, and
y = z3 is adjacent to x; and z; in the second case.

Suppose that any intersecting family with n — 1 hyperedges is a star, and let
(Ez;)1<i<n be an intersecting family. (E:;)2<i<n is a star, so there exists y such
that y is adjacent to (zi)2<i<n- Suppose that y € V; and (zi)2<i<n C V2.

e z; € V1. Then z; is adjacent to z; i € {2, 3,...,n}. So z; = y otherwise
this would lead to a C,

o 2y € Vo. Let u;, i € {2, 3,...,n} be the common neighbor of z;, ;.
Suppose that for all i € {2, 3,...,n}, u; #v.

— There exists i # j such that u; # u;, consequently this leads to a Cs.
— For all i,j € {2, 3,...,n}, u; = u;, consequently this leads to a Cj.

So there exists ¢ € {2, 3,...,n} such that u; = y and y is ‘adjacent to z;.
We can conclude that Hg has the Helly property.

.a
From this theorem we have the following:

Corollary 1. Let G = (V, E) be a bipartite greph and H¢ its associated neigh-
borhood hypergraph. Hg has the Helly property if and only if it has the strong
Helly property.
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Proof. If Hg has the strong Helly property then obviously it has the Helly prop-
erty.

Assume now that Hg has the Helly property. Let H' = (V’, E’) be a subhyper-
graph of Hg, the induced subgraph G(V’) does not contain neither C4 nor Cg.
Hence H' has the Helly property, so H¢ has the strong Helly property. (]

On the strong Helly property we have:

Theorem 2. Let H = (S, E) be a hypergraph. H has the strong Helly property
if and only if every Cs of IG(H) is well chorded.

Proof. If H has the strong Helly property it is easy to see that any Cg of IG(H)
is well chorded.

Assume now that any Cg of IG(H) is well chorded. Let H’ be a subhypergraph,
we are going to prove this assertion by induction on the hyperedge number of
H'.

Let (E;)ie{1,2,3) be an intersecting family. This family generates a cycle

(z1, €1, T2, €2, T3, €3, Z1) in the incidence graph of H’. This cycle is well chorded ,
consequently there exists a vertex z;, i € {1,2,3} which belongs to (¢ (y 2.3} Ei-
Assume that it is true for any intersecting family of H with p — 1 hyperedges.
Let (Ei)ie{1,2,34,...p) be an intersecting family with p hyperedges. The fol-
lowing families: (Ei)ie(2,3,4....p}» (Ei)ie(1.3.4....p}- (Ei)ie{1.2.4.....p) arC stars, by
induction hypothesis. So one can stand for respectively by H(u) , H(v), H(w)
these three stars. These three vertices are on a cycle (u, Ey . v, By u,w, Ey 4, u)
(Ea,b being a hyperedge containing the vertices a,b). These cycles being well
chorded, u, v, or w belong to any hyperedge of (E;)i¢(1.2.3.4....p}- Hence this
family is a star. So H' has the Helly property. a

Corollary 2. Let G = (V; E) be a graph, and Hg its associated neighborhood
hypergraph. H has the strong Helly property if and only if G does not contain
C4, Cs, Cs and any sun Ss.

Proof. Assume that H¢g does not have the strong Helly property. From theorem
2 the incidence graph IG(H) contains a cycle Cg which is not well chorded. Let
z,{z} UT(z),y, {y} UT(¥), 2z, {z} UT(2)) be this cycle such that the vertices
z,y, z belong to the graph G. Consequently these three vertices are on a cycle
C4,C5 or Cg or on a sun S3 of G.

Suppose now that G does not contain Cy, Cs, Cs and any sun S3. Hence IG(Hg)
does not contain any Cgs. So every C¢ of IG(Hg) is well chorded. a

We say that the hypergraph H = (S; E) has the separation property (briefly,
SP) if for every pair of distinct vertices z,y € S there exists a hyperedge E; € E
such that eitherx € E;and y ¢ E; orr € E; and y € E;.

