A Construction of Layered Relative Difference Sets
Using Galois Rings
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Abstract

Using a similar &amework to [7], we construct a family of relative
difference sets in Px(Z,, 2)%, where P is the forbldden subgroup. We
only require that P be an abelian group of order pt. The construction
makes use of character theory and the structure of the Galois ring
GR(p*,t), and in particular the Teichmiiller set for the Galois ring.

1 Introduction

Let G be a finite group of order v with a normal subgroup N of order n, and
assume that v = mn. A subset D of cardinality k is called an (m,n, k, A)-
relative difference set (RDS) in G relative to N if the differences dydp ™! for
dy,ds € D,d; # dy represent each nonidentity element of G \ N exactly A
times and each element of N zero times. For this reason, N is called the
forbidden subgroup. If G = H x N, where H is a subgroup of G, then D is
called a splitting RDS. RDSs are said to be semiregular when k—An=0.
The RDSs constructed in this paper will be semiregular (p®,p®,p%, pt®~*)-
RDSs, which have been studied extensively. The text authored by Pott [8]
is a good reference for these RDSs.

Relative difference sets in abelian groups are generally studied with
group algebras or character theory. We will frequently use the following
lemma relating RDSs to character theory; see Turyn [9] for a proof of
similar results.

Lemma 1.1 Let G be an abelian group of order mn with a subgroup N
of order n, and let D be a subset of G with cardinality k. Then D is an
(m,n, k, X)-relative difference set in G relative to N if and only if, for any
character x of G,

k if x is principal on G,
Ix(D)] =< Vk—An if x is nonprincipal on G but principal on N,
k if x is nonprincipal on N.

We will construct relative difference sets in the groups P X (Z,,z»)u,
where P is the forbidden subgroup. It is significant that P may be any
abelian group of order p*, since the majority of previous constructions re-
quire that the forbidden subgroup be elementary abelian. Our construction
works for all primes p, and all positive integers r and ¢. The parameters and
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groups for the relative difference sets formed here overlap with some known
constructions, most notably those of Leung and Ma in [5]. For r = 1, the
constructions in the paper of Chen, Ray-Chaudhuri, and Xiang (2] have
the same parameters. The paper of Hou and Sehgal [4] gives a different
construction of RDSs in similar groups. However, the constructions in this
paper differ in that we make explicit use of the structure of the Teichmiiller
set of Galois rings and primarily use the additive subgroups to form the rel-
ative difference sets. The other constructions make use of the multiplicative
structure of the rings.

2 Galois Rings

If ¢1(z) is a primitive irreducible polynomial of degree ¢ over Fj, then
F,[z]/{¢1(z)) is a finite field of order p’. Hensel’s lemma states that there
is a unique primitive irreducible polynomial ¢, (z) over Z,- so that ¢.(z) =
¢1(z) mod p and with a root w of ¢,(z) satisfying w? =1 = 1. Then Z - [w]
is the Galots extension of Zp- of degree t, and furthermore Z,-[w] is called
a Galois ring denoted GR(p",t). Clearly the additive group of GR(p",t)
is isomorphic to (Z,-)!. See [1] or [6] for a detailed description of Galois
rings.

An important subset of GR(p",t) is the Teichmiiller set 7 = {0, 1,w,
w*, ...,w”"z}, which can be viewed as the set of all solutions to the poly-
nomial z?' — z over GR(p",t). A canonical way of uniquely expressing an
element of GR(p", 1) is:

2

o= ag+pay +p’az + ... +p " lep,

.where a; € T. We see that the invertible elements are those with ag # 0,
and if we take the natural projection (modulo p reduction) from GR(p",t)
to GF(p*), then T maps onto GF(p*); this projection is given by 7(a) = ag
mod p in the representation above.

