A HELLY THEOREM FOR INTERSECTIONS OF SETS
STARSHAPED VIA STAIRCASE n-PATHS

MARILYN BREEN

ABSTRACT. For n 2> 1, let p(n) denote the smallest natural number
r for which the following is true: For X any finite family of simply
connected orthogonal polygons in the plane and points 2 and y in
N{K : K in X}, if every r (not necessarily distinct) members of X
contain a common staircase n-path from z to y, then N{K : K in X}
contains such a staircase path. It is proved that p(1) = 1,p(2) =
2,p(3) = 4,p(4) =6, and p(n) <4+ 2p(n — 2) forn > 5.

The numbers p(n) are used to establish the following result. For
X any finite family of simply connected orthogonal polygons in the
plane, if every 3p(n + 1) (not necessarily distinct) members of X
have an intersection which is starshaped via staircase n-paths, then
N{K : K in X} is starshaped via staircase (n + 1)-paths. Ifn=1,a
stronger result holds.

1. INTRODUCTION.

We begin with some definitions and comments from [1] and [5]. Let S
be a nonempty set in the plane. Set S is called an orthogonal polygon if and
only if S is a connected union of finitely many convex polygons (possibly
degenerate) whose edges are parallel to the coordinate axes. Let A be a
simple polygonal path in the plane whose edges [vi—1,v;],1 < i < n, are
parallel to the coordinate axes. Path A is called a staircase path if and only
if the associated vectors alternate in direction. That is, for an appropriate
labeling, for i odd the vectors T;_1v; have the same horizontal direction,
and for i even the vectors 7;_19; have the same vertical direction. Edge
[vi-1,v;] will be called north, south, east, or west according to the direction
of vector ¥;_1v;. Similarly, we use the terms north, south, east, west,
northeast, northwest, southeast, southwest to describe the relative position
of points. For n > 1, if the staircase path ) is a union of at most n edges,
then )\ is called a staircase n — path. For points z and y in set S, we say
T sees y (z is visible from y) via staircase n-paths if and only if there is a
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staircase n-path in S which contains both = and y. Similarly, for subsets
A, B of S, we say A sees B via staircase n-paths if and only if a sees b via
staircase n-paths for all a in A,bin B. Set S is called staircase n — convex
provided for every z,y in S, z sees y via staircase n-paths. Similarly, set
S is starshaped via staircase n — paths if and only if for some point p in S,
p sees each point of S via staircase n-paths, and the set of all such points
p is the staircase n — kernel of S. Of course, parallel definitions hold for
staircase paths. Set S is horizonally convez if and only if for each z,yin S
with [z, y] horizontal, it follows that [z,y] C S. Vertically convez is defined
analogously. Finally, S is an orthogonally convez polygon if and only if S
is an orthogonal polygon which is both horizontally convex and vertically
convex. Using (12, Lemma 1], an orthogonal polygon § is orthogonally
convex if and only if it is staircase convex.

Many results in convexity that involve the usual notion of visibility
via straight line segments have interesting analogues that use the idea of
visibility via staircase paths. (See (12}, (3], (4], [5], (6], [7], [13], [14].) A
recent example concerns a Helly-type theorem by N. A. Bobylev [1]. The
planar version of the theorem states that, for X a family of compact sets
in the plane, if every three (not necessarily distinct) members of X have
an intersection which is nonempty and starshaped via segments, then the
intersection of all the sets is nonempty and starshaped via segments as
well. In a staircase analogue proved in [2], for X a finite family of simply
connected orthogonal polygons in the plane, if every three (not necessarily
distinct) members of X have a nonempty intersection which is starshaped
via staircase paths, then the intersection of all the sets is a nonempty simply
connected orthogonal polygon which is starshaped via staircase paths.

In this paper, we pursue a staircase n-path analogue of the earlier result

and establish the existence of Helly number h(n) such that the following is

“true: For X a finite family of simply connected orthogonal polygons in the

plane, if every h(n) members of X have an intersection which is starshaped

via staircase n-paths, then N{K : K in X} is starshaped via staircase

(n + 1)-paths. Along the way, we obtain a similar result on the existence
of z — y n-paths, where z and y belong to N{K : K in X}.

