On (g, f, n)-Critical Graphs

Jianxiang Li

Department of Mathematics and Physics Hunan University of Science and Technology Xiangtan 411201, Hunan, People's Republic of China ljxxt@vip.sina.com

Haruhide Matsuda*†

Department of General Education Kyushu Tokai University Choyo, Aso, Kumamoto, 869-1404, Japan hmatsuda@ktmail.ktokai-u.ac.jp

Abstract

Let G be a graph, and let g and f be two integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for all $x \in V(G)$. A graph G is called a (g, f, n)-critical graph if G - N has a (g, f)-factor for each $N \subseteq V(G)$ with |N| = n. In this paper, a necessary and sufficient condition for a graph to be (g, f, n)-critical is given. Furthermore, the properties of (g, f, n)-critical graph are studied.

Keywords: (g, f)-factor, factor-critical graph AMS (2001) Subject Classification: 05C70

1 Introduction

All graphs considered in this paper are finite, undirected, and simple. Let G be a graph with vertex set V(G) and edge set E(G). For $S \subseteq V(G)$, an induced subgraph of G by S is denoted by G[S] and $G - S = G[V(G) \setminus S]$. For any vertex x of G, the degree of x in G is denoted by $d_G(x)$, and the set of vertices adjacent to x in G is denoted by $N_G(x)$, and the order of G by |G|. Furthermore. $\delta(G) = \min\{d_G(x) : x \in V(G)\}$ and $N_G(S) = \sum_{x \in S} N_G(x)$ for $S \subseteq V(G)$.

^{*}corresponding author

[†]This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 15740077, 2003

Let g and f be two integer-valued functions defined on V(G). A (g, f)-factor of G is defined as a spanning subgraph F of G such that $g(x) \le d_F(x) \le f(x)$ for each $x \in V(G)$. If g(x) = f(x) for all $x \in V(G)$, then a (g, f)-factor is called an f-factor. For an integer $k \ge 1$, an f-factor is a k-factor if f(x) = k for all $x \in V(G)$. For two integers $a \le b$, a (g, f)-factor is called an [a, b]-factor if g(x) = a and f(x) = b for all $x \in V(G)$.

A graph G is said to be (g, f, n)-critical if G - N has a (g, f)-factor for each $N \subseteq V(G)$ with |N| = n. If g(x) = a and f(x) = b for all $x \in V(G)$, then a (g, f, n)-critical graph is an [a, b, n]-critical graph. If g(x) = f(x) (resp. g(x) = f(x) = k) for all $x \in V(G)$, then a (g, f, n)-critical graph is called an (f, n)-critical graph (resp. a [k, n]-critical graph). In particular, a [1, n]-critical graph is simply called an n-critical graph.

Notation and definition not given in this paper can be found in [1].

M. D. Plummer [11] and L. Lovász [8] discussed the characterization and properties of 2-critical graph. Q. Yu [12] gave the characterization of n-critical graphs. O. Favaron [2] studied the properties of n-critical graphs. G. Liu and Q. Yu [7] studied the characterization of [k, n]-critical graphs. The characterization of [a, b, n]-critical graph with a < b was given by G. Liu and J. Wang [6]. In this paper, a necessary and sufficient condition for a graph to be (g, f, n)-critical is given. Furthermore, the properties of (g, f, n)-critical graphs are studied.

Let $\mathbb Z$ be the set of integers, and let S and T be disjoint subsets of V(G). We write $e_G(S,T)=|\{xy\in E(G):x\in S,\,y\in T\}|$. In particular, $e_G(x,T)$ means $e_G(\{x\},T)$. For $g,f:V(G)\to \mathbb Z$, we denote $f(S)=\sum_{x\in T}f(x),\,d_{G-S}(T)=\sum_{x\in T}d_{G-S}(x),$ and $g(T)=\sum_{x\in T}g(x).$ A component C of $G-(S\cup T)$ is called an odd component if g(x)=f(x) for all $x\in V(C)$ and $f(V(C))+e_G(V(C),T)\equiv 1\pmod 2$. Moreover, a component C is called a non-odd component if C is not an odd component. Define

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T) - h_G(S,T),$$

where $h_G(S,T)$ is the number of odd components C of $G-(S\cup T)$. We use the following criterion in the next section.