Using the Teichmiiller representation, we can completely describe the
additive characters of the Galois ring GR(p",t). Let the Frobenius map f
from GR(p",t) to GR(p",t) be given by:

fra=(eo+por+--+p lar1) 2 af +pay® + - +p ary?,

for a; € T. Define the additive trace from GR(p",t) to GR(p",1) = Z,r
by: :
Tr(@)=a+al +---+al' ™.

Then we have:
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Lemma 2.1 The additive characters of GR(p",t) can be described by:

Xa(m) — gp,_Tr(bz), a€ GR(pr,t)

where &,r i3 @ primitive (p’")”‘ root of unity.

See {10] for the proof of a similar result. By order of a character, x :
G — C*, on a finite abelian group G, one means the smallest integer n so
that (x(g))™ =1 for all g € G. Notice that all nonprincipal characters on
GR(p",t) will be of order p for 0 < i < r. In fact, the order of X, is p"~*
where j is the smallest index with a; nonzero in the Teichmiiller expansion
of a.

3 Forming a “Spread” of GR(p",t) x GR(p",t)

A framework for analyzing the structure of GR(p",t) x GR(p",t) was de-
veloped in [7]. We include the details here without proof.

A spread of a 2s—dimensional vector space, V, over F, is a set of p* + 1
s-dimensional subspaces of V' which have pairwise intersection {0} and
necessarily partition the 1-dimensional subspaces of V. Regarding V4, the
vector space associated with 3 = PG(3,p), as the product GF(p®) x
GF(p?) a spread was given by Chen (3] as:

L; = {(a,i0)|a € GF(p*)} for i € GF(p%),

Lo ={(0,0)|a € GF(p2)}

Now let R = GR(p",t). In this section, we identify a set of R~modules
that will completely partition the non-nilpotent elements of R x R, and
which will be analogous to a spread. Let 7 be the Teichmiiller set: 7 =
{0,1,w, ...,w”"z} for w a primitive root of the primitive irreducible poly-
nomial ¢,(z) of degree ¢ as in the previous section.

We define the subgroups in our spread analog by the following:

Sir,ir-ly-"yiﬁ,il = {0" (il + pia +p27:3 + ... +pr_2ir—1 + pr—lir)a)la € R},

S ir o1 izo0 = {((p’l«z + p2i3 + ... +pr‘2ir_1 + pr_li,-)a, a)la € R}.

In the above, the subscripts i; € 7. Define an I—array to be a collection of
subgroups {S;......i141,z1,...,z: } for which the i; are fixed elements in 7, and
the z; are allowed to range over all possible values; that is, z; € T U 00
andz; € 7,i > 1.

We will show that the entire collection, an r—array, of subgroups com-
pletely partitions the non-nilpotent elements of R x R. It is easy to show
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that these subgroups are in fact R-modules. The following lemma describes
the intersection properties of the subgroups S;

r;‘.r—ll'"ri2,il *

Lemma 3.1 S,,,...0, N Sb,,...py = {0} for a1 # b1. Se,.,....0501,05,001 N
sb,.,...,b5+1,aj,...,a1 = SO,...,O,aj,...,al npr—JG for CGjt1 # bj-'l'l‘

So we see that the S;_,..;, are pairwise disjoint in the non-nilpotent
elements of R x R, which are the elements not of the form p(ry,rs) for
T1,72 € R. We have such a subgroup S;, ... ;, for each r-tuple (iy,...,4;)
where i; € T for j > 1 and i; € TUco. So there are (pt)" ™ (p* + 1) distinct
subgroups, pairwise disjoint in the non-nilpotent elements. This gives us
(™ —pD)[(p) " (pt +1)] = (p?"t - pA"~DY) such elements, which is the
total number of non-nilpotent elements in R x R. So we have partitioned
the elements of G which are not divisible by p. We can put these subgroups
into an r—dimensional array. Within this framework we will construct the
new family of RDSs in the additive group of R x R.