As in [2], the proof will employ the following Helly-type result by Molnér
[11] which appears in (8]: If C is a family of simply connected compact sets in
the plane such that every two (not necessarily distinct) members of € have
a connected intersection and every three (not necessarily distinct) members
of C have a nonempty intersection, then N{C : C in C} is nonempty and
simply connected. We will also use some results by Topali {14] on visibility
via staircase n-paths. Concerning notation, throughout the paper, bdry S
will denote the boundary of set S. For distinct points = and y, L(z,y) will
be the line determined by z and y. If A is a simple path containing z and
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¥, A(z,y) will represent the subpath of A from = to y. The reader may
refer to Valentine [15], to Lay {10], to Danzer, Griinbaum, Klee (8], and
to Eckhoff [9] for discussions concerning Helly-type theorems, visibility via
segments, and starshaped sets.

2. THE RESULTS.

The following definitions will be useful.

Definitions. For every n > 1, let p(n) denote the smallest natural num-
ber r for which the following is true: For X any finite family of simply
connected orthogonal polygons in the plane and for points z and y in
N{K : K in X}, if every r (not necessarily distinct) members of X contain
a common staircase n-path from z to y, then N{K : K in X} contains such
a path.

Similarly, let s(n) denote the smallest natural number r for which the
following holds: For X any finite family of simply connected orthogonal
polygons in the plane and for A and B rectangular regions (possibly de-
generate) in N{K : K in X}, if every r (not necessarily distinct) members
of X contain a common staircase n-path from A to B, then N{K : K in X}
contains such a path.

The following sequence of lemmas will establish bounds for p(n) and
s(n).

Lemma 1. Let K be a simply connected orthogonal polygon in the
plane, with A and B disjoint (and possibly degenerate) rectangular regions
contained in K. For some fited n > 1. let P denote the collection of
staircase n-paths A in K from A to B, where AN A and AN B are singleton
sets. Let A' = {a:a in AN A forsome A in P}, B' = {b:bin AN
B for some A in P}. If P is nonempty, then sets A’ and B’ are closed
connected subsets of bdry A and bdry B, respectively. Moreover, if A is fully
two-dimensional, then for o a union of three appropriately chosen edges of
bdry A (selected according to the relative positions of A and B),A' Ca. A
parallel statement holds for B.

Proof. For the moment, assume that sets A and B are fully two-dimensional.
Since AN B = @, without loss of generality assume that each point of A
is strictly west of the vertical line determined by the western edge of B.
Observe that, for A in P with associated endpoints a in A and b in B, a
lies on the north, east, or south edge of A. We let o denote the union of
these three edges. Order « along bdry A in a clockwise direction from the
northeast vertex of A to the southwest vertex of A. Similarly, b lies on the
north, west, or south edge of B, and we order the union 8 of these edges
along bdry B in a counterclockwise direction from the northeast corner to
the southwest corner of B.
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To see that A’ is connected, let a;, ap belong to A’, with A\; = A;(ay, b;)
the associated member of P,i = 1,2. The region bounded by A; U A2 U
a(ay,az) U B(b1, b2) lies in the simply connected set K. Choose any ag in
afa),a2),ap # ai1,az2, to prove that ag is an endpoint of some path in P. If
ap lies on the east edge of A, choose the first point g of A\; U Ao U (b1, b2)
which lies to the east of ag. If ¢ lies on one of Ay or Ag, say A, since
ap # ai,q is not on the last segment of A\;. Then [ag,q] U A(g,b1) is a
staircase path in K having at most n segments. Clearly the path is in P,
so ag € A'. If q lies on B(by,bs), then [ag,q] is an appropriate staircase
path, and again ag € A’. If ag is on the north (or south) edge of A, choose
the first point g of A; U A2 north (or south) of ag to obtain an appropriate
path. We conclude that for a;, az in A’, a(a1,a2) € A’, so A’ is a connected
subset of a. A parallel proof produces an analogous result for B’ and 3.

In case one of A’ or B’ is a segment, a simplified version of the proof
above produces the result.

Finally, a standard convergence argument shows that A’ and B’ are
closed. Let {a;} be a sequence in A’ converging to ag, to show ap is in A’.
For each a; we let a; = a;q,...,a:;n = b; denote the vertices of a staircase
n-path in P. Passing to appropriate subsequences if necessary, without loss
of generality assume {a;; : 1 < i} converges to a; foreach1 < j < n. It is
easy to see that ag,...,a, = by are vertices of a staircase n-path Ag in K,
with ag € bdry A, by € bdry B. Moreover, \g N A = {ag}, Ao N B = {bo}, so
Mo is in P. Hence ag € A’ and A’ is closed. By a similar argument, B’ is
closed as well, finishing the proof of the lemma.

