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ABSTRACT. A (p,q) graph G is called edge-magic if there exists a
bijective function f : V(G) U E(G) — {1,2,...,p+ g} such that
f(u) + f(v) + f(uv) = k is a constant for any edge v € E(G).
Moreover, G is said to be super edge-magic if f(V(Q@)) = {1,2,...,p}-
The question studied in this paper is for which graphs it is possible
to add a finite number of isolated vertices so that the resulting graph
is super edge-magic. If it is possible for a given graph G, then we
say that the minimum such number of isolated vertices is the super
edge-magic deficiency, i, (G) of G; otherwise we define it to be +co.

1. INTRODUCTION

The reader is directed to either Chartrand and Lesniak [1] or Hartsfield
and Ringel [4] for all additional terminology not provided in this paper.
An edge-magic labeling of a (p,q) graph G is a bijective function

f:V(G)UE(G) - {1,2,...,p+q}

such that f(u) + f(v) + f(uv) = k is a constant for any edge uv € E(G).
In such a case, G is said to be edge-magic, and k is called the valence of f.
Moreover, f is a super edge-magic labeling of G if f(V(G)) = {1,2,...,p},
and G is said to be super edge-magic.

The previous two definitions were first introduced by Kotzig and Rosa [6,
7] in 1970, and by Enomoto, Lladé, Nakamigawa and Ringel [2] in 1998,
respectively. It is worthwhile to mention that Kotzig and Rosa called edge-
magic labelings, magic valuations; the current term is due to Ringel [8].

Next, we provide the definitions of edge-magic and super edge-magic
deficiencies of a graph.

The edge-magic deficiency of a graph G, u(G), is defined as

u#(G) = min {n > 0: GUnK, is an edge-magic graph}.
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This definition was first introduced by Kotzig and Rosa [6, 7], who
showed that u(G) is well-defined. This motivates us to define the super
edge-magic deficiency analogously.

Let G be a graph, and let

M(G) = {n > 0: GUnK, is a super edge-magic graph}.
Then the super edge-magic deficiency of G, p,(G), is defined to be

in M(G), if M(G) # 0;
u,(G)={ ?2 @ ;fM(G)=0-

It is a direct consequence of the above two definitions that the inequality
#(G) < p,(G) holds for any graph G.

To conduct our study of the super edge-magic deficiency of graphs, the
following results will prove to be useful.

The next lemma from (3] provides us with a necessary and sufficient
condition for a graph to be super edge-magic, and it is this useful charac-
terization that has become our preferred way of looking at these graphs.

Lemma 1.1. A (p,q) graph G is super edge-magic if and only if there ezists
a bijective function f : V(G) — {1,2,...,p} such that the set

S ={f(u) + f(v) : wv € E(G)}

consists of q consecutive integers. In such a case, f extends to a super
edge-magic labeling of G with valence k = p + q + s, where s = min S and

S={k-(p+1),k—(0+2),....,k~—(p+9)}.

Also, the authors proved the following theorem in [3].

Theorem 1.2. Let G be a graph of size g having the property that for all
non-empty sets V) and V such that ViUV =V (G) and Vi NV, =0,

{uv € E(G) : v € V; andv € V}|
is neither |g/2] nor [q/2]. Then G is not super edge-magic.
As an immediate corollary, we obtain the following result.

Corollary 1.3. Let G be o graph of size g having the property that for all
non-empty sets V; and V3 such that ViU Vo = V(G) and VinV, = 0,

[{uv € E(G) :u € V] and v € V,}
is neither |q/2| nor [q/2]. Then p,(G) = +oo.

To prove an easier to use (although less powerful) condition than the
previous one, for a graph to have infinite super edge-magic deficiency, we
will state and prove the following lemma.
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Lemma 1.4. IfC is a cycle and V(C) is partitioned into two sets V; and
Va, then |{uv € E(C) : u € V} and v € V2}| is even.

Proof. Take a cycle C and contract all the edges in (V}) and (V). Then
notice that the result is an eulerian bipartite multigraph M with

E(M)={uv e E(C):ueV, and v € V3}.
Therefore, |E(M))| is even. I

A graph G is said to be an even graph if all of its vertices have even
degree. Thus, with this definition in hand, we obtain the next result as a
corollary to the previous lemma and Corollary 1.3.

Theorem 1.5. If G is an even graph of size q such that q/2 is odd, then
ps(G) = +oo.