Corollary 3. A hypergraph H with the SP property has the strong Helly prop-
erty if and only if its dual H* has the strong Helly property.
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Proof. It is easy to see that the incidence graph of a hypergraph with the SP
property is isomorphic to the incidence graph of its dual H*. Moreover, from
theorem above, H has the strong Helly property if and only if every Cs of IG(H)
is well chorded. The corollary is proved. a

Corollary 4. A hypergraph H with the SP property which has the strong Helly
property ts conformal.

Proof. Easy from corollary 3 . (]
For the linear hypergraphs we have:

Proposition 1. Let H = (S;E) be a hypergraph. We have the two following
properties:

(i) For a linear hypergraph H, it follows that H has the Helly property if and
only if ch( H) has the Helly property.

(#) H is linear if and only if IG(H) does not contain Cy.

Proof. [i] Suppose H linear.

H;G(#) has the Helly property. Let I = (Ei)ie(1,...,p) be an intersecting family of
hyperedges of H. In H;g(#) I is a set of vertices such that ({e;}UT'(e:))ie(1,....5}
is an intersecting family. H;¢(#) having the Helly property (Ei)ieqa,...p) has a.
non-empty intersection. Suppose that H has the Helly property and suppose
that H;c(x) does not satisfy the Helly property. From theorm 1 IG(H) contains
C4 or Cs.

If IG(H) contains Cy, there exists two vertices of Cy4 —e,, ez representing two
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hyperedges of H- and two vertices 1, T2 of S belonging to Cs. So z1, z2
belong to E; and E;. Consequently |Ey N E3| > 1, (JE1 N Ep| is the cardinality
of E; N Ep) and H is not linear. Contradiction, /G(H) does not contain Cj.

If IG(H) contains Cq: z, €1, T2, €3, T3, €2, T1. There exists three vertices of
Cg: e, €2 and e3 representing three hyperedges of H and three vertices: z;, z2
z3 of S belonging to C¢. But H has the Helly property, so there exists y € S
such that y € E; N E; N E5. Either y = ;, i = 1,2 or 3. For example y = z,,
so I;, €1, T2, €3, I is a C4 contradiction, or y # x;, ¢ = 1,2 or 3, but for
example |Ey} N E2| > 1 and H is not linear, contradiction. Consequently IG(H)
does not contain Cs. We can conclude that H;g(4) has the Helly property.

[4) obvious from the proof of [i].

a

3 Products of Hypergraphs.

In this section we are going to define some products of hypergraphs. These
generalize the products of graphs.

Let Hy = (51, E1) and H, = (S2, E2) be two hypergraphs, we define a hyper-
graph H = (S, E) in the following way:

for each product the set of vertices is : S = S5 x Sa.

The product of hypergraph Hy0H; = (S, E) = H is the cartesian product
if:
E = E(H\0H,) =j{z} xe,x €S ande€ Ezluje x {z},e€ Eyandz € Sﬁ.

o p—

Ay Az

The product of hypergraph H, x Hz = (S, F) = H is the strong product if:
E = E(Hl bd Hz) = {e,- X ej,€e; € E; and e; € Ez}

Lemma 1. E(A,) N E(A2) = 0. Moreover for all e € E(A,) and &' € E(A2)
lene’| <1, (E(A;) being the hyperedges from A;).

Proof. Otherwise there exists {z} xe € A; and e’ x {y} € Az such that {z}xe=
e’ x{y},so {z} = ¢’ and e = {y}. Hence ¢’ and e are both a loop. Contradiction.
Suppose now that |ene’| > 2. So there exists two distinct vertices (x1,31) and
(z2,y2) belonging to the intersection of e and e’. Consequently z; = z2 and
y1 = y2. Contradiction. a

Theorem 3. Let H = HiOH, be the cartesian product of Hy and Ha, H has
the Helly property if and only if H, and Ha have this property.

Proof. Suppose that H; and H; have the Helly property. Let F be an inter-
secting family of H. Suppose that F = ({T} X e:)ie(1,2,..p}» (€i)ic(1,2,...p} is &N
intersecting family of Hj. So there exists y € Sz such that y € (Nie(y o,...p) €i-

Consequently (z,y) € ig(1,2,..p) ({2} % €)-
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If F = (ei x {Z})ie(1,2,...p} one will proceed as above.