Lemma 2. For s(n) and p(n) defined previously, s(2) = p(2) = 2.

Proof. Let X be a finite family of simply connected orthogonal polygons
in the plane, and let A and B be rectangular regions (possibly degenerate)
contained in N{K : K in X}. Assume that every two members of X contain
a common staircase 2-path from A to B. We assert that N{K : K in X}
contains such a path. Assume AN B = (), for otherwise the result is trivial.
For convenience, we use the language of full two-dimensional sets A and
B, although one or both of these sets may be degenerate. Without loss of
generality, assume that each point of A is strictly west of the vertical line
determined by the western edge of B. In case every two of the K sets share
a common l-path from A to B, then to each K in X, let Px denote the
set of segments A in X from A to B, where AN A and AN B are singleton
sets. Let A}, = {a:ain AN A for some X in Pg}. Clearly (or by Lemma.
1) each A% is a closed segment. Every two of these sets have a nonempty
intersection, so by Helly’s theorem on the real line N{A% : K in X} is
nonempty. For ag in this intersection, there is an associated bg east of ag

50



and in B such that [ag,be) € N{K : K in X}. Then [ag,bp| satisfies the
assertion.

Otherwise, let a denote the northeast vertex of A, b the southwest vertex
of B. There are two cases to consider, determined by the relative positions
of a and b.

Case 1. Assume that b is on or north of the horizontal line at a. If
every set K in X contains both an east - north 2-path (or segment) from
A to B and a north - east 2-path (or segment) from A to B, then every K
contains the rectangular region (possibly degenerate) with vertices a and
b. Then either a — b staircase 2-path satisfies the lemma.

Otherwise, we may assume that some set X in X contains no north -
east 2-path from A to B. Let A denote the east - north 2-path (or segment)
from a to b. Every K must contain an east - north 2-path (or segment)
from A to B. The first edge of such a path is on or south of A (that is, on
or south of the horizontal line which supports A on the south), while the
second edge of such a path is on or east of A (on or east of the vertical line
which supports A on the east). It is easy to see that for each K; we may
select a corresponding A; as close as possible to A. Choose Ky such that
its associated Ao (among all the A; paths) is as far as possible from A. We
assert that Ag lies in every K set. If A = Ag, this is immediate. Otherwise,
A &€ Kp. This implies that K contains no north - east 2-path from A to B.
Certainly for any K;, the associated A; is at least as close to A as Ag is to
A. Hence J; is in the region bounded by A, Ao, and the appropriate edges
of A and B. (See Figure 1.) Moreover, K; and Kj share an east - north
2-path A, from A to B, and since A is the closest such path to A in Ky, Ag
is in the region bounded by A} and A (and appropriate edges of A and B).
Then Ag lies in the simply connected region of K; determined by A; and A
(and edges of A and B), so A\g C K;. Path Ap satisfies the assertion.

Figure 1
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Case 2. Assume that b is strictly south of the horizontal line at a.
Staircase 2-paths from A to B may be north - east, east, or one of east
- north, south - east, depending on the relative positions of the southern
edges of A and B. For the moment, assume that the southern edge of A is
south of (or on) the horizontal line determined by the southern edge of B.
Then A — B staircase 2-paths may be north - east, east, or east - north.
Since we are assuming that some two K; sets contain no common 1l-path,
for at least one K set, say K, we may assume that K, contains no north
- east 2-path from A to B. Let b’ denote the first point of B east of a. Let
A = [a,b’] and repeat the argument in Case 1 to obtain an A — B staircase
2-path Ao in N{K : K in K}.

If the southern edge of A is north of the horizontal line determined by
the southern edge of B, a parallel argument yields an appropriate staircase
2-path in N{K : K in X}. We conclude that s(2) < 2.

That p(2) < 2 follows from the special case in which A and B are
singleton sets. It is easy to find examples to show that the bound 2 cannot
be reduced. (See Example 1.) Hence p(2) = s(2) = 2, finishing the proof
of the lemma.

Lemma 3. For p(n) defined previously, p(3) = 4 and p(4) = 6.

Proof. Let X be a finite family of simply connected orthogonal polygons
in the plane, with points z and y in N{K : K in X}. Without loss of
generality, assume that y is northeast of x.

