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Abstract

The extremal matrix problem of symmetric primitive matrices
has been completely solved in [Sci. Sinica Ser. A 9(1986) 931-939)
and [Linear Algebra Appl. 133(1990) 121-131]. In this paper, we
determine the maximum exponent in the class of central symmetric
primitive matrices, and give a complete characterization of those cen-
tral symmetric primitive matrices whose exponents actually attain
the maximum exponent.
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1 Introduction

An n x n (0,1)-matrix A over the binary Boolean algebra {0,1} is said
to be primitive if A* > 0 for some positive integer k. The least such k
is called the exponent of A, denoted by y(A). The associated graph of
symmetric matrix A = (a;;), denoted by G(A), is the graph with a vertex
set V(G(A)) ={1,2,---,n} such that there is an edge from i to 7 in G(A)

*Research supported by NSF of Hunan (04JJ40002).

ARS COMBINATORIA 78(2006), pp. 95-112



if and only if a;; = 1. A graph G is called to be primitive if there exists
an integer k > 0 such that for all ordered pairs of vertices ¢, j € V(G) (not
necessarily distinct), there is a walk from i to j with length k. The least
such k is called the exponent of G, denoted by ¥(G). It is well known (see
e.g. [1]) that a symmetric matrix A is primitive if and only if its associated
graph G(A) is primitive, namely, G(A) is connected and contains at least
one odd cycle. In this case we have y(A) = y(G(A)).

The extremal matrix problem (EMP) is a main problem in the study of
exponents. As remarked in [2], the problem of complete characterization of
the extremal matrices of certain matrix classes is usually very difficult. In
1980, Brualdi and Ross [3] settled the EMP for the class of n x n primitive
nearly reducible matrices. In 1986, Shao [4] settled the EMP for the class of
n X n symmetric primitive Boolean matrices. In 1990, Liu et al. [5] settled
the EMP for the class of n x n symmetric primitive Boolean matrices with
zero trace. Huang [6] settled the EMP for the class of n x n primitive
circulant matrices. In 1991, Liu and Shao (7] settled the EMP for the class
of n x n primitive matrices with exactly d nonzero diagonal entries. In
1999, B. Zhou and B. Liu (8] settled the EMP for the class of n x n doubly
stochastic primitive matrices. In 2003, B. Zhou [9] settled the EMP for the
class of n X n symmetric primitive Boolean matrices whose graphs having
given odd girth.

In this paper, we consider a particular class of symmetric primitive
matrices—central symmetric primitive matrices. An nxn symmetric prim-
itive matrix A = (a;;) is said to be a central symmetric primitive matrix if
Qij = @ni1-int1-j (1,7 = 1,2,---,n). Clearly, If A is an n x n central sym-
metric primitive matrix, then its associated graph G(A) is primitive and
for each ordered pair of vertices ¢ and j (not necessarily distinct), there
is an edge [4,7] if and only if there is an edge [+ 1 —i,n+ 1 — j). The
vertex n+ 1 — i is called the central symmetric vertex of i, denoted by 4%,
If n = 1(mod2) and the vertex i = 2f%, then i = i%; otherwise, we always
have i # i% for i € V(G(A)). If W = iyiy- - - ip is a walk from a vertex i; to
a vertex im in G(A), then ifi§ .. -i2, is a walk from 3¢ to % in G(A), and
denoted by W<. In particular, if P is the shortest path joining a vertex i
and a vertex j in G(A), then P? is the shortest path joining i and j% in
G(A); if C is a cycle in G, then C¢ is also a cycle in G.

Denote by CSP(n) the set of all n x n central symmetric primitive ma-
trices. Using the graph theoretical method we determine the maximum
exponent in CSP(n), and characterize the extremal matrices completely..
Since the cases n = 1 and n = 2 are trivial, we always assume that n > 3
in this paper.
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2 The maximum exponent

In this section we determine the maximum exponent in CSP(n). Let G be
a primitive graph. For 7,5 € V(G), the exponent from i to j, denoted by
~¥(i,7), is defined to be the least integer k such that there exists a walk
of length p from 7 to j for every p > k. The following two lemmas are
contained in [4] and [5] , respectively.