Proof. Since G is an even graph, it follows that all components of G are
eulerian. Hence, we can decompose G into a union of edge disjoint cycles.
Now, any partition of V(G) into two sets V; and V; induces partitions
on each of the vertex sets of each cycle in our decomposition, and by the
previous lemma, there are an even number of edges between each of these.
Thus, there is an even number of edges joining the vertices of V; and V5;
however, ¢/2 is odd, so

[{uv € E(C) : v € V; and v € Va}| # q/2.
Therefore, by Corollary 1.3, ,(G) = +o00. 1

We remark that there exist graphs that satisfy the hypotheses of Corol-
lary 1.3, but not those of the above theorem; as an example, if G = K2,
then q(K12)/2 # q(Kn2-n) for n = 1,2,...,11, since the resulting qua-
dratic equation n2 — 12n 433 = 0 has no integer solutions.

The authors have not been very successful in using the machinery devel-
oped above to study graphs for which the clique number (the largest order
w(G) among the complete subgraphs of a graph G) is large in relation to the
size of the graph. To do this, we have resorted to the theory of well-spread
sets as introduced by Kotzig [5].

Aset X = {z1 <z2<---<zn} C Nis a well-spread set (WS-set for
short) if the sums z; + z; for ¢ < j are all different. Furthermore, define
the smallest span of pairwise sums of cardinality n, denoted by p*(n), to
be

p*(n) =min {zp + Tn_1 — T2 — 21 : {T1 < T2 < --- < z,} is a WS-set}.

The following lemma found by Kotzig [5] states a few values of p*(n) for
n =4,5,...,8 and provides a lower bound for any integer n > 9.
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Lemma 1.6. The smallest span of pairwise sums of cardinality n, p*(n)
satisfies that p*(4) = 6, p*(5) = 11, p*(6) = 19, p*(7) = 30, p*(8) = 43,
and p*(n) > n? — 5n + 14 for any integer n > 9.

2. SUPER EDGE-MAGIC DEFICIENCIES OF SOME GRAPHS

Although we found the problem of computing x(G) and u,(G) to be a
difficult one, we have been successful in computing these parameters for
some specific classes of graphs which we present next.

Theorem 2.1. The edge-magic and super edge-magic deficiencies of the
forest nKo are given by

0, ifn is odd;
py(nK3) = p(nKs) = { 1, iin 18 even.

Proof. First, note that Kotzig and Rosa [6] showed that the forest nK,
is edge-magic if and only if n» is odd. Hence, pu(nK3) = 0 if n is odd,
and p(nKs) > 1 if n is even. Actually, the edge-magic labeling that they
provide in their proof for nKs when n is odd, is in fact, a super edge-magic
labeling, which implies that p(nK2) = p,(nK2) = 0 when n is odd. Thus,
assume, without loss of generality, that n is even.

Now, define the graph G = nK,; U K, with

V(@) ={zi:1<i<n}U{yi:1<i<n}u{z}
and
E(G) = {xiy,' 01 S i Sn},
and consider the vertex labeling g : V(G) — {1,2,...,2n + 1} such that

i, fw=z;and 1<17<n;
_ ) 3n/2+i+1, fw=y;and1<i<n/2;
g(w) = n/2 +1, fw=y;and n/24+1<i<mn;
3n/2+1, fw=z

Then, by Lemma 1.1, g extends to a super edge-magic labeling of G with
valence 3n/2 + 2 and, consequently, u,(nK2) < 1.
Therefore, we conclude that u(nK2) = p,(nK2) =1 when n is even. i

The following theorem is due to Enomoto, Lladé, Nakamigawa and Rin-
gel [2].

Theorem 2.2. The cycle C,, is super edge-magic if and only if n is odd. -

The previous theorem allows us to compute the super edge-magic defi-
ciency of cycles.
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Theorem 2.3. The super edge-magic deficiency of the cycle Cp, is given
by

1, ifn=0 (mod 4);

0, ifn=1o0r3 (mod4);
Bs(Cr) =
+00, ifn=2 (mod4).

Proof. First, assume that n is odd. Then the cycle C,, is super edge-magic,
implying that p,(Cp) = 0. For n =0 (mod 4), Cy, is not super edge-magic,
that is, p,(Cn) > 1.