For n = 3, assume that every 4 members of X share a common staircase
3-path from z to y, to show that N{K : K in X} contains such a path. For
each K;;, we select a corresponding staircase 3-path A; (if it exists) from z to
y in K; such that the first segment is east and is as long as possible among

- all such paths in K;. Similarly, select a staircase 3-path yu; (if it exists) from
z to y whose first segment is north and is as long as possible among all such
paths in K;. Observe that for each K at least one of \;, u; must exist. If
some K; has no associated A;, let K; denote such a set. Otherwise, choose
K; whose associated A; has the shortest segment at  (among all the K;
sets in X). Similarly, if some K; has no associated y;, let K> denote such a
set. Otherwise, choose K2 whose associated uo has the shortest segment at
z (among all K; in X). By hypothesis, K; N K> contains a 3-path from z to
Y, so at least one of K or K> has an associated A; or us path. Define the
rectangular region A (possibly degenerate) as follows: If both A; and uo
exist, let A denote the nondegenerate rectangular region at z determined
by the first edge (at z) of A; and the first edge (at z) of uo. Otherwise,
exactly one of Aj, us exists, and we let A be the degenerate rectangular
region determined by the associated edge at . It is easy to see that each
set K contains A.
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Let B = {y}. Since every 4 of the K sets contain a common staircase 3-
path from z to y, for every 2 of the K sets, say K; and K;, KiNK2NK;NK;
contains a staircase 3-path from z to y. Such a path necessarily has its first
segment entirely contained in A, producing a 2-path in K; N K; from A
to B. By Lemma 2, N{K : K in X} contains a 2-path Ao = [a,2] U (2,9]
from A to B. Clearly \g may be extended to a 3-path from z to y in
AU X € N{K : K in X}. This 3-path satisfies the lemma, so p(3) < 4.
Example 1 of the paper will show that the number 4 is best.

Finally, we adapt the argument above to the case for n = 4. Assume
that every 6 members of X share a common staircase 4-path from z to y
to show that N{K : K in X} contains such a path. For each Kj, select
a corresponding staircase 4-path A; (if it exists) from z to y in K; such
that its first segment is east and is as long as possible. Select a staircase
4-path p; (if it exists) from z to y in K; such that its first segment is
north and is as long as possible. Choose K, K2 in the manner described
previously to define rectangular region A at z. By a parallel argument,
using 4-paths from y to z, select K3 and Ky to define rectangular region
B at y. Every set K contains AU B, and every staircase 4-path from z
to y in K1 N Ko N K3 N K4 has its first segment entirely contained in A,
its last segment entirely contained in B. By hypothesis, every 6 members
of X share a common staircase 4-path from z to y. Thus for every 2 of
the sets, say K; and K;, K1 N K>N K3 N K4N K; N K; contains a staircase
4-path from z to y. Since the first segment lies in A and the last segment
lies in B, this produces a staircase 2-path from A to B in K; N K. Since
this is true for every K;, K; in X, by Lemma 2, N{K : K in X} contains a
staircase 2-path A\g from A to B. Path Ag may be extended to a staircase
4-path from z to y in AUXNUB C N{K : K in X}, and this 4-path satisfies
the lemma. Thus p(4) < 6. Example 1 will show that the number 6 is best,
finishing the proof.

Finally, we are ready to establish the following general result.

Theorem 1. For p(n) and s(n) defined previously,

p(1) =1,
s(1) = s(2) =p(2) =2,
p(3) =4,

p(4) = 6. Inductively,

s(n) € 2p(n) for n >3, and

p(n) <4+s(n—-2) for n>4.
Hence p(n) <4+ 2p(n—2) forn > 5.

53



Proof. The proof is by induction on n. When n = 1, the result for points
is trivial. The result for sets follows immediately from the proof of Lemma
2 and easy examples. When n = 2, the result follows from Lemma 2, and
when 3 < n < 4, the result for points follows from Lemma 3. Inductively,
we assume that the result is true for points and n-paths when 3 < n <m
and for sets and n-paths when 2 <n <m—1.

We will prove that the result holds for sets and n-paths when n = m >
3. Let X be a finite family of simply connected orthogonal polygons in
the plane, and let A and B be rectangular regions (possibly degenerate)
contained in N{K : K in X}. Assume that every 2 p(m) members of X
contain a common staircase m-path from A to B, to show that N{K :
K in X} contains such a path. If AN B # 0, the result is trivial, so assume
A and B are disjoint. Furthermore, for convenience we assume that each
set A, B is fully two-dimensional, for otherwise a simplified version of the
argument yields the result.

For each collection € of p(m) sets from X, let P¢ denote the collection
of staircase m-paths A in N{K : K in €} from A to B, where \N A, AN B
are singleton sets.