Lemma 2.1 [4] IfG is a primitive graph, then ¥(G) = max; jev(c) (%, )

Lemma 2.2 [5] Let G be a primitive graph, and let 1,5 € V(G). If there
are two walks from i lo j with lengths k1 and ko, respectively, where ki +
ko = 1(mod 2), then ¥(i,7) < max{ki, k2} — 1.

We will make use of the following notation. Let G be a graph. If W
is a walk in G, then |W| denotes the length of W. If P is a path (i.e. a
walk without repeated vertices) in G and i, 7 € V/(P), then iPj denotes the
subpath of P joining 7 and j. In particular, [{Pi| = 0. If C is an odd cycle
and i,j € V(C), then C contains two walks joining 7 and 7, and these walks
are of different length since |C| is odd. We denote these walks by iC’j and
iC"”j where |iC'j| < |[iC"j|. Note that if i = j, then |iC’j| = 0 and iC"j =
C. The concatenation of a walk W, from a vertex 7 to a vertex t, and a walk
W, from ¢ to a vertex j is denoted by Wi + W5, We denote the distance
between two vertices ¢ and j of G by d(i, 7). If G’ and G” be two subgraphs
of G, then P(G’,G") denotes the shortest path between G’ and G”, and
its length d(G’, G") = |P(G’,G")| = min{d(4,5) : i € V(C'), 7 € V(G")}.
Clearly, d(G’,G") = |P(G’,G”)| > 1 if and only if V(G')NV(G”) = ¢.

Lemma 2.3 Let i be any vertez of G = G(A) with A € CSP(n). Let C; be
any odd cycle such that d(i,C;) = min{d(¢,C) : C is an odd cycle in G}.
Assume that d(i,C;) = m > 1. Let P = gty - iy, be any shortest path
between i and C;, where ig = i and i,y € V(Ci). Then the following hold:
() IFV(PYAV(P) # 6, then V(PHYNV(P) = {ic} = {if} (0 < ¢ < m).
i) IV(PYNV(Ci) # 6, then V(PYNV(Ci) = (i),
(i) [V(PO)N(V(P)UV(C)I <1

Proof. We first assume that V(P%) N V(P) # ¢ and prove (i). Let 3,
be any vertex in V(P%) N V(P). Then there exists i € V(P?) such that
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i¢ = i, (and thus i = ix). Suppose that k # ¢. If k > ¢, then

d(i, C) < |40 Pi| + |i¢P%S| = m — (k — t) < m = d(3, C;).
If k < ¢, then

d(i, C?) < ligPik| + i P%%| = m — (t — k) < m = d(i, C;).

Thus in any case we have d(i, C¥) < d(4, C;), contradicting the definition
of C;. Hence k = ¢, and hence (i) holds.

We now assume that V(P?) N V(C;) # ¢ and prove (ii). Let i¢ be any
vertex in V(P?)NV/(C;). Then i, € V(P)NV(CH).If0<t <m —1, then

d(i,C%) < |igPit| =t <m -1 <m=d(i,C).
This contradicts the definition of C;. Hence ¢ = m, and (ii) holds.

Now, if V(PN V(P) = ¢ or V(P%) N V(C;) = ¢, then from (i) and (ii)
above we have

V(PN (V(PYUV(C))| < V(PN (V(P) + [V(PYNV(C)l < 1,

and so (iii) holds. If V(P4) N V(P) # ¢ and V(P%) A V(C;) # &, then
from (i) and (ii) above we have V(P¥) N V(P) = {i,} = {i%} (0 <t < m)
and V(P%)NV(C;) = {i%}. Notice that if there exists a vertex i satisfying
i = i%, then the vertex ¢ is unique, that is 1 = &l We now show that
t =m. If t # m, then i, # i%, (since ¢ = 4,), so the walks

1 Pim + imCli%, +i5P%¢ and i Piy + imClid, + i3 P4id

are two cycles, and one of the cycles is an odd cycle, denoted by C}. Hence
d(i,C) = t < m = d(i, C;), contradicting the definition of C;. Therefore
t = m. This implies that

V(PON(V(P)UV(C)) = (V(PHNV(P)U(V(PYNV(C)) = {im} = {id},
and hence (iii) also holds. ) 0

Lemma 2.4 Let i and j be two vertices of G = G(A) with A € CSP(n).
Let Py; be any shortest path joining i and j, and let Cp,; be any odd cycle
such that d(P;;,Cp,;) = min{d(P;;,C) : C is an odd cycle in G}. Assume
that d(P;;,Cp,;) =m > 1. Let P, = gty - - - im be any shortest path between
Pi; and Cp,;, where ig € V(P;;) and im € V(Cp,;). Then the following
hold:
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() V(PHNV(P.) # ¢, then VPNV (P.) = {ic} = {i#} (0 < t S m).