Theorem A (L. Lovász [9]) Let G be a graph. Let g and $f: V(G) \to \mathbb{Z}$ be two integers such that $g(x) \le f(x)$ for each $x \in V(G)$. Then G has a (g, f)-factor if and only if

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T) - h_G(S,T) \ge 0$$

for all disjoint subsets S and T of V(G).

2 Characterization of factor-critical graphs

Let \mathcal{P} be a set of graphs with a given constant order. Then we say that G is (g, f, \mathcal{P}) -critical if for every subgraph H of G isomorphic to a graph in \mathcal{P} , G - V(H) has a (g, f)-factor.

We first give the following theorem.

Theorem 1 Let G be a graph, and \mathcal{P} a set of graphs of order n. Let g and $f: V(G) \to \mathbb{Z}$ be two functions such that $g(x) \leq f(x)$ for each $x \in V(G)$. Then G is (q, f, \mathcal{P}) -critical if and only if

$$\delta_G(S, T) = f(S) + d_{G-S}(T) - g(T) - h_G(S, T) \ge f_S(n) \tag{1}$$

for all disjoint subsets S and T of V(G) such that G[S] has a subgraph isomorphic to a graph in P, where $f_S(n) = \max\{f(N) : N \subseteq S, |N| = n, \text{ and } G[N] \text{ has a subgraph in } P\}$ and $f_{\emptyset}(n) = -\infty$.

Proof. Suppose that G is (g, f, \mathcal{P}) -critical. Let $S \subseteq V(G)$ be any subset such that G[S] has a subgraph N in \mathcal{P} with $f(V(N)) = f_S(n)$. Then G - N has a (g, f)-factor. Let $S' = S \setminus V(N)$. By Theorem A, G - N has a (g, f)-factor if and only if

$$\delta_{G-N}(S',T) = f(S') + d_{(G-N)-S'}(T) - g(T) - h_{G-N}(S',T) \ge 0$$

for all disjoint subsets S' and T of V(G) - N. Since $d_{(G-N)-(S\setminus V(N))}(T) = d_{G-S}(T)$ and $h_G(S,T) = h_{G-N}(S\setminus V(N),T)$, we have

$$0 \le \delta_{G-N}(S', T)$$

$$= f(S \setminus V(N)) + d_{(G-N)-(S \setminus V(N))}(T) - g(T) - h_{G-N}(S \setminus V(N), T)$$

$$= f(S) - f(V(N)) + d_{G-S}(T) - g(T) - h_{G}(S, T)$$

$$= \delta_{G}(S, T) - f(V(N)) = \delta_{G}(S, T) - f_{S}(n).$$

Thus (1) holds.

Conversely, we assume that (1) holds. Let $N \in \mathcal{P}$ be a subgraph of G. For any subset $S' \subseteq V(G - N)$, write $S = S' \cup V(N)$. Then

$$\begin{split} & \delta_{G-N}(S',T) \\ &= f(S \setminus V(N)) + d_{(G-N)-(S \setminus V(N))}(T) - g(T) - h_{G-N}(S \setminus V(N),T) \\ &= f(S) - f(V(N)) + d_{G-S}(T) - g(T) - h_{G}(S,T) \\ &= \delta_{G}(S,T) - f(V(N)) \ge \delta_{G}(S,T) - f_{S}(n) \ge 0. \end{split}$$

Therefore G - N has a (g, f)-factor by Theorem A.

Recall that a graph G is said to be (g, f, n)-critical if for every subset $N \subseteq V(G)$ with |N| = n, G - N has a (g, f)-factor. If g(x) = f(x) for all $x \in V(G)$, then (g, f, n)-critical is called (f, n)-critical. The following results are easy consequences of Theorem 1.

Corollary 1 Let G be a graph, $n \ge 0$ an integer, and $g, f : V(G) \to \mathbb{Z}$ two functions such that $g(x) \le f(x)$ for each $x \in V(G)$. Then G is (g, f, n)-critical if and only if

$$f(S) + d_{G-S}(T) - g(T) - h_G(S,T) \ge \max\{f(N) : N \subseteq S \text{ and } |N| = n\}$$

for all disjoint subsets S and T of $V(G)$ with $|S| \ge n$.

Corollary 2 Let G be a graph, $n \ge 0$ an integer, and $f: V(G) \to \mathbb{Z}$. Then G is (f,n)-critical if and only if

$$f(S) + d_{G-S}(T) - f(T) - h_G(S,T) \ge \max\{f(N) : N \subseteq S \text{ and } |N| = n\}$$

for all disjoint subsets S and T of $V(G)$ with $|S| > n$.