Let Az = {a:ain AN A for some X in Pe},Bg = {b: bin AN B for
some A in Pe}. Clearly the component of N{K : K in €} which contains A
and B is a simply connected orthogonal polygon. Hence by Lemma 1, each
of the sets Ap and Bg is connected. Moreover, Ap lies in a union of three
edges of bdry A and may be labeled as an interval. A parallel statement
holds for Bg.

Since every 2p(m) members of X share a common staircase m-path,
every two of the Ap sets have a nonempty intersection. By Helly’s theorem
on the real line, the intersection of all the A} sets is nonempty as well.
Choose ag in this intersection. Using a parallel argument, choose by in the
intersection of all the By sets. Then every p(m) members of X share a
common staircase m-path from ag to by. By our induction hypothesis for
points and m-paths, N{K : K in X} contains a staircase m-path from ag
to b, and this provides a staircase m-path from A to B in N{K : K in X}.
Hence the result is true for sets and m-paths. That is, s(m) < 2p(m).

Finally, we will show that the result holds for points and n-paths when
n=m+1 2> 4. Again let X be a finite family of simply connected or-
thogonal polygons in the plane, and let z,y belong to N{K : K in X}.
Without loss of generality assume that y is northeast of z. Assume that
every 4 + s(m — 1) members of X share a common staircase (m + 1)-path.
from z to y, to show that N{K : K in X} contains such a path. Using
an argument like the one in Lemma 3, for each K; select a corresponding
staircase {m + 1)-path X (if it exists) from z to y in K; such that the first
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segment is east and is as long as possible among all such paths in Kj;. Sim-
ilarly, select a staircase (m + 1)-path pu; (if it exists) from z to y whose
first segment is north and is as long as possible. Choose K1, Ky in the
manner discussed in Lemma 3 to define rectangular region A. By a parallel
argument, select K3, K4 to define rectangular region B.

Sets A, B lie in N{K : K in X}, and every (m + 1)-path from z to y in
KiNKyNK3NK, has its first segment entirely in A, its last segment entirely
in B. Since every 4+s(m—1) sets in X contain a common staircase (m+1)-
path from z to y, every s(m —1) members of X share with K1 NK2NK3NK,y
such a path, producing a common staircase (m — 1)-path from A to B. By
our induction hypothesis for sets and (m — 1)-paths, all sets in X share a
staircase (m — 1)-path A from A to B. Clearly A may be extended to a
staircase (m + 1)-path from z to y in AUAU B C N{K : K in X}. Hence
the result is true for points and (m + 1)-paths.

By induction, the results are true for all n > 1.

The following example establishes lower bounds for p(n) and s(n),n > 2.

Example 1. For i > 1, let C; denote the square region in the plane
having (diagonal) vertices (¢,7) and (i+1,i+1). (See Figure 2.) Forn > 2,
let C = U{C; : 1< i< n}, and let D;, D;;(n_1) denote the two square
regions which share one edge with C; and one edge with Ci4;,1 <i < n.
Finally, for 1 < i < 2(n—1), define K; = U{CUD; : 1 < j < 2(n-1),j # i}.

It is easy to see that every 2(n — 1) — 1 = 2n — 3 of the K sets share
a staircase n-path from z = (1,1) to y = (n + 1,n + 1). However, N{K; :
1 <i < 2(n — 1)} contains no such path. Hence 2(n — 1) < p(n) and, of
course, 2(n — 1) < s(n) as well.

Observe that 2 < p(2) < s(2),4 < p(3), and 6 < p(4), producing the
exact values for p(2) and s(2) in Lemma 2 and the exact values for p(3)
and p(4) in Lemma 3.
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Figure 2

The following lemma will help us to establish a result for intersections
of sets starshaped via staircase n-paths.

Lemma 4. Let X be a finite family of simply connected orthogonal
polygons in the plane, and let j,n be fired natural numbers. Assume that
every 3j (not necessarily distinct) members of X have a nonempty inter-
section which is starshaped via staircase n-paths. Then there exrists some
point zg in N{K : K in X} such that the following is true: For every point
s in N{K : K in X} and for every j sets Ki,...,Kj in X, zy sees s via
staircase (n + 1)-paths in K1 N ... N Kj.