(i) If V(P8 NV(Cr,) # ¢, then V(P NV (Cp,) = {if}.

(iii) V(PN (V(P)UV(Cp,))| < 1.

(iv) If V(P NV(P;) # ¢, then V(P NV(P;) = {ig}.

() V(PHN(V(P;)UV(P)UV(Cpry))l £ 2.
Proof. By the definition of Cp,; we have that d(4, Cp,;) = min{d(io, C) :
C is an odd cycle in G}, and P, is the shortest path between ip and Cp,;.
Hence by Lemma 2.3 we conclude that (i), (ii) and (iii) hold.

We now assume that V(P#) N V(P;;) # ¢ and prove (iv). Let ¢ be any
vertex in V(P2)NV(P;). If 1 <t < m, then

contradicting the definition of Cp,;. Hence t = 0, and (iv) holds.
We know from (iii) and (iv) above that

V(PN (V(Py)UV(P) UV(CR,))
< V(PHNV(Py)+IV(PHN(V(P)UV(Cp,)) < 2.

Hence (v) also holds. O

Lemma 2.5 Let i be any vertez of G = G(A) with A € CSP(n). Then
v(i,i) £ n — 1. In particular, v(i,%) < n — 2 when n = 0(mod 2).

Proof. It is trivial if 7 is the vertex with a loop. Let i be any vertex
without loop. Clearly, there is a walk from i to ¢ with length 2. Let C; be
any odd cycle such that d(i,C;) = min{d(z,C) : C is an odd cycle in G},
and let P be the shortest path between ¢ and C;. Then there is a walk
W = P+C;+ P from i to i, its length |W/| = 2|P| +|C;| is an odd number
not less than 3. So by Lemma 2.2 we have

v(i,%) < max{2|P| +|Ci|, 2} — 1 =2|P|+ |C;| - 1.

If |P| = 0. Then «(¢,7) < |C;] =1 £ n—1. In particular, if n = 0(mod 2),
then |C;| < n — 1, and hence ¥(z,i) < n — 2.
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If |P| > 1. Then by Lemma 2.3 we have that

V(PYuV(P)uV(C)

[V(P%)| + [V(P)UV(Ci)l = [V(PY) n(V(P)UV(CY))|
(PI+1)+(IP|+ICi) -1

2|P| +|Cil.

n

v

v

Therefore v(i,1) < 2|P| + |Ci| — 1 < n — 1. In particular, if n = 0(mod 2),
then the odd number 2|P| + |C;| £ n -1, and hence ¥(3,i) <n—-2. O

Lemma 2.6 Let i and j be two vertices of G = G(A) with A € CSP(n).
Then v(i,7) <n—1.

Proof. Let P; be any shortest path joining ¢ and j, and let Cp,; be any
odd cycle such that d(P;;, Cp,;) = min{d(P;;,C) : C is an odd cycle in G}.
Let P, be any shortest path between P;; and Cp,;. We consider two cases.

Case 1: |P,| = 0. Let z, y € V(P;;) N V(Cp,;) (perhaps z = y), where
z (y) is the first (last) vertex on Cp,; along P;;. Then the lengths of walks
1Pz + :rC;,“y +yP;;7 and iPjz+ zC;L‘,,,y + yP;;j have different parity
and not greater than n. So by Lemma 2.2 we have that y(¢,5) <n —1.In
particular, if |V(P;;) N V(Cp,;)| 2 2, then 7(3,5) <n —2.