Corollary 3 Let k and n be nonnegative integers. Then a graph G is [k, n]-critical if and only if

$$k|S| + d_{G-S}(T) - k|T| - h_G(S,T) \ge kn$$

for all disjoint subsets S and T of V(G) with $|S| \geq n$.

Corollary 4 Let G be a graph, $n \ge 0$ an integer, and g, $f: V(G) \to \mathbb{Z}$ two functions such that g(x) < f(x) for each $x \in V(G)$. Then G is (g, f, n)-critical if and only if

$$f(S) + d_{G-S}(T) - g(T) \ge \max\{f(N) : N \subseteq S \text{ and } |N| = n\}$$

for all disjoint subsets S and T of V(G) with $|S| \ge n$.

Corollary 4 is equivalent to the following corollary.

Corollary 5 Let G be a graph, $n \ge 0$ an integer, and $g, f : V(G) \to \mathbb{Z}$ two functions such that g(x) < f(x) for each $x \in V(G)$. Then G is (g, f, n)-critical if and only if

$$f(S) + d_{G-S}(T_G(S)) - g(T_G(S)) \ge \max\{f(N) : N \subseteq S \text{ and } |N| = n\}$$

for all subset S of V(G) with $|S| \ge n$, where $T_G(S) = \{x : x \in V(G) \setminus S \mid and d_{G-S}(x) \le g(x)\}.$

Let $P_j(G-S)=|\{x\in V(G): d_{G-S}(x)=j\}|$. Since $\sum_{x\in T_G(S)}(a-d_{G-S}(x))=\sum_{j=0}^{a-1}(a-j)P_j(G-S)$, the following result is a special case of Corollary 5.

Theorem B (G. Liu and J. Wang [6]) Let a and b be integers with $1 \le a < b$. and G a graph with $|G| \ge a + n + 1$. Then G is [a, b, n]-critical if and only if

$$b|S| + d_{G-S}(T_G(S)) - a|T_G(S)| \ge bn$$
, or $\sum_{j=0}^{a-1} (a-j)P_j(G-S) \le b|S| - bn$

for all subset S of V(G) with $|S| \ge n$.

3 Some properties of factor-critical graphs

Lemma 1 Let G be a (g, f, n)-critical graph of order $|G| \ge n + 1$ with $1 \le g(x) \le f(x)$ for all $x \in V(G)$. Then $d_G(x) \ge g(x) + n$ for all $x \in V(G)$.

Proof. Suppose that G has a vertex v with $d_G(v) < g(v) + n$. Then take $N_0 \subset N_G(v)$ with $|N_0| = \min\{n, d_G(v)\}$. If $d_G(v) < n$, then take $N_1 \subset V(G) - (N_G(v) \cup \{v\})$ with $|N_1| = n - d_G(v)$. Otherwise, let $N_1 = \emptyset$. Write $N = N_0 \cup N_1$. Then |N| = n and $d_{G-N}(v) < g(v)$, which implies that G - N has no (g, f)-factor. This is a contradiction.

Theorem 2 Let $a \ge 1$ and $n \ge 1$ be two integers. Let $f: V(G) \to \mathbb{Z}$ be a function such that $f(x) \ge a$ for all $x \in V(G)$. Then an (a, f, n)-critical graph G is (a + n)-connected.

In particular, an n-critical graph is (n+1)-connected.

Proof. We use the induction on |G|. Since G is (a, f, n)-critical, $|G| \ge a+n+1$. Suppose first that |G|=a+n+1. If G is not (a+n)-connected, then there exists a subset $S \subset V(G)$ with |S|=a+n-1 such that G-S is disconnected. Let $S' \subseteq S$ be any subset with |S'|=n. Then G-S' has no (a, f)-factor, which contradicts that G is (a, f, n)-critical.