4 Constructions of Relative Difference Sets

In this section, we construct a family of relative difference sets in P x
(szr)”, where P is the forbidden subgroup. Recall that P may be any
abelian group of order p*, and the construction works for any prime p and
all positive integers r and ¢. Now we have R = GR(p®", t). Recall an l-array
is a collection of R-modules {S;,,....i1s1.21,....c:} for which the i; are fixed
elements in the Teichmiiller set 7, and the z; are allowed to vary over all
possible values.

We now consider character sums on our collection of R-modules. All
additive characters on R x R are of order p for i an integer with 0 < i < 2r.
Let G be the additive group of R x R. If x is of order p* on G, then x
will be of order p’ when restricted to S where j < i. The following lemma
describes the orders of the restrictions of characters on our collection of
R-modules. The proof of a similar result may be found in [7).

Lemma 4.1 Let p'S = SN p'G. If x is a nonprincipal additive char-
acter of order p* on the ring R x R, then x will be order p*~! on p'G
if k > 1 and principal on p'G if k < l. For the case when k > I, if
we consider a (k — l)-array, then x is principal on ezactly one subgroup,
'Sz it Jh_prik—t—1....j12 Of order p for all subgroups of the form
plSiQM---:ih—l+1pjh-hjla-l-ln-'jl for jx—1 # Ji—1, and of order pi withi> 1 for
all other subgroups in the (k — l)-array.
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Before constructing our relative difference sets we state the following
lemma describing character sums on the layers of elements in each subgroup
S in our construction. This will be used frequently since we will construct
our relative difference sets in layers of such elements. We say z is strictly
divisible by p® if p°|z and p®*! Jz. See [7] for the proof of a similar result.

Lemma 4.2 Let p'S = SNp'G for 2 <1< 2r for S = S;,.,...z,- Then
let p'S* denote the elements of p'S strictly divisible by p', so p*'S = p*S* U
p'*1S. If x is a character on p'S, then:

—pl2r=i-1pt if x is of order p on p'S,
0 if x is of order p® on p'S,s > 1.

plr=ht _ p@r=i-1t  if v is principal on p'S,
x(®'S*) =

Before we look at the general construction, we consider a specific ex-
ample to serve as a guideline. Let G = Z3 x Zg; X Zg;, where Z3 is the
forbidden subgroup.

Let M = Zg1 X Zg;, and let I = 9M be the set of all elements of M
that are divisible by 9. We form the RDSs in 2 stages/layers that we call
stage 0 and stage 1. Stage 0 will involve the layer of nonnilpotent elements
of M and stage 1 those from 30 \ I, those elements strictly divisible by 3.

Stage 0:

In stage 0, we partition the nonnilpotent elements of M into |Z3| = 3
sets, which we call Ag;. We will use these sets later to form our relative
difference sets, including in our construction those elements of the form
(2, Ao,;). Define the sets as follows:

Agp=(<(1,0)>uU<(1,1)>U<(1,2)>U<(1,3)>U.U<(1,26) >

U<(0,1)>u<@31)>uU.Uu<(24,1)>)NM\3M =
(S0,0,0,0 U So,0,0,1 U So,0,0,2 U S0,0,1,0 U -.. U Sp,2,2,2 U So,0,0,00
USO,O,I,oo U..u 50,2,2,00) nM \ 3M.

Notice that these are all the subgroups of the form S ; ; » where i, j, k are
allowed to vary over all possible values. Then let

A =(<(1,2T)>U<(1,28) > U< (1,29) > U < (1,30) > U..U

<(1,83)>U<(27,1)>U< (30,1) > U..U< (51,1) >)NM\3M =
(51,0,0,0 U S1,0,0,1 US1,0,02 U S1,0,1,0 U ... US1,2,22U S1,0,0,00
USl,O,l,oo U...U 31,2,2,00) nM \ 3M.
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These are all subgroups of the form S ; j x where i, j, k are allowed to vary
over all possible values. Finally, let

A2 = (< (1,54) > U < (1,55) >U < (1,56) > U< (1,57) > U..U

<(L,80)>U<(54,1) >U< (57,1) > U..U< (78,1) >)NM\3M =
(52,0,0,0 U S2,0,01 U S2,002 U S2,0,1,0U...US3222US20,0,00U
Sz,o,l,oo U..U 52,2,2'00) nM \ 3M.