Case 2: |P.| = m > 1. Let P, = igi;---im, where ip € V(P,;) and
im € V(Cp,). We have by Lemma 2.4 that [V(P#)n (V(P;)U V(P.)U
V(Cr, )l <2,

Subcase 2.1: |V(P4) N (V(P;)UV(P.) UV(Cp,))| < 1. Then

n

v

V(P U (V(P;) UV(P)UV(Cr,))|
[V(PH| + [V(P3)UV(P)UV(Cp,)l
—[V(P3) N (V(P;) U V(P.)UV(Cp,))|
> (1P +1)+ (IPyl+ P +Cpyl) - 1
= |Pyl+ICp;| +2|P.|.

Since the lengths of the walks
iPi_,'io + 1o Pty + Cp,.j + i Puig + ioP,-jj and Pg]-
have diflerent parity, and

i Pijio + ioPuim + Cpy; + imPaio + i0Pijj| = |Pij| + |Cpy; | + 2IP.| > |Pyjl,
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it follows from Lemma 2.2 that (3, j) < |P;;|+|Cp,;| +2|P.| - 1. Therefore
v(3,5) € |1Pij|+|Cpy;|+2|P|—1 < n—1. In particular, if |V (P3)N(V(P;;)U
V(P.)UV(Cp,;))| = 0, then (3, j) < n—2since |P;;|+|Cp,; |+2|Pi|+1 < n.

Subcase 2.2: [V(PE) N (V(Pyj) U V(P.) UV(Ch,))| = 2. Since V(P#) N
(V(Pj) U V(R) U V(Cpry)) = (V(PH) NV(Py) U (V(PHn (V(P)U
V(Cp,))), it follows from Lemma 2.4 that V(P#) N V(P;) = {i§} and
V(PN (V(P)UV(Cpr,)) = {if}, where 1 <t < m.

We now show that 4o # id, i, =i and |igP;id| > 2.

If 4o = i, then i € V(P NV (R) C V(PH) N (V(P.)U V(Cp,)), we
obtain the contradiction |V(P2) N (V(Py;) UV(P.)UV(Cp;))| = 1. Hence
io # 8.

If i, # i¢, then V(PE) N V(P.) = ¢, and V(P}) NV (Cp,) = V(PN
(V(P.)UV(Cp;)) = {i¢}. It follows from (ii) of Lemma 2.4 that ¢t = m. So
the walks ioPaim + imCh,, i%, + i, P4i§ +i§ Pijio and ioPaim + imCp, it +
1% P21 + i§P;jio are two cycles, and one of these cycles is an odd cycle.
This contradictions the definition of Cp,;. Thus i = if.

If |igP;;id] < 2, then |igP;jid| = 1 (since ig # ). It follows from i, = if
that the cycle igP.i, + if P4ig + i Pijio is an odd cycle, contradicting the
definition of Cp,;. Hence |io P;;i§| > 2.

We now assume without loss of generality that P;; = iP;ip + ioP,'_,-ig +
i8P;;j. We consider the walks Wy = iPijio + Py + Cp,; + im Py + ¢ PA§ +
i&P;;j and Wy = iP;jig + io Puiy + i¢ PLi§ + i3 Pijj.

Clearly, [Wi| = [iP.iol + [i8Pyd| + ICry| + 21P.l, Wal = liPyiol +
[i P.; 3| +2lio Puie]. So |W1| and |W2]| have different parity, and |Wy| > [Wa|.
Hence by Lemma 2.2 we have

A

¥(i7) < liPyiol + [i§ Pyl + |Cpyl + 2P| - 1
= |Py] = lioPyiG| + ICpyl +2|Pa| = 1
< |Pij|+ ‘CPijl +2|P*| -3
By a similar argument as in subcase 2.1, we have | P;;|+|Cp,|+2|P.| < n+1.

Thus ¥(i,5) < IPy| + ICryl + 2P| 3 < n —2.

Theorem 2.1 Let v, = max{y(A): A € CSP(n)}. Then v, =n—1.
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Proof. Let A be any matrix in CSP(n), and let i, j € V(G(A)). Then
by Lemma 2.1, Lemma 2.5 and Lemma 2.6, we have

Y(A) = v(G(A)) = max{~(i,5) : 1,7 € V(G(4))} Sn-1.