Proof. By (2, Theorem 1], the set $ = N{K : K in X} is a (nonempty) sim-
ply connected orthogonal polygon which is starshaped via staircase paths.
Adapting an approach in Bobylev [1] and in [2], for each j members
Ki,...,K; of X, define M'(1,...,5) = {x : z sees § via staircase n-paths
in K3N...NKj}. Because the sets M’(1,...,5) need not be well behaved,
we augment them as follows: For z,y in M’(1,...,j), if an associated
rectangular region with vertices x and y lies in KjN...N K}, join the region
to M'(1,...,5). That is, let M(1,...,5) = M'(1,...5)U{z : z lies in a
minimal rectangular region in K3 N...N K having two associated vertices
in M'(1,...,5)} C K1 ...NKj. Let M denote the collection of all the sets
M(1,...,7). We will show that each set M is M is simply connected and "
compact, that every two of these sets have a connected intersection, and
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that every three have a nonempty intersection. Then by Molnéar’s theorem
[11] it will follow that N{M : M in M} is nonempty and simply connected.
For 2 in this intersection, we will prove that z, satisfies the lemma.

To see that each set M(1,...7) in M is simply connected, let 6 be a
simple closed curve in M(1,...,7), and let point p belong to the (open)
region bounded by §. We will show that p € M(1,...,5). Choose points
g, on & such that (q,r) is a horizontal segment at p lying in the region
bounded by . Then gq,r lie in (possibly degenerate) rectangular regions
@, R in K1 N...N K; with appropriate vertices q1,¢2 and 71,72 for @ and
R, respectively, in M'(1,...,7). If p € Q U R, the argument is finished.
Otherwise, one of Q or R, say @, is west of p, while the other rectangle R
is east of p. (See Figure 3.) Fix point s in S. By a result of Topala [14,
Proposition 2], there is a staircase 2-path A in K3 N...N Kj from ¢, to
g2 such that s sees each point of )\, via staircase n-paths in K;N...N Kj.
Similarly, there is a staircase 2-path A, in K1N...NKj such that s sees cach
point of A, via staircase n-paths in K3 N...NK;. Choose a4 € A\ N L(q, 1)
and a, € A,NL(q,7). Clearly p € [aq, ar}. Also, § lies in the simply connected
set K1N,...,NKj, so [aq,a,] does, too. By [14, Proposition 1], s sees via
staircase n-paths in K; N...N Kj; each point of [ag,a,]. Hence s sees p
. via staircase n-paths in K; N...N Kj. Since this is true for every s in
S,pe M'(1,...,7) C M(1,...,7), the desired result.

r
q

aq P r
n

92

Figure 3
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It is not hard to see that M(1,...,7) is compact. Using arguments like
those in [6, Lemma 1] and (5, Theorem 1}, for each point s in S, the set
{z : z sees s via staircase n-paths in K1 N...N K;} is a finite union of

closed rectangular regions, hence compact. Set M’(l,...,5), as an inter-
section of these compact sets, is compact as well. We join M'(1,...,j) toa
finite union of rectangular regions to produce M(1,...,5), so M(1,...,5)

is compact, too.

It is easy to see that every three of the sets in M have a nonempty
intersection. For convenience of notation, let M;, Ms, M3 denote any three
of these sets. Since every 37 members of X have an intersection which
is starshaped via staircase n-paths, the members of KX associated with
My, Mo, M3 have this property. For z in the staircase n-kernel of their
intersection, z sees S (in fact, z sees all points of the intersection) via
staircase n-paths in N{K : K associated with M;, Ma, or M;}. Hence z
belongs to M;NM;NMj C M;N M0 Ms, so My N My N Mj is nonempty.

It remains to show that every two of the M sets have a connected
intersection. We will show that for every two of the M sets, say M; and
M,, My N M; is starshaped. Select z in the staircase n-kernel of N{K : K
associated with M) or M,}. By the argument above, z € M{ N Mj. We will
show that z is in the staircase kernel (in fact, in the staircase n-kernel) of
MiNMj,. Let point p belong to M; N Ma to show that z sees p via staircase
n-paths in My N Mp. Since z is in the staircase n-kernel of N{K : K
associated with M; or M3} and p e My N M2 C N{K : K associated with
M, or M3}, z sees p via a staircase n-path A in N{K : K associated with
M, or M,}. Without loss of generality, assume that A is chosen with a
minimal number m of segments, m < n. We must show that A C M; N M.

The following proposition will be useful

Proposition 2. Let z and y be points in M’ = M'(1,...,j) joined by a
staircase path pin Ky N...N K;. Then p C M.