We next assume that |G| > a + n + 1. Let x be any vertex of G. Since G is (a, f, n)-critical, $G - \{x\}$ is (a, f, n - 1)-critical. Hence $G - \{x\}$ is (a + n - 1)-connected by the induction hypothesis, which implies that G is (a + n)-connected.

has at least |C| - n + 1 vertices with g(x) = f(x) = 1 (mod 2). All $x \in V(G)$. Then G is (g, f, n-1)-critical unless |G| - n is even and G**Theorem 3** Let G be a (g, f, n)-critical graph with $n \ge 1$ and $g(x) \ge 1$ for

odd, G - N has no f-factor and hence G cannot be (g, f, n - 1)-critical. such that $g(x) = f(x) \equiv 1 \pmod{2}$ for all $x \in V(G) \setminus N$. Since |G - N| is is the exceptional graph, then there exists $N \subseteq V(G)$ with |V| = n - 1 $|\mathcal{O}| - n + 1$ vertices with $g(x) = f(x) \equiv 1$ (mod 2)" cannot be dropped. If Note that the condition "unless |G| - n is even and G has at least

Proof of Theorem 3. Since G is (g, f, n)-critical, by Corollary 1,

$$\{n = |\mathcal{N}| \text{ bas } 2 \supseteq \mathcal{N} : (\mathcal{N})t\} \times \mathcal{M} \leq \{n = |\mathcal{N}| \text{ bas } 2 \supseteq \mathcal{N} : (\mathcal{N})t\} \times \mathcal{M} \leq \mathcal{M} = \{n \in \mathcal{N} \mid \mathcal{N} \mid$$

Consequently, we need only to show that for all disjoint subsets S and for all disjoint subsets S and T of V(G) with $|S| \ge n$.

 $T ext{ of } V(G) ext{ with } |S| = n - 1$

$$f(S)f \leq (L'S)^{\mathcal{D}}y - (L)^{\mathcal{B}} - (L)^{\mathcal{S}-\mathcal{D}}p + (S)f = (L'S)^{\mathcal{D}}y$$

Sunt . $T \ni x$ for all $1 + (x)p = |S| - n + (x)p \le (x)_{S-\mathcal{D}}b$ and 1 - n = |S| more critical, we have $d_G(x) \ge g(x) + n$ for all $x \in V(G)$ by Lemma 1. It follows If $|U| = |V(G)| \langle S \cup T \rangle| = 0$, then $h_G(S,T) = 0$. Since G is (g, f, n)-

$$|S(S)| \le |T| + |S(S)| \le |T| + |$$

even even $|S \cup \{u\} \cap S|$ bus C_1, \ldots, C_m be the components of $G - (S \cup T)$. Since G is (g, f, n)-critical Hence we may assume that |U| > 0. Let u be any vertex of U, and let

which implies

$$\delta_G(S,T) \ge f(S) + h_G(S \cup \{u\}, T) - h_G(S,T) + \epsilon_G(u,T).$$
 (2)

have $\delta_G(S,T) \ge f(S) + h_G(S \cup \{u'\}, T) - h_G(S,T) + \delta_G(u',T) \ge f(S)$. some $u' \in V(C_i)$, then by (2) and $h_G(S \cup \{u'\}, T) - h_G(S, T) \ge -1$, we assume that all C_1, \ldots, C_m are odd components. If $e_G(u', T) \geq 1$ for for each $u \in V(C_i)$ and hence $\delta_G(S,T) \geq f(S)$ holds by (2). Thus we may If there exists a non-odd component C_i , then $h_G(S \cup \{u\}, T) \ge h_G(S, T)$

Hence we may consider the case $e_G(V(C_i), T) = 0$ for all i = 1, ..., m. Then for any $u \in V(C_i)$, it follows from Lemma 1 that $0 = e_G(u, T) = d_G(u) - e_G(u, S \cup U) \ge g(u) + n - |S| - (|C_i| - 1) = g(u) + 2 - |C_i| \ge 3 - |C_i|$, which implies $|C_i| \ge 3$ for each i = 1, ..., m. We divide into two cases.

Case 1. $T = \emptyset$.

Since G is (g, f, n)-critical and $|S \cup \{u\}| = n$, we have

$$\delta_G(S \cup \{u\}, \emptyset) = f(S \cup \{u\}) - h_G(S \cup \{u\}, \emptyset) \ge f(S \cup \{u\}).$$

implying $h_G(S \cup \{u\}, \emptyset) = 0$. Now, we prove that $h_G(S, \emptyset) = 0$.