For the other inequality, define the graph G = C, U K; with

V(@) ={zi:1<i<n/2}U{yi:1<i<n/2}U{z}
and
EG) ={ziyi: 1 <i<n/2}U{zi19:i:2< 1< n/2}U {Znj2n},
where n = 0 (mod 4). By Lemma 1.1, the following vertex labeling f
extends to a super edge-magic labeling of G with valence n/2 + 2, where
i, ifv==z;and 1 <i<nf2;
flo) = nf2+1, ifv=9y and 1 <i<nf4
Y= n/2+i+1, ifv=yiandn/d+1<i<n/2
nfa+1, ifv=2=2
Thus, g,(Cr) < 1, which leads to conclude that p,(Cr) = 1.
Finally, the remaining case immediately follows from Theorem 1.5. il
We will use the following theorem to compute p,(Kny).

Theorem 2.4. Let G be a graph that contains the complete subgraph Kp.
If|E(G)| < p*(n), then py(G) = +o00.

Proof. We will use an indirect argument to prove the theorem. Suppose
that there exists a graph G containing the complete subgraph H = K,
with |E(G)| < p*(n) and such that 4,(G) = m, where m € N.

Now, assume that f is a super edge-magic labeling of G UmK, and let

S = {f(u) + f(v) : w € E(G)}.
Then S is a set of |[E(G)| consecutive integers, and hence
{f@) :veVH)}={z1 <z2< - < Zn}
is a WS-set. Thus,
|E(G)] maxS —minS +1

p*(n) > |E(G)|,

and therefore the desired contradiction has been reached.

2
2
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Obviously, the above theorem implies that if |[E(G)| < p*(w(G)) for a
graph G, then 1,(G) =

Now, as an immediate corollary of the previous theorem, we compute
the super edge-magic deficiency of the complete graph K, in the following
way.

Theorem 2.5. The super edge-magic deficiency of the complete graph sat-
isfies that p,(Ky) = +oo for every integer n > 5 and is finite forn =1,2,3
or 4.

Proof. The graphs K;, K5 and K3 are trivially super edge-magic, and thus
1o (K1) = p(K2) = u,(K3) = 0. Also, Ky is certainly not super edge-
magic; however, K; U K; is super edge-magic as one simply needs to label
the isolated vertex with 2, and the rest of the vertices with the remaining
labels. Thus, p,(K3) = 1.

Finally, by Theorem 2.4, we conclude that u,(K,) = +oo for every
integer n > 5. |

3. THE SUPER EDGE-MAGIC DEFICIENCY OF COMPLETE BIPARTITE
GRAPHS

Our first result in this section provides an upper bound for the super
edge-magic deficiency of K,,, for every two positive integers m and n,
implying that p,(Km ) < +00.

Theorem 3.1. The super edge-magic deficiency of the complete bipartite
graph satisfies that p (Km ) < (m—1)(n—1) for every two positive integers
m and n.

Proof. Let V1 and V; be the partite sets of Ky, », and let G be isomorphic
to Ky nU(m—1)(n—1)K;. Then it suffices to present a super edge-magic
labeling of G.

Thus, consider the vertex labeling f : V(G) — {1,2,...,mn + 1} such
that f(V1) = {1,2,...,m} and f(V2) = {m +1,2m+1,...,nm + 1} that
extends to a super edge-magic labeling of G with valence m(2n + 1) + 3 by
Lemma 1.1. i

A computer search of small cases together with the next theorem leads
the authors also to conjecture that p,(Kpmn) = (m—1)(n —1).

For the next proof, we will use the following notation: if A C R and
beR,then A+b={a+b:ac A}.

Theorem 3.2. The super edge-magic deficiency of the graph K,, 2 is equal
to m — 1 for every positive integer m.

Proof. First, notice that by the previous theorem, p,(Kmpm2) < m—1; 80’
we assume that p,(Km2) = n, and let G = K,  UnK) be the graph with

V(G) = {u1,u2} U {v1,v2,...,9m} U {wy, wa,...,ws}
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and
E(G)={uiv;:i=1,2and j=1,2,...,m}.
Now, let f : V(G)U E(G) — {1,2,...,3m +n+ 2} be a super edge-
magic labeling of G such that f(u1) < f(uz) and f(v;) < f(v;) if and
only if i < j. Also, let @ = f(w), B = f(wn), a+ 6 = f(uz), and
R={f(v):i=1,2,...,m}.
Now, the first part of this proof will consist of showing that

(1) R={f+20i+j:0<i<nand0<j<é-1},

where n is such that m = §(n + 1).
To do this, we prove by induction on i (0 < i < n) that

B+2i5,....0+(2i+1)6—-1€R

and
B+ (2+1)3,...,8+((2i+2)6—1¢R.