Proof. First consider the case in which z and y are joined by a staircase 2-
pathd in K1N...NKj. If § is a segment, then § = p. By (14, Proposition 1],
for each s in 5, s sees each point of § by a staircase n-path in K;N...NKj,
s0 0 C M’'. Thus p =6 C M’ C M. If § is not a segment and is the only
T —y staircase 2-path in K1 N...NKj, then by 14, Theorem 1], each s in S
sees § via staircase n-paths in K1 N...NKj, and again § C M’. It is easy to
see that each point of 4 lies in a minimal rectangular region in K1N...NK;
determined by points in § C M’, so the region bounded by x U § lies in .
M, and p C M. If & is a second z — y 2-path in K; N...N Kj, then the
associated rectangular region bounded by § U’ lies in K1 N...N K. Since
z and y are in M’, this rectangular region lies in M, and again u C M.
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To finish the proof, we proceed by induction on the length of x. In case
i is a staircase 2-path (or a staircase 1-path) the argument is finished by
comments above. Assume that u is a staircase k-path for £ > 3. In case z
and y are joined by a staircase 2-path in Ky N...N Kj, again the argument
is finished by the argument above. Hence assume that points = and y are
not joined by a staircase 2-path in K1N...NKj. If k = 3, then k is minimal
and, by [14, Proposition 3}, each point of S sees each point of x by staircase
n-paths in K1 N...NKj;. Then u C M' C M.

Inductively, assume that the result is true for all £,3 < k < 1, to
prove for i. If ¢ is minimal, again we are through by {14, Proposition
3]. Otherwise, choose an z — y staircase path x’ in K1 N...N K; having
a minimal number of segments. By [14, Proposition 3}, all points of S
see all points of u’ via staircase n-paths in K1 N...N Kj, so u’ € M.
Let z = zo,Z1,...,T; = y be the vertices of p, i > 4. In case p’ meets
u(zy1,zi—1) at some w, then each of u(z,w) and pu(w,y) has fewer than
i segments and has its endpoints in M’. By our induction hypothesis,
p = p(r,w) U p(w,y) € M, the desired result. Otherwise, p' meets u
only in [z,z1) U (zi-1,2;]. Without loss of generality, assume that y is
northeast of z and ' is southeast of p. (See Figure 4.) Then the edge
[x2,x3] is vertical. The associated line meets ' at some point w’. Path
[w',z3) U p(x3,y) has two fewer segments than g, and it is a w —y staircase
path in K; N...N K; whose endpoints are in M’. Using our induction
hypothesis, all of its points are in M, and pu(z2,y) € M. Similarly, the
edge [z1,Z2) is vertical, and the associated line meets i’ at some w”. Path
u(zo, z2) U [z2,w”] has two segments, lies in K3 N...N Kj, and has its
endpoints in M’. Again by our induction hypothesis, all points of the path
are in M. Thus we conclude that p = u(zg,z2) U u(ze,y) € M. This
finishes the induction and completes the proof of the proposition.

y=X;
I
X3
W
X] X2 W"
7
X=Xg w
Figure 4.
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We will use Proposition 1 to show that A C M; N Ms. Recall that z is in
the staircase n-kernel of N{K : K associated with M, or M2}, z ¢ M{ N Mj,
and p belongs to My N M, C N{K : K associated with M; or M,}. Also, z
sees p via the staircase m-path A in N{K : K associated with M; or M},
and m is minimal, m < n. First we will show that A C M. For convenience,
let My = M(1,...,7). Assume that p lies in the (possibly degenerate)
region P in M; C K; N...N K; with appropriate vertices p,p2 of P in
Mj. Also for convenience, we assume that P is fully two-dimensional, for
otherwise, a simplified version of the same argument finishes the proof.
Notice that exactly one of p; or ps lies along each edge of P. (See Figure
5.) If z € P, then A\ C P C M), the desired result. Otherwise, 2 ¢ P.
If necessary, extend the east segment of A to create staircase path Ao(z, w)
from point z to point w in bdry P, with A C Ap(z,w). Let v be the first
point of A(z,p) = Ao(z,p) in P. It is easy to see that for one of p; or py,
say p1, and for one of v or w, say v, X' = Ao(z,v) U [v,p1] is a staircase
path in K; N...N Kj; from 2 to p;. Since z and p; belong to M7, by the
proposition, the staircase path A’ lies in M;. Since all points of A are in
MNUPC M, A C M, also.

2]

P

Figure 5.

A parallel argument holds for M2, so A C M; N Ms. Hence z sees each
point p of M1 NM, via staircase n-paths in M;NMa, and 2 is in the staircase
n-kernel of M; N M,. We conclude that every two members My, M of M
have a connected intersection, the desired result.