Since all C_1, \ldots, C_m are odd components of G-S, and $h_G(S \cup \{u\}, \emptyset) = 0$, we obtain $h_G(S, \emptyset) = m \le 1$. Suppose that m = 1. Then $G-S = \{C_1\}$, g(u) = f(u) for all $u \in V(C_1)$, and $f(V(C_1)) + e_G(V(C_1), \emptyset) = f(V(C_1)) \equiv 1 \pmod{2}$. If there exists a vertex $u'' \in V(C_1)$ such that f(u'') is even, then $f(V(C_1) \setminus \{u''\}) \equiv 1 \pmod{2}$. Hence there exists at least one component C in $G-(S \cup \{u''\})$ with f(V(C)) odd. This contradicts $h_G(S \cup \{u\}, \emptyset) = 0$ for any $u \in U$. Thus $g(u) = f(u) \equiv 1 \pmod{2}$ for each $u \in V(C_1)$. Consequently, G has at least $|C_1| = |G-S| = |G| - (n-1)$ vertices u with $g(u) = f(u) \equiv 1 \pmod{2}$. If $|C_1|$ is even, then $f(V(C_1)) \equiv |C_1| \equiv 0 \pmod{2}$. This contradicts the fact C_1 is an odd component of G-S. Thus $|C_1| = |G-S| = |G| - (n-1)$ is odd, implying |G| - n is even.

Therefore G has at least $|C_1| = |G| - (n-1)$ vertices with $g(u) = f(u) \equiv 1 \pmod{2}$, and |G| - n is even. This contradicts the assumption of Theorem 3.

Finally, we get $h_G(S, \emptyset) = 0$. Hence $\delta_G(S, \emptyset) \ge f(S) - h_G(S, \emptyset) = f(S)$ by (2).

Case 2. $T \neq \emptyset$.

Take $y \in T$. Since G is (g, f, n)-critical, $d_G(y) \ge g(y) + n$, and $e_G(V(C_i), T) = 0$ for each $i = 1, \ldots, m$, we have

$$\begin{split} \delta_G(S,T) &= f(S) + d_{G-S}(T) - g(T) - h_G(S,T) \\ &= \delta_G(S \cup \{y\}, T \setminus \{y\}) + d_G(y) - g(y) - e_G(y,S) - f(y) \\ &+ e_G(y,T) + h_G(S \cup \{y\}, T \setminus \{y\}) - h_G(S,T) \\ &\geq f(S \cup \{y\}) + d_G(y) - g(y) - e_G(y,S) - f(y) + e_G(y,T) \\ &+ h_G(S \cup \{y\}, T \setminus \{y\}) - h_G(S,T) \\ &= f(S) + d_G(y) - g(y) - e_G(y,S) + e_G(y,T) \\ &\geq f(S) + n - e_G(y,S) + e_G(y,T) \geq f(S) + e_G(y,T) \geq f(S) \cdot e_G(y,T) \end{split}$$

The proof is complete.

From Theorem 3, we immediately obtain the following results.

Corollary 6 Let G be a (g, f, n)-critical graph with $n \ge 1$, $g(x) \ge 1$, and f(x) even for all $x \in V(G)$. Then for any integer m with $0 \le m < n$, G is also (g, f, m)-critical. In particular, G has a (g, f)-factor.

The following result is a special case of Corollary 6 for g(x) = f(x) = 2r and n = 1.

Theorem C (P. Katerinis [3]) Let G be a graph of order at least two, and r a positive integer. If $G - \{x\}$ has a 2r-factor for each $x \in V(G)$, then G has a 2r-factor.

Corollary 7 Let G be a (g, f, n)-critical graph with $n \ge 1$ and $1 \le g(x) < f(x)$ for all $x \in V(G)$. Then for any integer m with $0 \le m < n$, G is also (g, f, m)-critical.

This reads to the following theorem.

Theorem D (G. Liu and J. Wang [6]) Let G be a [a, b, n]-critical graph with $1 \le a < b$ and $n \ge 1$. Then for any integer m with $0 \le m < n$, G is also [a, b, m]-critical.

Theorem 4 Let G be a (g, f, n)-critical graph with $n \ge 2$ and $g(x) \ge 1$ for all $x \in V(G)$. Then G is also (g, f, n-2)-critical.

Proof. By Corollary 1, we need only to show that for all disjoint subsets S and T of V(G) with |S| = n - 1 or |S| = n - 2

$$\delta_G(S, T) = f(S) + d_{G-S}(T) - g(T) - h_G(S, T)$$

 $\geq \max\{f(N) : N \subseteq S \text{ and } |N| = n - 2\}.$

As the same with the proof of Theorem 3, we have $|U|=|V(G)\setminus (S\cup T)|\geq 1$.

Case 1. |S| = n - 1.