Now let G = (V, E) be a graph, where V = {1,2, .-+, n}, E = {[i,i+1] :
1 <i<n=-1}U{[1,1), [»,n]}, and let A(G) be the adjacency matrix of
G. Clearly, A(G) € CSP(n), and ¥(A(G)) = 7(G) = max; jev 7(3,j) =
v(1,n) = d(1,n) = n — 1. Therefore v, =n — 1. O

3 The extremal matrices

In this section we give a complete characterization of those central sym-
metric primitive matrices having the maximum exponent n — 1, that is the
below Theorem 3.1. Before proving it we establish some lemmas.

Lemma 3.1 Let G be a primitive graph, and let i be any vertez of G. If
i is the vertex withoul loop, then there is an odd cycle C? in G such that
(i, 9) = 2d(3, C7) + |CP| - 1.

Proof. Since G is primitive, G contains at least one odd cycle. Then
there exists an odd cycle C? such that

2d(3, C) + |C?| = min{2d(s, C) + |C| : C is an odd cycle in G}.

Clearly, there are two walks from i to i with lengths 2d(i, C?) + |C?| and
2, respectively. Since 1 is the vertex without loop, 2d(3, C?) + |C?| > 3. By
Lemma 2.2 we have v(4,1) < max{2d(i,C?) + |C?|, 2} — 1 = 2d(s,C?) +
IC?I — 1. Conversely, it is clear that there is no any walk from i to 7 with
length 2d(i, C?) +|C?| - 2, so v(3,1) > 2d(4, C?) + |C?| — 1. Hence (i, i) =
2d(:,C?) +|C?| - 1. m]

Lemma 3.2 Let i and j be two vertices of G = G(A) with A € CSP(n),
and let P;j be any shortest path joining i and j. If V(Pg) = V(Py;). Then
J =19, and [iP,t| = |[t*P;;j| for cach vertex t € V(Py).

Proof. 1fj # i%, then i # 7%, and we obtain the contradiction d(:¢, j¢) =
iP;;3%| < d(i, 7). Hence j = i¢, and hence for each vertex ¢t € V(P,;), we
have [iP;jt| = d(i,t) = d(t%,1%) = lthi‘;id| = ]thgjjI. a
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Lemma 3.3 Let G = G(A) with A € CSP(n). Assume that v(G) =n -1
and v(i,i) = n — 1 for some vertex t of G. Let C; be any odd cycle such
that d(i,C;) = min{d(:,C) : C is an odd cycle in G}. Then the following
hold:

() IFV(C)NV(CH) # ¢, then C; = CF.
(i) [FV(C)NV(CE) = ¢, then |Ci| = |CE| = 1.

Proof. Clearly, if i € V(C;), then n — 1 = 4(3,7) < max{|Ci}, 2} -1 =
|C;:] — 1 (since n > 3). We conclude that |C;| = n and so C; = C¢.

Now let 7 ¢ V(C;), and let P = ipiy - - - i be the shortest path between
i and Cj;, where i = ¢ and i, € V(C;). Since |P| > 1 and ~(i,) =
n — 1, according to the proof in Lemma 2.5 we have that |V (P4)N(V(P)uU
V(C:))| = 1 and |V(PHUV(P)UV(C;)| = 2|P|+]|C;| = n. Hence V(C?) C
V(PHUV(P)UV(C;) = V(G). Since V(CHNV (P?Y) = {i%} and V(CF)N
V(P) C {im} C V(Cy), it [ollows that V(CE)\{i¢} C V(C:).

We now assume that V (C;)NV(C?) # ¢ and prove that C; = CZ. Clearly,
we only need to show that ¢, € V(C;). It is trivial if |C;| = 1. Let |C;| > 3.
Suppose that i¢, ¢ V(C;). Then i,, ¢ V(CZ?) and, by (ii) of Lemma 2.3 we
have V(P)NV (C;) = ¢. So |[V(PHONV(P)| = [V(PHN(V(P)UV(C)))| = 1,
and we do have that a path P(i,,, %) from i, to i, (in C; UC¢) with odd
length |C;|. By (i) and (ii) of Lemma 2.3 we conclude that V(P¢)NV(P) =
{3} = {i%}, where 0 < ¢t < m — 1. So the walk i; Pi, + P(im, i%,) + 1%, P4i¢
is an odd cycle, denoted by Cy, and so d(i,C}) = ¢t < m = d(i,C;),
contradicting the definition of C;. Thus &, € V(C;), and hence C¢ = C;.