Thus the family of sets M satisfies the hypothesis of Molnir’s theorem,
and by that theorem it follows that N{M : M in M} is nonempty. For 2
in this intersection, we assert that zg satisfies the lemma.
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We will show that for every point s in N{K : K in X} and for every j
sets K1,..., Kj in X, zp sees s via staircase (n+1)-paths in K;jN...NKj;: If
20 € M'(1,...,7), the result is immediate. If 20 ¢ M’'(1,...,5), then still
20 € M(1,...,5), so 2 lies in a minimal (and possibly degenerate) rectangu-
lar region R in KyN...NK; with appropriate vertices ry,r9 in M'(1,..., ).
Let gy, uo be staircase n-paths in K3 N...N Kj; from s to r1, from s to 7y,
respectively. Observe that the region R’ determined by RU g1 U po lies in
the simply connected set K3 N...N K;. Moreover, by [6, Lemma 2|, R’ is
orthogonally convex. It is easy to see that at least one of u1,u2, say ui,
contains a point w on a horizontal or vertical segment at z. We assume
that w is the first such point of u; relative to the order on g, from s to ry.
(See Figure 6.) Then u)(s,w) U [w, z0] is a staircase path. Furthermore,
since R’ is orthogonally convex, (w,z0) € R’ C KiN...NK;. If w be-
longs to R, then u;(s,w) U [w, 29] has at most n + 1 segments. Otherwise,
pa1(s, w) U [w, z0) has at most n segments. Either way, pi(s,w) U [w, 29]
is a staircase (n + 1)-path in Kj N ... N Kj, satisfying the assertion and
completing the proof of the lemma.

L)

n

r2

K1

Figure 6.

We are ready to establish the following theorem for intersections of
orthogonally starshaped sets.

Theorem 3. Let X be a finite family of simply connected orthogonal poly-
gons in the plane, and let n > 1. If every 3p(n + 1) members of X
have a nonempty intersection which is starshaped via staircase n-paths then
N{K : K in X} is nonempty and is starshaped via staircase (n + 1)-paths.
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Proof. By Lemma 4, select point 25 in N{K : K in X} such that the
following is true: For every point s in N{K : K in X} and for every
p = p(n+1) sets Ky,...,K, in K, 2o sees s via staircase (n + 1)-paths
in K1N...NKp. Thus every p(n + 1) members of X contain a common
staircase (n 4 1)-path from zo to s. By definition of p(n + 1), it follows
that N{K : K in X} contains such a path. Since this holds for every s
in N{K : K in X}, 2 is in the staircase (n + 1)-kernel of N{X : K in X}
and N{K : K in X} is starshaped via staircase (n + 1)-paths, finishing the
proof.

We conclude with the observation that the bound 3p(n + 1) in the the-
orem may not be best. In particular, it certainly is not best for n = 1, as
the following result demonstrates.

Theorem 4. Let X be a family of simply connected orthogonal polygons
in the plane. If every 3 (not necessarily distinct) members of X have a
nonempty intersection and every 2 (not necessarily distinct) members of
X have an intersection which is starshaped via staircase 1-paths, then S =
N{K : K in X} is nonempty and starshaped via staircase 1-paths. The
result is best possible.

Proof. By Molnar’s theorem [11], N{K : K in X} # 0. If every set K is a
segment, the result follows immediately from Helly’s theorem on the real
line. Hence assume that some set K is not a segment. It follows that K,
has a one point kernel {p} and consists of two nondegenerate perpendicular
segments at p. Let L, M denote the corresponding perpendicular lines at
p. ThenN{K : K in X} C LU M. Clearly each K; is orthogonally convex,
so {K : K in X} is, too. If S C L or S C M, then S is a convex segment,
finishing the proof. Otherwise, for each K;, K; N K contains a point z; of
I\M and a point y; of M\L. Since K; N K, is starshaped via staircase
- 1-paths, it has a one point kernel {p;}. Moreover, p; ¢ K; C M UL, so

pi = p. We conclude that p € S and p € kerS, finishing the argument.

It is easy to see that the result in Theorem 3 is best possible.

Example 2. Let vo, v1, 2, v3 denote the four vertices of a square, ordered
in a clockwise direction. As in [2, Example 1], sets (v, v1], [v1, v2], [ve, v3] U
[v3, vo] show that the number 3 in Theorem 1 is best. Sets [vg, v;]U [v1,v9)
and (vg, v3] U [us, o] show that the number 2 is best as well:
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