These are the subgroups of the form S ; ; x where i, j, k are allowed to vary
over all possible values.

Stage 1: In stage 1, we partition those elements in 3M \ I into 3
sets A ;. Again we will include those elements (i, A4;;) from G in the
construction of our RDS. Observe that each element in 3M \ I is contained
in exactly one of the following set of subgroups:

{<(@1,0><1,1)><(1,2) ><(1,3)>,..,<(1,26) >, < (0,1) >,
<(3,1) >,..,<(24,1) >} =

{50,0,0,0, 50,0,0,1550,0,0,25 50,0,1,0; -+ 50,2,2,25 50,0,0,00+ 50,0,1,005 -+ 50,2,2,00 } -

Again we will have exactly three sets in our partition of these elements.
The 3 sets are respectively as follows: A, o involves the set of all subgroups
of the form So,;,0,5, A1,1 involves the set of all subgroups of the form So ;1 5,
and A, s involves the set of all subgroups of the form Sy,i,2,; where i, j are
allowed to vary over all allowed values.

Aio=(<(1,0)>U<(1,1)>U<(1,2)>U<(,9>U< (1,10) > U
<(L1)>u<(1,18)>U<(1,19) >U<(1,20) > U< (0,1) >
U< (©1)>U< (181)>)N3M\I=
50,0,0,0 U 50,0,0,1 U S0,0,0,2 U S0,1,0,0 U So,1,0,1 U So,1,0,2 U S0,2,0,0 U Sp,2,0,1U
50,2,0,2 U 50,0,0,00 U So,1,0,00 U S0,2,0,00) N 3M \ I.

Aip=(<(1,3)>u<(l,49>u<(L,5)>U<(,12)>U<(1,13)>U

<,K¥)>u<(l2)>u<(L,22)>U<(,23)>U<(3,1)>U
<(12,1) > U< (15,1) >)N3M\I =
(So,0,1,0 U So,0,1,1 U So,0,1,2 U So,1,1,0 U So,1,1,1 U So,1,1,2 U Sp,2,1,0U
S0,2,1,1 U 80,2,1,2 U 50,0,1,00 U S0,1,1,00 U S0,2,1,00) N 3M \ I

14y
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A1o=(<(1,6)>U<(,7)>U< (1,8 >U<(1,15)>U<(1,16) >U

<(L,17)>uU<(1,24)>U<(1,25) >U< (1,26) > U< (6,1) > U
<(15,1)>U<(24,1)>)N3M\I=
(S0,0,2,0 U S0,0,2,1 U S0,0,2,2 U So,1,2,0 U So,1,2,1 U So,1,2,2 U Sp,2,2,00
S0,2,2,1 U S0,2,2,2 U 80,0,2,00 U 50,1,2,00 U 50,2,2,00) N 3M \ I.

So in the sets Ag,; we only take elements of M \ 3M and in the sets
Ay; we take only elements of 3M \ 9M. Then the RDS in the group
G=Z3XZ81XZ31iS

D =(0,40,0) U (1, 40,1) U (2, Ao,2) U(0, A1,0) U (1, A11) U (2, A1,2) U (0, ]).

We will use character sums via Lemma 1.1 in order to show that this
set is a (38, 3, 3%, 37)-relative difference set. We outline the idea of the proof
for our example here and leave the rigorous proof for the theorem below.
Let ¢ be a character on G = Z3 X Zg; X Zg), then ¢ = A ® x, where Ais a
character on Z3 and yx is a character on Zg; X Zg;.

Case 1: Suppose ¢ is the principal character on Z3 x Zg; x Zg1. Then
¢(D) = |D| = 3%.