Let u be any vertex of U. Since $|S \cup \{u\}| = n$ and G is (g, f, n)-critical, we have

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T) - h_G(S,T)$$

$$= \delta_G(S \cup \{u\}, T) - f(u) + e_G(u,T) + h_G(S \cup \{u\}, T) - h_G(S,T)$$

$$\geq f(S \cup \{u\}) - f(u) + e_G(u,T) + h_G(S \cup \{u\}, T) - h_G(S,T),$$

that is, $\delta_G(S,T) \ge f(S) + e_G(u,T) + h_G(S \cup \{u\},T) - h_G(S,T)$. By $f(x) \ge 1$ for all $x \in S$ and $h_G(S \cup \{u\},T) - h_G(S,T) \ge -1$, we have

$$\begin{split} \delta_G(S,T) &\geq f(S) + h_G(S \cup \{u\}, T) - h_G(S,T) + e_G(u,T) \\ &\geq \max\{f(N) : N \subseteq S \text{ and } |N| = n-2\} + 1 + h_G(S \cup \{u\}, T) \\ &- h_G(S,T) + e_G(u,T) \\ &\geq \max\{f(N) : N \subseteq S \text{ and } |N| = n-2\}, \end{split}$$

as desired.

Case 2. |S| = n - 2.

Suppose that |U|=1. Let $U=\{u\}$. Since $d_{G-S}(x)\geq g(x)+1\geq 2$ hold for each $x\in V(G)$ by Lemma 1, we have $e_G(u,T)\geq 2$, implying $|T|\geq 1$. Thus

$$\delta_G(S,T) \ge f(S) + d_{G-S}(T) - g(T) - 1 \ge f(S) + |T| - 1 \ge f(S).$$

Therefore we may assume that $|U| \geq 2$.

Let C_1, \ldots, C_m be the components of $G - (S \cup T)$, and let u_1, u_2 be any two vertices of U. Since $|S \cup \{u_1, u_2\}| = n$ and G is (g, f, n)-critical, we have

$$\begin{split} \delta_G(S,T) &= f(S) + d_{G-S}(T) - g(T) - h_G(S,T) \\ &= \delta_G(S \cup \{u_1, u_2\}, T) - f(\{u_1, u_2\}) + e_G(\{u_1, u_2\}, T) \\ &+ h_G(S \cup \{u_1, u_2\}, T) - h_G(S,T) \\ &\geq f(S \cup \{u_1, u_2\}) - f(\{u_1, u_2\}) + e_G(\{u_1, u_2\}, T) \\ &+ h_G(S \cup \{u_1, u_2\}, T) - h_G(S,T). \end{split}$$

that is.

$$\delta_G(S,T) \ge f(S) + e_G(\{u_1, u_2\}, T) + h_G(S \cup \{u_1, u_2\}, T) - h_G(S,T).$$
(3)

By Lemma 1, we have $e_G(u,T) = d_G(u) - e_G(u,S \cup U) \ge g(u) + n - |S| - (|C_i| - 1) = g(u) + 3 - |C_i|$ for each $u \in V(C_i)$. If u_1 or u_2 , say $u_1 \in V(C_i)$, satisfies $|C_i| \le g(u_1) + 1$, then $e_G(u_1,T) \ge 2$. This inequality together with (3) and $h_G(S \cup \{u_1, u_2\}, T) - h_G(S,T) \ge -2$ implies $\delta_G(S,T) \ge f(S)$. Hence we have $|C_i| \ge g(u) + 2 \ge 3$ for each $i = 1, \ldots, m$.

We divide into two subcases.

Subcase 2.1. There exists a non-odd component C_i of $G - (S \cup T)$.

With out loss of generality, we may assume that $u_1, u_2 \in V(C_i)$. Since C_i is a non-odd component of $G - (S \cup T)$, we have $h_G(S \cup \{u_1, u_2\}, T) - h_G(S, T) \geq 0$. Hence $\delta_G(S, T) \geq f(S)$ by (3).

Subcase 2.2. Each C_i is an odd component of $G - (S \cup T)$ with $|C_i| \ge 3$, where $i = 1, \dots, m$.