We now assume that V(C;)NV(C¢) = ¢ and prove |C;| = |C¥| = 1. Since
V(CH\{id} € V(Ci), we have V(CIH\{i%} = 6. Hence V(CY) = {i,},
0

and hence |C;| = |C¢| = 1. The lemma now follows.

Lemma 3.4 Let G = G(A) with A € CSP(n). Assume thal v(G) =n—1
and ¥(3,7) = n — 1 for lwo vertices i, j € V(G). Let P,; be any shortest
path joining i and 3, and let Cp,; be any odd cycle such that d(P;;,Cp,;) =
min{d(P;;,C) : C is an odd cycle in G}. Then the following hold:

(i) IfV(Cp,)N V(C;‘,‘,,,) # ¢, then Cp,; = C;‘)‘j.

(i) fV(Cry) NV(CE,) = &, then |Cp,| = C4, | = 1.
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Proof. Let P, be any shortest path between P;; and Cp,;. We consider
two cases.

Case 1: |P,| = 0. Since «(,j) = n — 1, according to the proof in Lemma
2.6 we have that |V(Cp,;) N V(Py)| = 1 and ¥(3, ) < |P;| + |Cp;| = 1. It
follows that |P;;| + !Cp‘jl =nand |V(P;;) U V(Cp;)| = n. So V(Cfé ) C
V(Pz:)) U V(CP.,)

We first assume that V(Cp,; )N V(C“ ) # ¢ and prove Cp,; = C" Let
V(Cp,; )NV (Py;) = {z}. T V(C§, )\V(CP.,) # ¢, then V(Cd,,)\V(CP.,) =
{y} € V(Py;), and y # z. So we have two paths P’ and P” (in Cp,; UCE, )
from z to y with lengths |P’| = 2 and |P"| = |Cp,;|, respectively. By
Lemma 2.2 we have ¥(i,j) < (ICp;| + |Pj|l — |zPjyl) -1 < n -2, a
contradiction. Hence V(C§,, )\V(Cp_,) #, and hence Cp,; = Cfé

We now assume that V(Cp,;) N V(C;i,‘,j) = ¢. Then V(Cj.’,‘j) C V(P;).
Hence |V(Cf,_,j)l =1, and hence |Cp,;| = |C';’,‘,,,| =1.

Case 2: |P,| = m > 0. Let P, = igi;---im, where i € V(P;;) and
tm € V(Cp,;). According to the proof in Lemma 2.6 we have that |[V(P2)n
(V(Py)UV(P.)UV(Cp,))| = 1and |V(PUV(P;)UV(P.)UV(Cp, )| =
|Pij| + |Cp,;| + 2|P.| = n. Hence V(C" C V(PHUV(P;) U V(P yu
V(Cry) = V(C). Since |P.| > 0, d(P; .cd,,> > d(P;,Cry) = IP.] > 0.
Since V(C’g'_j) NV(P?) = {i¢} and V(C;‘,‘_,,) NV(R.)C {im} S V(Cp,), it
follows that V(C3, )\{ix,} C V(Cp,).

We assume that V(Cp‘.’.) N V(C‘d ) # ¢ and prove Cpu = CP Clearly,
we only need to show that %, € V(Cp, ). Suppose that &, ¢ V(Cp, )- Then
by (ii) of Lemma 2.4 we have V(Cp,)NV(P2) = ¢. So |V(P" ﬂ(V(P,J)U
V(P =V(PHN(V(P;) U V(P.g) U V(Cp_,))l =1, and we do have two
paths P’ and P” (in Cp,; U CP ) from i,, to 1%, with lengths |P’| = 2 and
|P"| = |Cp,;|, respectively.

m

I V(P NV(P.) = ¢, then [V(PH)nV(Py)| = |[V(PZ) N (V(P;) U
V(P.))| = 1. It follows from (iv) of Lemma 2.4 that V (P2)NV(P;;) = {ig}.
Hence one of the walks

40Puim + P’ 4% P2 +i3Pyjio  and  ioPuim + P” + 1% Pi§ + i§P,ji0
is odd cycle, contradicting the definition of Cp,; and d(P;;,Cp,;) =m > 0.,

If V(PHNV(R) ;é ¢, then from (i) and (ii) of Lemma 2.4 we have
V(P NV(PR,) = {i%} = {4.}, where 0 <t < m — 1. So the walk C} =
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i, Pt + P 418, P2i¢ is an odd cycle, and d(P,;,C}) = t < m, contradicting
the definition of Cp,;.