Case 2: If A is principal on Z3 but nonprincipal on G, then notice
that D contains exactly one element (a,t,j) for every (i,7) in Zg; x Zg;.
Therefore ¢(D) = x(Zg1 x Zg1) = 0.

Case 3: Suppose X is nonprincipal on Z3. Now we have 3 subcases,
whether x be order 9 or lower, order 27, or order 81.

Case 3a: If x is order 9 or less, it will be the case that x(4; ;) = x(Ar,;)
for all 4, 7, k, so let x(Ao,;) = s and let x(A; ;) = t. Notice that x will be
principal on I. Then

(D) = ¢(0, Ag,0) + #(1, Ag,1) + 6(2, Ao,2) + ¢(0, A1,0) + &(1, A1)+

$(2, Ar,2) + ¢(0,1) =
S(AQ0) + A1) + A(2)) + t(A(0) + A(1) + A(2)) + A(0)|I| = 0+ 0 + 3* = 81.

Case 3b: If x is order 27, then clearly x(I) = 0. It is the case that
x(Ao,i) = 0 (shown in the proof below), and also that x(A;,;) = 54 for one
J while x(A; ) = =27 for all k # j. So we have:

(D) = ¢(0, Ao,0) + 6(1, Ao,1) + $(2, Ao,2) + $(0, As0) + $(1, A1)+
#(2, Ar2) + #(0,1) = 0+ 0 + 0 + 54A(20) — 27A(z1) — 27A(22) + 0 =
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81X(zo) — 27(A(20) + A(z1) + M(z2)) = 81A(z0)

where Z3 = {20,%1,22}. So ¢(D) = 81A(zg) (notice that zo could be any
of the elements of Z3), and |¢(D)| = 81.

Case 3c: If x is order 81, then clearly x(I) = 0. It is the case that
X(41,:) = 0 (shown in the proof below), and also that x (Ao, ;) = 54 for one
j while x(Aox) = —27 for all k # j. So we have:

¢(D) = #(0, Ao,0) + #(1, Ao,1) + #(2, Ao,2) + ¢(0, A1 0) + ¢(1, A1)+
#(2, A1,2) + ¢(0,I) = 54X (zg) — 27A(z1) ~ 27TA(22) + 0+ 0+ 0+ 0 =
81A(za) — 27(A(z0) + A(z1) + Mz2)) = 81X\ (zp),
where Z3 = {zg,z1,22}. So ¢(D) = 81A(z), and again |¢(D)| = 81.

We call these RDSs in P x M = P x (sz,)zt layered because they are
constructed in r stages, taking the elements in M \ pM in the first stage,
pM\p?M in the second, and so on up to stage r where we use the elements
of p"~1M \ p"M. The elements of p" M are taken together as a whole.

General Construction: We construct RDSs in the groups P x (szp)zt =
P x M, where P = {z9,2;,%3,..T5¢—1} is any abelian group of order pt
and is also the forbidden subgroup. We use the spread Sy,, yo._1,....y2,1 Of
the ring GR(p?",t) x GR(p*",t) from the previous section. Notice that M

is the additive group of that particular ring. Then our relative difference
set is given by:

r—1p'-1
D=(J U @54 J@o, D)
i=0 j=0
where the sets A; ; are given by:
AO,J' = U Sa,' Y2r=1,Y2r=2,e1 | ) (M \pM)
Y2r-11Y2r—2,-.3¥1
Ai,.i = U (Soyon--~»0o!l2r—h~-~:y2r-2i+lnaj’y2r-2i—ly~~-»1ll)

Yor—is s ¥2r—2i41,Y2r=2i—1,--,Y1
NE'M\p™*' M), i€ {1,2,..,r-1},
where the a; are fixed elements in the Teichmiiller set 7 and the y; are
allowed to vary over all possible values,soy; € T forl # 1 and y;, € T Uco.