Consider S = {f(u) + f(v) : v € E(G)}. Then the proof hinges on the
repeated use of the following two facts:

(fact 1) the set S consists of 2m consecutive integers by Lemma 1.1; and
(fact 2) the sets f(u;) + R and f(uz) + R partition S.

Now, both a+ 8 = f(u1) + f(v1) and a+8+6 = f(uz) + f(v1) arein S.
This implies that «+ 8,...,a+8+86—-1€ Sbyfact 1, but a+5+0-1<
a+p+6= f(uz) +min(R),soa+f,...,a+pf+d—-1¢€ f(u1) + Rby
fact 2, which in turn implies that
2 B,....,6+6—1€R,
anda+8+96,...,.a+8+20—1¢€ f(u2) + R.

Now, if 8+6,...,8+20—1€ R,thena+ +4,...,a+B+26-1¢
f(u1) + R, which is a contradiction by fact 2. Thus,

(3) B+46,...,6+26—-1¢R.

Hence, by (2) and (3), the claim is true for ¢ = 0. Now, assume that
it is true for i = k and that max(S) > f(ux) + 8+ (2k+1)0 -1 =
a+ B+ (2k + 2)é — 1, which is in R by inductive hypothesis. Thus,

(4) a+f+@k+2d€eS

by fact 1, but S+(2k+1)d ¢ R by inductive hypothesis, so a+8+(2k+2)d =
f(u2) + B+ (2k + 1)6 is not in f(uz) + R, and hence it is in f(u;) + R by
fact 2, which implies that 8 + (2k + 2)6 € R and

(5) a+pB+(2k+3)0=(x+0)+F+(2k+2)0€ f(uz) + RCS.
Thus, a+ 8+ (2k+2)4,...,a+ 08+ (2k+3)0 —1 € S by (4), (5) and fact 1.
However, by inductive hypothesis, 8+ (2k +1)4,...,8+(2k+2)6 -1 ¢ R,
and hence (a +4) + 8+ (2k + 1)4,...,(a+8) + B8+ (2k + 2)d — 1 are not
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in f(ug) + R, so they are in f(u;) + R by fact 2, that is, a + 8 + (2k +
2)8,...,a+ 8+ (2k+3)d —1 € f(u1) + R. Thus,

(6) B+ (2k+2)s,...,6+(2k+3)6—1€R.
Now, we prove by contradiction that
N B+ (2k+3),...,0+(2k+4)0-1¢R.

If (7) is false, then we have that the integers (a+6) + 8+ (2k +2)d through
(a+8)+ B+ (2k + 3)é — 1 are all in f(u1) + R; however, by (6), they are
also in f(uz) + R, which is a contradiction. Therefore, in light of (6) and
(7), the claim follows from the principle of mathematical induction.
Finally, to conclude that p,(Km 2) > m — 1, we compute a lower bound
for the minimum number of elements that would have to be added to the
set {f(u1), f(u2)} U R to obtain a set of consecutive integers.
Now, we glean from (1) that |R| = m, min(R) = f(v;) = B and
max(R) = f(vm) = B+ 26n + § — 1. Thus, we would have to add
(8) max(R) — min(R) — |R| +1 = dn
elements to R to fill its gaps. Furthermore, since f(u2) — f(u1) = & and
f(v;) = f(vi—1) = 1 or §+1, also by (1), we have only two cases to consider,
namely, either f(u1) < f(u2) < min(R) or max(R) < f(u1) < f(uz). In
either of these cases, we need f(ug) — f(u1) = 8 — 1 elements to fill the
gap between f(u;) and f(uz), which combined with (8) leads to the desired
conclusion that at least (§ — 1) + dn = m — 1 elements are needed. N

4. THE DEFICIENCY OF UNIONS OF GRAPHS

The union of two graphs with finite super edge-magic deficiency does
not always have finite super edge-magic deficiency. Indeed, K} is trivially
super edge-magic, but p£,(2K3) = +00 by Theorem 1.5. However, if one of

- the graphs is additionally bipartite, the situation is different as the results
in this section indicate.
Theorem 4.1. If G and H are super edge-magic graphs such that G is
bipartite, then p,(GU H) < +o0.