If there exists $u_1 \in V(C_i)$ such that $e_G(\{u_1\}, T) \geq 1$, then for any $u_2 \in V(C_i) \setminus \{u_1\}$, we obtain $h_G(S \cup \{u_1, u_2\}, T) - h_G(S, T) + e_G(\{u_1, u_2\}, T) \geq -1 + 1 \geq 0$. Hence $\delta_G(S, T) \geq f(S)$ holds by (3). Consequently, we may assume that $e_G(C_i, T) = 0$ for all $i = 1, \ldots, m$. By $|C_i| \geq 3$, there exist two vertices $u_1, u_2 \in V(C_i)$ with $f(u_1) \equiv f(u_2)$ (mod 2) for each $i, 1 \leq i \leq m$. Then $f(V(C_i)) + e_G(V(C_i), T) = f(V(C_i)) \equiv f(V(C_i) \setminus \{u_1, u_2\}) \equiv 1$ (mod 2), which means $G[C_i - \{u_1, u_2\}]$ has at least one odd component of

 $G - (S \cup \{u_1, u_2\} \cup T)$. Thus $h_G(S \cup \{u_1, u_2\}, T) - h_G(S, T) \ge 0$ and so $\delta_G(S, T) \ge f(S)$ by (3).

Finally, our proof is complete.

By Theorem 4, we immediately obtain the following result.

Corollary 8 Let G be a (g, f, n)-critical graph with $n \ge 2$ and $g(x) \ge 1$ for all $x \in V(G)$. Then for any integer m with $0 \le m < n$ and $m \equiv n$ (mod 2), G is also (g, f, m)-critical. In particular, G has a (g, f)-factor for $n \equiv 0 \pmod{2}$.

The following theorem gives a relationship of properties of edge-inclusion (or edge-deletion) and (g, f, n)-critical graphs.

Theorem 5 Let G be a (g, f, n)-critical graph with $1 \le n < |G|$ and $1 \le g(x) < f(x)$ for all $x \in V(G)$. Suppose that H_1 and H_2 are any two edge-disjoint subgraphs of G with $|E(H_1) \cup E(H_2)| \le n$ and $d_{H_1}(x) \le f(x)$ for all $x \in V(H_1)$. Then G has a (g, f)-factor F such that $E(H_1) \subseteq E(F)$ and $E(H_2) \cap E(F) = \emptyset$.

By Theorem 5, we obtain the following results.

Corollary 9 Let G be a (g, f, n)-critical graph with $n \ge 1$ and $1 \le g(x) < f(x)$ for all $x \in V(G)$. For any n edges of G, let H be a subgraph of G induced by the n edges and $d_H(x) \le f(x)$ for all $x \in V(H)$. Then G has a (g, f)-factor which includes the n edges.

Corollary 10 Let G be a (g, f, n)-critical graph with $n \ge 1$ and $1 \le g(x) \le f(x)$ for all $x \in V(G)$. Then the subgraph obtained from G by deleting any n edges has a (g, f)-factor.

Corollary 10 implies the following result. which is due to G. Liu and J. Wang.

Theorem E (G. Liu and J. Wang [6]) Let G be an [a, b, n]-critical graph with $n \ge 1$ and $1 \le a < b$. Then the subgraph obtained from G by deleting any n edges has an [a, b]-factor.

In order to show Theorem 5, we use the following.

Theorem F (P. B. C. Lam, G. Liu, G. Li, and W. C. Shiu [5]) Let G be a graph and let H_1 and H_2 be two edge-disjoint subgraphs of G. Let g and $f: V(G) \to \mathbb{Z}$ be two functions such that g(x) < f(x) for each $x \in V(G)$.

fi hlno bna li Then G has a (g, f)-factor such that $E(H_1) \subseteq E(F)$ and $E(H_2) \cap E(F) = \emptyset$

$$I(S_T) + I(S_T) + I(S_T) + I(S_T) + I(S_T) + I(S_T)$$

 $(T, S)_{xH^9} - (x)_{xH^1} h_{x(H_2)} = \sum_{x \in T \cap V(H_2)} h_{x(H_2)} h_{x(H_2)} - h_{x(H_2)} h_{x(H_2)}$ for any two disjoints subsets S and T of V(G), where $R_S(H_1) = \sum_{x \in S \cap V(H_1)}$

Proof of Theorem 5. In order to prove Theorem 5, we need to show

(D)V do T bus S standard and injoint out Y of Y

$$(S_{1})_{T}H + (I_{1}H)_{S}H \le (T)_{2} - (T)_{2} - (T)_{2} + (T)_{2}$$

this theorem. We divide into two cases. $\sum_{x\in T\cap V(H_2)}d_{H_2}(x) \leq 2|E(H_1)| + 2|E(H_2)| \leq 2n$ by the assumption of by Theorem F. Note that $R_S(H_1) + R_T(H_2) \leq \sum_{x \in S \cap V(H_1)} d_{H_1}(x) + h$

Case 1. $|S| \ge n$.