Before proving the main theorem, we need a lemma that describes the
behavior of characters on the sets A; ;.

Lemma 4.3 Let x be a character on M = (szr)”. Then x is order p* for
some integer k with0 < k < 2r. Ifk # 2r—1, then x(A1:) = x(Au,;) Vi, j. If
k = 2r—1 then x(Ayj) = p*"*—p®"=Vt for some j' and x(A; ;) = —p@r—1t
forallj #7'.
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Proof: The fact that x is order p* for 0 < k < 2r follows from Lemma 2.1.
The case that [ = 0 is similar to the case [ # 0, so we leave the case that
I = 0 to the reader. We break our proof into 4 cases.

Case 1 Suppose that k < I. Then since 4;; C p'M — p*1M, x is
trivial on all A; ;, x(Ai,;) = |As,;], and the result follows.

Case 2: Suppose that [ < k < 2r — 1. Then since 4;; C p'M —
p1M, then x has order p*~! on A;;. Applying Lemma 4.1 to p'M,
we find that on every (k — l)-array there will be exactly one subgroup
SO,O.---,U,uzr-h---,yzr-mn»ﬂ.i,uz-—t—l.---.yh-2f+1.0h-z.uu—l—1,~--.u1 on which X is prin-
cipal and for all subgroups So,0,...,0,y2r— 1. ¥2r- 2141185 Y2r—20—10+eerVh— 1418k~ 1s
Yrmto1ryy With Br_y # ax_y, x will be order p. x will have order p° for
s > 1 on all other subgroups in the (k —)-array. This fact does not depend
on the choice of a;, so the character values on each of the 4;; will be the
same.

Case 3: Suppose that k = 2r—1. Since A;; C p'M —p'T1 M, then x has
order p>"~% on A; ;. Applying Lemma 4.1 to p' M, we find that on every (k—
l)-array there will be exactly one subgroup Soo,....0,yzr_i,....u2r— 241,020 211
62r-31-1,,a1 O0 Which x is principal and for all other So0,....0,y20—1.....y2r— 2041,
bos—a1,020—1-1,-01 (8l a; are fixed elements), x will be order p. On all
other subgroups in the array, x will be order p°® for s > 1. Let A;; =
n

Uqg,._,,...,3!2,_2,+1,yg.._g,-l,...,y, SU;U.---.O.yzr-l,m,yzr-zl+x.azr—zf. Yor—20—1ss¥1
(])‘ﬁf \p""l]t{[) and Al'j = Uuzr—l,:-~vy2r-2l+hy2r-2l-lr~~~ryl SO,O,...,O,yg,._,....,
Yor2i1sb2nm2tyze—zi—1senyr (1 (P*M \ pP1 M) be an arbitrary set A;; other
then A; j». Lemma 4.2 ensures that we only have to consider the subgroups
on which x is principal or order p to compute x(A;,;). The character val-
ues for x on such subgroups will be p(?7=It — p(2r=i-1}t apq _p2r-i-1)t
respectively. Notice that we will have such subgroups for every choice
(Z2r—1y -y T2r—2s41) that we use for (y2r—i, ..., Y2r-2141) in the subgroups of
the sets A;;» and A; ;. There are p* choices for each y; in the I-tuple, and

1 . .
hence (p*)" subgroups in our calculation. So we get that
x(Any) = Z X(50,0,....0,y20 1, y2r— 241,020 20,020 21 =1 1e-r01) =
Yor—Iy ey Y2r—2141

(ph) (p2r-Dt _ plar=i=1ty — p2rt _ par-1)t

x{(AL;) = Z X(50,0,....0,y201,.cry2ee214+1,b2n—20,02r— 211 1rs1) =
Yor—treenrlY2r—2i+1
i —l- - . .
(pt) (_p(ZT ! l)t) = _p(2r 1)t Vj ;é]l.