Proof. Consider such graphs G and H. Let the partite sets of G be V; and
V2, and g and h be super edge-magic labelings of G and H, respectively.
Assume, without loss of generality, that 1 € f(V5), and defirie

8= max {max (o), IV (E)| - M +m—1],

and
a=M-m+28+1,
where
m = min{g(u) + g(v) : uwv € E(G)}
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and
M = max{h(u) + h(v) : wv € E(H)}.
Then the function f defined by

g(v), ifveW;
Jw)=¢ gw)+a, fveV;
h(v)+ 8, ifveV(H)
extends to a super edge-magic labeling of G U H U rKj; for some integer r.
Now, we show that f is injective, by proving that f(u) < f(v) < f(w)
for any u, v, and w that are in V3, V(H), and Vs, respectively. This is
true since maxyey, 9(v) < 1+ 8 and |V(H)| + 8 < 1 + « (observe that
min,cy gy h(v) = minyey, g(v) = 1 and max,cv(x) h(v) = [V(H))).
Finally, notice that
{f(w) + f(v) : wv € E(GU H)}
consists of |E(G U H)| consecutive integers, since

)+9(v) +a  ifuw € E(G),
Fu) + flv) = { fﬂ) +ho) +25, if wo € BQH),

M+28+1=m+aandr=maxf(V2) - |[V(GUH)|. I

Notice that in the proof of the above theorem min f(V(G U H)) =
min f(V;) and max f(V(G U H)) = max f(V2). Thus, the function f such
that f(v) = f(v) — min(f(Vy)) + 1 for every v € V(G U H) extends to a
super edge-magic labeling of G U H U7K; with

# = max f(V;) — min f(V1) +1 - |V(GU H)|.

Therefore, p,(GU H) < 7.
The above theorem also yields the following corollary.

Corollary 4.2. If G and H are graphs such that p (G) < 400, p,(H) <
+00 and G is bipartite, then p,(GU H) < +00.

Proof. Let G and H be graphs that satisfy our hypothesis. Also, assume
that G is non-trivial, for otherwise the result is trivial. The finite super
edge-magic deficiencies of G and H imply that there exist m,n € NU {0}
such that GumK; and HUnK, are super edge-magic. Moreover, GUmK is
bipartite. Therefore, u,(GUHU(m+n)K;) < +00 by the above theorem. i

As an immediate consequence to Theorem 3.2 and the above theorem,
we have the following corollary.

Corollary 4.3. The super edge-magic deficiency of nKp, 2 is finite for all
positive integers m and n.
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5. THE DEFICIENCY OF FORESTS

In [2], Enomoto, Llad6, Nakamigawa and Ringel conjectured that all
trees are super edge-magic, so the most natural question is whether one
can compute or at least bound u,(T) for a tree T'. Indeed, in this section,
we prove that every forest has finite super edge-magic deficiency.

Theorem 5.1. IfT is a tree, then p,(T) < +oo.

Proof. Clearly, p1,(Ki) = 0, so let T be a non-trivial tree. Moreover, as-
sume, without loss of generality, that the vertices of T are ordered pairs of
integers (given a vertex v = (z,y) € V(T), we call z and y, respectively,
the level and position of v, and we say that v is in level z) that satisfy the
following four properties. First, the vertex r = (0,1), which we call the
root of T, is in V(T). Second, for all v = (z,y) € V(T), the level of v is
the distance from r to v, that is, z = d(r,v). Now, for z € N, let I(z) be
the number of vertices in level z, that is, I(z) = |{(z,y) € V(T) : y € N}
(notice that there exists a sufficiently large n € N such that I(m) = 0 when
m > n). Then the third property is that given a fixed level z of T, the
vertices within it have consecutive positions which range from 1 to I(z),
that is, {y: (z,¥) e V(T)} =1{1,2,...,l(z)}. Now, if v € V(T) - {r}, then
let f(v), which we call the father of v, be the vertex adjacent to v in the
(r,v)-path in T'. Finally, the fourth property is that if the vertices u and
v are in the same level, and the position of the father of u is less than or
equal to the position of the father of v, then the position of u is less than
or equal to the position of v.

