On Some Problems of A.K. Agarwal

Padmavathamma, Chandrashekara, B.M. and Raghavendra, R

Department of Studies in Mathematics University of Mysore, Manasaganangotri Mysore - 570 006, Karnataka, INDIA e-mail: padma_vathamma@yahoo.com chandra_alur@yahoo.com raghu_maths@yahoo.co.in

Abstract

The object of this paper is to give solutions to some of the problems suggested by A.K. Agarwal [n-color Analogues of Gaussian Polynomials, Ars Combinatoria 61 (2001), 97-117].

1 Introduction

Definition 1. An *n*-color partition is a partition in which a part of size n, $n \ge 1$ can come in n different colors which are denoted by n_1, n_2, \ldots, n_n . Let $P(\nu)$ denote the number of n-color partitions of n. Then it was proved [1] that

$$\sum_{\nu=0}^{\infty} P(\nu) q^{\nu} = \prod_{n=1}^{\infty} (1 - q^n)^{-n}.$$

In [2] A.K. Agarwal has studied the following restricted *n*-color partition functions and obtained the following results. Let $\pi = (a_1)_{b_1} + \ldots + (a_m)_{b_m}$ be an *n*-color partition.

Definition 2. Let $p_1(r, k, m, \nu)$ denote the number of *n*-color partitions of ν into exactly m parts such that each subscript $b_1 \leq r$ and each part $a_i \leq k + b_i - 1$.

Definition 3. Let $p_2(r, k, m, \nu)$ denote the number of *n*-color partitions of ν into exactly m parts such that each subscript $b_i \leq r$ and each part $a_i \leq k$.

Theorem 1. [2]

$$\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} p_1(r, k, m, \nu) z^m q^{\nu} = \prod_{j=1}^{k} \frac{1}{(zq^j; q)_r}$$

Theorem 2. [2]

$$\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} p_2(r, k, m, \nu) z^m q^{\nu} = \prod_{\nu=1}^{k} (1 - z q^{\nu})^{-min(r, \nu)}$$

Agarwal [2] has given the following two different n-color analogues of the well-known Gaussian polynomials [3, Def. 3.1].

$$A_1(r, k, m, \nu) = \sum_{\nu=0}^{\infty} p_1(r, k, m, \nu) q^{\nu}$$

 $A_2(r, k, m, \nu) = \sum_{\nu=0}^{\infty} p_2(r, k, m, \nu) q^{\nu}$

and obtained some properties of $A_1(r, k, m, \nu)$ and $A_2(r, k, m, \nu)$ analogues to those of Gaussian polynomials.

Agarwal [2] has also proved the following Theorems using generating functions.

Theorem 3. Let $P(D, \nu)$ denote the number of *n*-color partitions of ν into distinct parts. Let $B(\nu)$ denote the number of *n*-color partitions of ν such that even parts appear with even subscripts only. Then $P(D, \nu) = B(\nu)$ for all ν .

Theorem 4. Let $R(\nu)$ denote the number of strict plane partitions of ν . Let $Q(\nu)$ denote the number of *n*-color partitions of ν in which even parts appear with even subscripts and odd with odd subscripts. Then $R(\nu) = Q(\nu)$ for all ν .

The following questions were posed in [2].

Problem 1. Is it possible to find explicit expressions (in terms of q only) for $A_1(r, k, m, \nu)$ and $A_2(r, k, m, \nu)$?

Problem 2. We know that $\lim_{q\to 1} {r \brack k}$ is the binomial coefficient ${r \choose k}$. Do $A_1(r,k,m,1)$ and $A_1(r,k,m,1)$ have interpretations other than partition theoretic?

Problem 3. Is it possible to prove Theorems 3 and 4 combinatorially?

In this paper we give solutions to Problems 1, 2 and give a combinatorial proof of Theorem 3.