Case 4: Suppose that k > 2r — I. Since 4;; C p'M — p'*1 M, then x
has order p*~! on A; ;. Applying Lemma 4.1 to p'M, we find that on every
(k — l)-array there will be exactly one subgroup Soo,....0,y2 1), ¥-14+1,00-1,
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Blomlo1yreesB2n—2141102n—321,82n—21-1,.,a1 Ol Which x is principal and for all other

SO'Ov---,war—h---,wc—lﬂbk—l»ﬂk—l-n-—-,azr—zlﬂ 1820 — 21,820 —2[— 15101 (all a; are fixed
elements), x will be order p. All of these subgroups are contained in exactly
one of the Ay, so that

x(Ay) = Z X(50,0,...,0, 520 — v Ul m 141 Yk .80t =1, 02n= 201,820 21,
Ver—tyeyYh-1+1

G2r—21~1 r--val)

—k - i i
= (pt)2' [(p(z'r 1313 _p(2r 3 l)t) - (pt - l)p(2r 4 l)t)] =0.

Also x(As;) =0 Vj # j', since x will have order greater than p on all the
subgroups used to form A, ;.

o

Theorem 4.1 The set D is a (p*™t, pt, p™t, pi™t—t)-RDS in the group G =
P x (szp)m, where P is the forbidden subgroup. P = {z0,z1,%2,...2pt~1}
is an arbitrary abelian group of order pt.

Proof: Let ¢ = A®x be an arbitrary character on G = P x (Z2- )%, where
A is a character on P and y is a character on (Zp2r)2t. We separate into
cases.

Case 1: Suppose that ) is the principal character. Since we have
partitioned the elements of (szr)2t into the sets A;; and I, then in our
construction we have exactly one element (z;, ;) in D for every element
a@; € (Z,2)*. So we have that

$(D) = x((Zp2)™).

Therefore, if x is principal on (Zy2-)*, then ¢(D) = |D| = p*™*, and if x is
nonprincipal on (Zp2$‘)2t then ¢(D) = 0.

Case 2: Suppose that X is nonprincipal on P. Now we again break this
into cases.

Case 2a: Suppose that x has order p* where k < r. Then x will be
principal on p"M = I, so x(I) = |I| = p*™. x(4i;) = x(4sj) = a; for all
i,4,Jj' by the previous lemma. Therefore we get that:

r—1
6(D) =3 ai 3 Mz;) + Azo)x(D) = 0+p™".

i=0 z;EP

Case 2b: Suppose that x has order p* where r < ¥ < 2r. Then y is
nonprincipal on p"M = I, so x(I) = 0 since 7 is a subgroup of M. By the
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previous lemma, x(A;;) = x(Aij) =a;for1 <i<randi#2r—kand
for exactly one Aa,_py we have that x(Az,—p ) = p?™t — p(3~1)¢ and for
alll # U, xAzp—ry = —p® 1 Then we have:

$(D)= Y ai ) A@s) +A(zo)x(D) + Maw)x(Azr-ru )+

i#2r—k z;€EP

D M@)xAzr—kg =0+ 0+ Mazr)(P*™ - p@r-Dt) + Z Mz) (—pr=1)%)
1A &

= p21‘t/\(m") + (_p('lr—l)t)A(P) = p2rtA($ll).

By Lemma 1.1 we have that D is a (p*"t, pt, p*™t,p?"t~t)-RDS in the
group G = P x (Zp2v)2t.

(]

So we have constructed a family of semiregular RDSs in the groups
P x (sz») for P the forbidden subgroup. P may be any abelian group
satisfying |P| = pt. For the case when r = 1, the RDSs are very similar
to some of those constructed in the paper of Chen, Ray-Chaudhuri, and
Xiang [2]. There have been several constructions of relative difference sets
and related sets with the Galois rings GR(p?,t). Perhaps the techniques
from this paper could be applied to generalize some of these constructions
to Galois rings GR(p?, t) for s > 2.
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