Next, define the functions g : V(T) {r} Zand h: V(T) > Z as
follows: if v = (z,y) € V(T) — {r}, then

- (21(214:)) ~y+1, ifz=2nforsomen €N,

g(v) n—1
(Zl(2k+l))+y, if z = 2n + 1 for some €N,
k=0

and h(v) = g (v) — h(f(v)) f v# r and h(r) =
Also, let A : V(T') — N be the function such that A(v) = h(v) +m for
every v € V(T), and where m = 1 — min{h(v) : v € V(T)}. Then for all
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u,v € V(T), we have that A(u) > 1 and

{AMu) + A(v) : wv € E(T)}

{AW) + M(f(v)) : v e V(T) = {r}}
{h(v) + h(f(v)) +2m:v € V(T) - {r}}
{g(v) +2m :v € V(T) — {r}}

{2m+ l—il(%),...,O} U {1,...,2m+il(2k+l)}

k=1 k=0

is a set of |E(T)| consecutive integers.

To show that ) is injective, it suffices to show that h is injective. First,
notice that h(v) is positive if and only if the level of v € V(T') is odd. Next,
let v;,v2 € V(T) be in level z > 1 and be such that the position of v, is
greater than the position of v;. Then we will prove by induction on z that
h(v2) — h(w1) is positive if z is odd and negative if z is even. First, ifz =1,
the result is true since h(1,y) = y, where 1 < y < I(1). Now, assume that
z > 1 is odd. Then, by inductive hypothesis and the fourth property that
describes T, we have that h(f(v2)) — h(f(v1)) < 0 as the position of f(vz)
is greater than the position of f(v1), and both are in the same even level.
Moreover, g(vz) > g(»1), thus

h(v2) — h(v1) = g(v2) — g(v1) — {h(f(v2)) — R(f (1))} > O.
Similarly, h(v2) — h(v1) < 0 if z is even. Therefore, for z > 0, we have that
(9) |h(z,1)] < |A(z,2)| < --- < [h(z,1(z))]-

Next, we show that h(z+2,1)—h(z,(z)) is positive if z is odd and negative
if = is even, also using induction. First, if z = 0 then h(2,1) — k(0,1) =
—9g(f(2,1)), which is negative since f(2,1) is in level 1. Next, consider the
case when z is odd. Then, by inductive hypothesis, h(z + 1,1) — h(z -
1,l(z — 1)) < 0 as = — 1 is even, which together with (9) leads us to

h(f(z +2,1)) < h(z +1,1) < h(z — 1,I(z — 1)) < h(f(z,1(z))).
Hence,
h(x + 2: 1) - h’(x) l(x)) =1- h(f(x + 27 1)) + h(f(xa l(.’l)))) >1

by the fact that g(z,!(z))+1 = g(z+2,1) and the definition of h. Similarly,
h(z + 2,1) - h(z,l(z)) < 1 if z > 2 is even. Therefore, for z > 0, we
have that |h(z + 2,1)| > |h(z,l(z))|. This together with (9) implies that
h(2T) + 1,y) < h(2z1 + 1,y2) and h(2z1,11) > h(222,y2) if £ = z2 and
71 < ¥z, or if ; < 2, which combined with the fact that 2(0,1) =0< 1=
h(1,1) establishes that h is injective.
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v_|9(v) | h(v) | Av)

(0,1) 0] 19
@) 1| 1| 20
L2)| 2| 2| 22
(1L,3)| 3| 3| 22

e[ ol -1] 18
2,2)| -1| -2| 17
(2,3)| —2| -3| 16
2,49 -3| -5| 14
2,5 | -4| -7| 12
2,6)| —5| -8| 11
B,1)| 4| 6| 25
32| 5| 7| 2
52 \31 (3,3)] 6| 11| 30
@1 6| -17| 2
(4,2)| -7|-18] 1

FIGURE 1. Example for Theorem 5.1.

Finally, if v is the vertex with highest position in the highest odd level
of T, then A\* = A(v) = max{A(v) : v € V(T)}. Furthermore,

min{A(v) : v € V(T)} = min{h(v) : v € V(T)} +m = 1.

Therefore, A extends to a super edge-magic labeling of TU(A* — |V(T)|) K1,
and we conclude that 4 (T) < A* — |V(T)| < +o0. 1

We illustrate the construction on the above theorem with Figure 1, where
A” = 44 and thus ) extends to a super edge-magic labeling of T'U 29K;.

Now, as a consequence to Theorem 5.1, Corollary 4.2 and the fact that
all non-trivial trees are bipartite, we have the following corollary.

Corollary 5.2. If F is a forest, then p,(F) < +oo.
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