Thus i, € V(Cp;), and hence Cp,; = C, .

We now assume that V(Cp,; )NV(C$,,) = ¢.We then have V(C3 )\ {in} =
¢ (since V(C \{i%} C V(Cp,)). Hence V(C%,) = {i%.}, and hence
ICp,;| = |Cf,i’_| = 1. The lemma now follows. |

Lemma 3.5 Let G = G(A) with A € CSP(n). Assume that y(G) =n—1
and ¥(i,7) = n — 1 for two vertices 1, j € V(G). Let P;; be any shortest
path joining i and j, and let Cp,; be any odd cycle such that d(P;;,Cp,;) =
min{d(P;;,C) : C is an odd cycle in G}. Assume that |P;j| < n -1 and
V(Cpy) NV(CE,) # 6. Then 4(i,i) = 7(i,3) =n — 1.

Proof. Let P, be the shortest path between P; and Cp,;. According to
the proof in Lemma 3.4 we have V(P2)UV(P;)UV(P)UV(Cp;) = V(G)
and |Py| + |Cp,;| + 2|P.| = n (In particular, if |P.| = 0, then V(F;) U
V(Cpij) = V(G) and |PtJ| + |CPijl = n) Since V(CPi,') N V(C;i’,,) ’2'5 ®,
we have by (i) of Lemma 3.4 that Cp,; = Cf’;," Since v(¢,7) =n —1 and
|P;j| < n — 1, we have that there is no any vertex in V(G)\V(Cp,;) with
loop, and V(C) C V(Cp,;) for any odd cycle C in G.

Let ip = V(P.) N V(P;) (In particular, if |P,| = 0 then ip = V(P;) N
V(CP.‘,‘ )) Clearly, d(l: CPij) < liPiji0|+|P*|) d(.?: CPij) < IP*|+|7:0Pijj|' So
we can use Lemma 2.2 to obtain (¢, j) < d(i,Cp,;)+|Cp,; | +d(5,Cp,;) — 1.

If d(i,Cp,;) < liPiol + |Pu|. Then v(i,5) < |Pis| +2|P.| +|Cp;| -1 =
n — 1, a contradiction. Hence d(¢, Cp,;) = [iPijiol + | Pl

Now Let C? be the odd cycle such that v(i,i) = 2d(i,C?) + |C?| — 1
(see Lemma 3.1). Then by V(C?) C V(Cp,) we have that d(:,C?) <

—1Cc° ]—-|C?
d(i, Cpyy) + ST and d(5,€9) < d(j, Cpyy) + 25

I d(i, C?) < d(i, Cp,) + S27E Then 1(i, 3) < d(i, CP) +d(3, C?) +

: Cpy;i-1C? . Cp,,|-IC?
IC9} - 1 < d(i, Cp,) + L2l 4 a5, €y + B2 00 100 -1 =

d(i,Cr,) + d(5,Cpy) + ICp,| = 1 < [Pl + 2P| + |Cryl = 1=n -1,

~1C°
contradiction. Hence d(i, C?) = d(i, Cp,,) + S221% — iPio| + [P] +
—1C? )
19y 1218 " and hence (i, i) = 2d(i, C?) +|C?| — 1 = 2(|iPyjiol + |Pu| +
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Coyl-1C? .
1Oy 12101y 4 1CP| = 1 = 2[iPyjio] + 2|P.] + [Cpy, | — 1.