2 Solutions

Solutions of Problems 1 and 2. We know that

$$\sum_{m=0}^{\infty} A_1(r, k, m, q) z^m = \prod_{j=1}^k \frac{1}{(zq^j; q)_r}.$$

But

$$\frac{1}{(z;q)_r} = \sum_{j=0}^{\infty} \begin{bmatrix} r+j-1 \\ j \end{bmatrix} z^j.$$
 [3, Eq. (3.3.7)]

Hence

$$\begin{split} \sum_{m=0}^{\infty} A_1(r,k,m,q) z^m &= \prod_{j=1}^k \sum_{i=0}^{\infty} \begin{bmatrix} r+i-1 \\ i \end{bmatrix} (zq^j)^i \\ &= \sum_{i_1,\dots,i_k=0}^{\infty} \begin{bmatrix} r+i_1-1 \\ i_1 \end{bmatrix} \cdots \begin{bmatrix} r+i_k-1 \\ i_k \end{bmatrix} \\ &= a^{i_1+2i_2+\dots+ki_k} z^{i_1+\dots+i_k}. \end{split}$$

Equating the coefficients of z^m on both sides, we get

$$A_{1}(r, k, m, q) = \sum_{i_{1} + \dots + i_{k} = m} {r + i_{1} - 1 \brack i_{1}} \dots {r + i_{k} - 1 \brack i_{k}}$$

which is an explicit expression for $A_1(r, k, m, q)$ in terms of q only.

$$\lim_{q \to 1} A_1(r, k, m, q) = \sum_{i_1 + \ldots + i_k = m} \binom{r + i_1 - 1}{i_1} \cdots \binom{r + i_k - 1}{i_k}$$

since the Gaussian polynomial $\begin{bmatrix} n \\ m \end{bmatrix}$ tends to be the binomial coefficient $\begin{pmatrix} n \\ m \end{pmatrix}$.

To obtain an explicit expression of $A_2(r, k, m, q)$ in terms of q only, we distinguish two cases.

Case 1. Let $r \leq k$. Then

$$min(r, \nu) = \begin{cases} \nu & \text{for } \nu = 1, \dots, r-1 \\ r & \text{for } \nu = r, \dots, k. \end{cases}$$

We know that

$$\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} P_2(r, k, m, \nu) z^m q^{\nu} = \prod_{\nu=1}^k (1 - z q^{\nu})^{-min(r, \nu)}.$$

$$= (1 - zq)^{-1} (1 - zq^{2})^{-2} \dots (1 - zq^{r-1})^{-(r-1)} (1 - zq^{r})^{-r} \dots (1 - zq^{k})^{-r}$$

$$= (1 + zq + z^{2}q^{2} + \dots)(1 + zq^{2} + z^{2}q^{4} + \dots)^{2} \dots$$

$$(1 + zq^{r-1} + z^{2}q^{2r-2} + \dots)^{r-1} (1 + zq^{r} + z^{2}q^{2r} + \dots)^{r} \dots$$

$$(1 + zq^{k} + z^{2}q^{2k} + \dots)^{r}$$

$$= \sum_{x_{1}=0}^{\infty} z^{\sum_{\alpha_{j}=1}^{j} \sum_{j=1}^{r-1} i_{j\alpha_{j}}} q^{\sum_{\alpha_{j}=1}^{j} \sum_{j=1}^{r-1} j i_{j\alpha_{j}}}$$

$$\sum_{\alpha_{j}=0}^{\infty} z^{\sum_{\beta_{l}=1}^{k} \sum_{l=r}^{k} i_{l\beta_{l}}} q^{\sum_{\beta_{l}=1}^{l} \sum_{l=r}^{k} l i_{l\beta_{l}}}$$

where

$$x_1 = i_1, i_{21}, i_{22}, \ldots, i_{r-11}, \ldots, i_{r-1r-1}$$

and

$$x_2=i_{r1},\ldots,i_{rr},\ldots,i_{k1},\ldots,i_{kr}.$$

Equating the coefficients of z^m on both sides and observing that $A_2(r,k,m,q) = \sum_{\nu=0}^{\infty} p_2(r,k,m,\nu) q^{\nu}$, we obtain for $r \leq k$,

$$A_2(r, k, m, q) = \sum_{x_3=m} q^{j i_{j\alpha_j} + l i_{l\beta_l}}$$

where

$$x_3 = \sum_{\alpha_i=1}^{j} \sum_{j=1}^{r-1} i_{j\alpha_j} + \sum_{\beta_i=1}^{l} \sum_{l=r}^{k} i_{l\beta_l}.$$

 $\lim_{q \to 1} A_2(r, k, m, q) = \text{Number of solutions of } x_3 = m$

Case 2. Let r > k. In this case

$$min(r, \nu) = \nu$$
 for all $1 \le \nu \le k$.