Described by |N| = N and |N| = N beginded. $T = \{(Y)\}$ is an $\{(Y)\}$ in $\{(Y)\}$ Since G is (g, f, n)-critical, by Corollary I, for any disjoint subsets S and

Since G is (g, f, n)-critical, we have $d_G(x) \geq g(x) + n$ for all $x \in V(G)$ Case 2. |S| < n.

inequality that by Lemma 1. Thus $d_{G-S}(x) \ge g(x) + n + |S|$ holds. Then it follows this

$$(4) \qquad |T|(|S| - n) + (S)f \le (T)\varrho - (T)_{S-\mathfrak{D}}b + (S)f$$

 $R_T(H_2)$. It follows from this inequality, (4), and |T|=1 that of this theorem, $n \ge |E(H_1)| + |E(H_2)| \ge |E(H_1)| + d_{H_2}(t) \ge |E(H_1)| + d_{H_2}(t)$ We next consider the case |T| = 1 and put $T = \{t\}$. By the assumption borisob se $(\underline{s}H)_T A + (\underline{I}H)_S A \le n \le (|S| - n)^2 + |S|^2 \le |T|(|S| - n) + (S)^2$ Suppose first that $|T| \geq 2$. Then by (4), $f(S) + d_{G-S}(T) = g(T) \geq 1$

 $|S| - u + (S)f \leq (L)\delta - (L)S^{-D}p + (S)f$

$$|S| = H_{C-S}(I) - g(I) \ge f(S) + H_{T}(H_{2}) - |S| = (5)$$

$$|S| = H_{T}(H_{2}) + H_{T}(H_{2}) - |S| = (5)$$

 $|S| + |E(H_1)| + R_T(H_2) > 2|E(H_1)| + R_T(H_2) \ge R_S(H_1) + R_T(H_2)$ |S|S|, we have |S|S = |S| + |S|S = |S| + |S|S = |S| + |S|S = |S| + |S|S = | $R_T(H_2) \ge R_S(H_1) + R_T(H_2)$. If $|S| > |E(H_1)|$, then by (5) and $f(S) \ge R_T(H_2)$ $+(x)_{H} h_{(I,H)} V_{CS} = (2H)_{T} A + (R)_{T} + (R)_{S-O} D + (R)_{S-O} D + (R)_{T} + (R)_{T} D +$ If $|S| \le |E(H_1)|$, then it follows from (5) and the assumption of this theorem

+(S) solving this to $A_1(S)$ bold. Substituting this to $A_1(S)$ by $A_2(S)$ If |T| = 0, then $R_T(H_2) = 0$. By the assumption of this theorem,

Finally, the proof is complete. $d_{G-S}(T) - g(T) \ge R_S(H_1) + R_T(H_2)$

18

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions.

References

- J. A. Bondy and U. S. R. Murty, Graph theory with applications MacMillan. London (1976).
- [2] O. Favaron, On k-factor-critical graphs, Discussiones Mathematicae Graph Theory 16 (1996) 41–51.
- [3] P. Katerinis, Some results on the existence of 2n-factors in terms of vertex-deleted subgraphs, Ars Combinatoria 16 (1983) 271–277.
- [4] K. Kawarabayashi, K. Ota, and A. Saito, Hamiltonian cycles in n-factor-critical graphs. Discrete Mathematics 240 (2001) 71–82.
- [5] P. B. C. Lam, G. Liu, G. Li, and W. C. Shiu, Orthogonal (g, f)-factorizations in networks. Networks 35 (2000) 274-278.
- [6] G. Liu and J. Wang. (a, b, k)-critical graphs, Advance in Mathematics (China) 27 (1998) 536–540.
- [7] G. Liu and Q. Yu, k-factors and extendability with prescribed components. Congr. Numer. 139 (1999) 77-88.
- [8] L. Lovász, On the structure of factorizable graphs I. II, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195.
- [9] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391–416.
- [10] M. Kano and H. Matsuda, Some results on (1, f)-odd factors, Combinatorics. Graph Theory, and Algorithms II (1999) 527–533.
- [11] M. D. Plummer, On n-extendable graphs, Discrete Mathematics 31 (1980) 201–210.
- [12] Q. Yu, Characterizations of various matching extensions in graphs, Australasian Journal of Combinatorics 7 (1993) 55-64.