Suppose now that F' = ({z} x €i)ie(1.2,...p)» (€5 X {¥})je(1.2...x}) is an intersect-
ing family. It easy to see that (z,y) € n,-e“‘gwp}({z} X €;) n.-e{n,z....p} (ei x {y}
and hence H has the Helly property.

Suppose now that H has the Helly property. Let (ei)ie(1,2,...p)be an intersect-
ing family of Ha, ({z} x ei)ie(1,2...p) is an intersecting family of H. So there
exists (z,y) € Sy x Sz such that (z,y) € nie(l.2....p}({x} x e;). Consequently
V€N (1.2,...p} (e:) and Hj has the Helly property.

f (€i)ie{1.2....p) is an intersecting family of H) in the same way there exists
z € 5y such that z € (;¢(y 5, p}(€i), and Hy has the Helly property. O

Theorem 4. Let HiOH; = (S,E) = H be the cartesian product of H, =
(S1,E1) and Ha = (S;, E3) H is conformal if and only if H, and H, are con-
formal.

Proof. Let us suppose that K is a maximal clique of [H]2. Let (z;,v) and
(%2, y2) be two vertices of V(K). From lemmal these vertices belong to either a
hyperedge of E(A,) or a hyperedge of E(A;). Without losing generality one can
suppose that they belong to a hyperedge of E(A;). Hence [(z1,31)(z2,%2)) €
E(K) if and only if z) = z, and [y;,y2] € E([Hz)2). So to every clique K of
H one can associate a clique K’ of Hy (resp. H)) and K’ is contained in a
hyperedge e of Hz (resp. H)) ( by hypothesis). So K is contained in {z} x e
(resp.e x {z}).

In the same way we have the converse. ]

Theorem 5. Let H = Hy x Hy be the strong product of Hy and Hy, H has the
Helly property if and only if H, and Ha have this property.

Proof. Let F = (ep X €g)(p,q)ePxq be a family of hyperedges of H. This family
is an intersecting family if and only if the families (e;)pcp and (e4)qeq are
intersecting. Suppose that H has the Helly property. There exists (z,y) €
81 x Sz such that (z,y) € N, gcpxq(€p X €;) this is equivalent to z € MNpeper
andy € nqu €4, and this is equivalent to say that H; and Hs have the Helly
property.

a

Recall that a hypergraph is arboreal if and only if it has the Helly property and
its line graph L(H) is triangulated. So we have the following:

Corollary 5. Let H = H, x Hy be the strong product of H, and H,, H is
arboreal if and only if Hy and H are.

Proof. 1t is sufficient to prove that L(H) is triangulated if and only if both
L(H,) and L(H;) are. :
Let C = {(e1xe}), (e2xeh)}; {(e2xes), (eaxeq)}; {(eaxes), (eaxel)}s ... {(ex—1X
ei_1),(ex x €;),(e1 x e})} be a cycle of L(H). This cycle gives rise to a cycle
of L(H;): C' = {e1,e2}; {ea2,e3}; {e3,eq}; ... {ex-1,ex}; {ex,e1} and a cycle
of L(H2): C" = {e},e3}; {eh,e3}; {e5,€4}; ... {ek_,.ek}; {€k.e}. Conversely
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a cycle of L(H,) and a cycle of L(H32) give rise to a cycle of L(H). It is easy to
see that C has a chord if and only if both C’ and C” have a chord. 0

Theorem 6. Let H = H; x Hy be the strong product of Hy end Hy, H is
conformal if and only if both H, and H are.

Proof. Let (zi,¥i): (zj,y;) be two vertices of H = H) x Ha. These two vertices
belong to a hyperedge e if and only if there exists a hyperedge e; of H; and a
hyperedge ez of Hz such that x;,r, € e) and y;,y; € e2. Consequently K is a
clique of [H]2 if and only if there exists a clique K of [H,]; and a clique K3 of
[H2)2 such that K = K, x K. Hence K = K| x K2 C e = e; x e if and only
if K; Cey and Ky Cep 0O
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