Hence

$$\sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} p_2(r, k, m, \nu) z^m q^{\nu} = \prod_{\nu=1}^{k} (1 - zq^{\nu})^{-min(r, \nu)}$$

$$= (1 - zq)^{-1} (1 - zq^2)^{-2} \dots (1 - zq^k)^{-k}$$

$$= \sum_{i_{\alpha_i}=0}^{k} \sum_{a=1}^{a} \sum_{j=1}^{i_{\alpha_j}} q^{ai_{\alpha_j}}$$

Equating the coefficients of z^m on both sides, we obtain for r > k,

$$A_2(r, m, k, q) = \sum_{y=m} q^{ai_{aj}}$$

where

$$y = \sum_{a=1}^k \sum_{j=1}^a i_{a_j}.$$

Hence

$$\lim_{q \to 1} A_2(r, k, m, q) = \text{ Number of solutions of } y = m.$$

Combinatorial Proof of Theorem 3. Given an n-color partition of ν into distinct parts, replace each even part with odd subscript into two parts according to the following rule.

$$(2k)_{2l-1} = k_l + k_l$$

Repeat this process of splitting when k is even and l is odd till no even parts with odd subscripts are left.

eg.
$$8_1 \rightarrow 4_1 + 4_1 \rightarrow (2_1 + 2_1) + (2_1 + 2_1) \rightarrow 1_1 + \ldots + 1_1$$

 $8_5 \rightarrow 4_3 + 4_3 \rightarrow 2_2 + 2_2 + 2_2 + 2_2$.

Finally arrange the parts in decreasing order. This will be an n-color partition of ν in which even parts appear with only even subscripts.

Conversely, given an n-color partition of ν in which even parts appear with only even subscripts, add two repeated parts according to the following rule.

$$(n)_m + (n)_m = (2n)_{(2m-1)} \tag{1}$$

eg.
$$3_2 + 3_2 \rightarrow 6_3$$
, $4_3 + 4_3 \rightarrow 8_5$.

Repeat the above process of addition till there is no repetition of parts. Finally arrange the parts in decreasing order. The resulting partition is the required partition enumerated by $P(D, \nu)$.

We now illustrate our proof by an example.

$$(24)_{15} + (19)_{10} + (18)_9 + 8_5 + 6_3 + 5_4 + 2_1$$

$$\rightarrow (12)_8 + (12)_8 + (19)_{10} + 9_5 + 9_5 + 4_3 + 4_3 + 3_2 + 3_2 + 5_4 + 1_1 + 1_1$$

$$\rightarrow (12)_8 + (12)_8 + (19)_{10} + 9_5 + 9_5 + 2_2 + 2_2 + 2_2 + 2_2 + 3_2 + 3_2 + 5_4 + 1_1 + 1_1$$

$$\rightarrow (19)_{10} + (12)_8 + (12)_8 + 9_5 + 9_5 + 5_4 + 3_2 + 3_2 + 2_2 + 2_2 + 2_2 + 2_2 + 1_1 + 1_1.$$

Conversely, the last partition under the reverse map, after using (1) goes to

$$(19)_{10} + (24)_{15} + (18)_9 + 5_4 + 6_3 + 4_3 + 4_3 + 2_1$$

 $\rightarrow (19)_{10} + (24)_{15} + (18)_9 + 5_4 + 6_3 + 8_5 + 2_1$
 $\rightarrow (24)_{15} + (19)_{10} + (18)_9 + 8_5 + 6_3 + 5_4 + 2_1.$

References

- A.K. Agarwal and G.E. Andrews, Rogers-Ramanujan Identities for Partitions with N copies of N, J. Combin. Theory Ser. A 45(1) (1987), 40-49.
- [2] A.K. Agarwal, n-color Analogues of Gaussian Polynomials, Ars Combinatoria 61 (2001), 97-117.
- [3] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Reading, MA, 1976 (Reprinted, Cambridge University Press, London, New York, 1984).