Similarly, we have v(j,7) = 2lioPi;j| + 2|P.| + |Cp,;| — 1. So ~(i,7) +

¥(4,3) = 2(|Pis] + 2| P + |Cp,;|) — 2 = 2(n —1). Since ¥(i,i) <n — 1 and
¥(3,4) < n—1, it follows that y(3,) = ¥(j,7) = n - 1. O

Lemma 3.6 Let G = G(A) with A € CSP(n). Assume that v(G) =n —~1
and ¥(i,5) = n — 1 for two vertices i, j € V(G). Let P;; be any shortest
path joining i and j, and let Cp,; be any odd cycle such that d(P;;,Cp,) =
min{d(P;;,C) : C is an odd cycle in G}. Let P. be any shortest path
between P;; and Cp,;. Assume that |P,|=m > 1 and V(P,)NV(P2) # ¢.
Then (i) = v(4,j) =n - 1.

Proof. Let P, =igi; -+ -i,. We have by (i) of Lemma 2.4 that V(P%) N
V(P.) = {i.} = {i¥} (0 < t < m). We consider two cases.

Case 1: V(Cp,;) N V(C},,) # ¢. Then by Lemma 3.5 we have (i, i) =

Case 2: V(Cp,)NV(C3,) = ¢. Then by (ii) of Lemma 34 we have
|Cp,;| = |CB,,| = 1. According to the proof in Lemma 3.4 we have V (P#)u
V(Py) UV(P.)UV(Cr,) = V(G) and |Py| + |Cry| + 2|P.| = n. So
V(PE)UV(P;)UV(P.,) = V(G) and | P;j|+2|P.| +1 = n (since [Cp;t = 1).
This implies that G contains exactly two odd cycles Cp,; and C}’,ﬁ.

Now we show that d(ip,C§,)) = |P.|. Clearly, d(io, C3,) < lioPuic| +
vlifPfi;‘nl = |P.|, on the other hand, d(io,Cﬁ‘,‘j) > d(i0,Cp,;) = |P.| by the
definition of Cp,;. Hance d(io, C§,) = |P.|.

Now let C? be the odd cycle such that y(i,i) = 2d(i,C?) + |C?| — 1.
Notice that either C? = Cp,; or C? = Cp., so v(i,i) = 2d(i,C?) and
d(io, C?) = IP,.I Hence d(i, C?) < |ipiji0| + d(io, C?) = liP,-jiol + |P:|.

If d(i,C?) < |iP;jio| + |P.|- Then by Lemma 2.2 we obtain ~(3,5) <
d(l,CP) + d(‘to,C?) + |i0Py;3] < |Pij| + 2|P.] = n — 1. This contradicts
the condition ¥(3,5) = n — 1. Hence d(i,C?) = |iP;jio| + |P.), and hence
7(i,1) = 2d(i, C?) = 2}iPijio| + 2|P. .

Similarly, we have that (4, 7) = 2|ioPi;7]| + 2| |

Thus, (i,7) + (5, ) = 2(1P;;| + 2|P.|) = 2(n — 1). Since 7(i,i) < n -1
and ¥(j,7) < n -1, it follows that v(¢,7) = v(4,7) =n - 1. O
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We now construct two classes of graphs $(n,l,s) (0 <! < [3] -1,
l+1<5<[%])and R(n,7,s) (nisodd, 0 <r < 231, r4+1<s < 2L,

Let ! be an integer with 0 <1 < [}] — 1, and let s be an integer with
l+1 < s <[%], where |a] denotes the largest integer not exceeding a, and
[b] denotes the smallest integer not less than b. Let $*(n,!,s) = (V, E),
where V ={1, 2, ---, n}and E = {[i,i+1}: 1 € V\{{, n—1, n}}O{[{+1, 1+
1), [n=4,n=1], [I, 8], [p+1—=1,n+1-s]}. Clearly, $*(n,0,1) = $*(n,0, s)
for 2 < s < [%]. We now construct the class of graphs $j(n, [, s) as follows:
$H(n, 1,1+ 1) is obtained from $*(n, !, 1 + 1) by putting some pairs of edges
(possibly empty) such as [t,i] and [n+1—é,n+1 -4 (1+2<i < [§]),
in particular, if n is odd, then $(n,0,1) is obtained from $*(n,0,1) by
putting at least one pair of edges such as [i,7] and [n+1—i,7n+1 -1} (2 <
i < 1‘—'{—1);when n is even, $(n,l, 3) is obtained [rom $*(n, [, 3) by putting
some edges (possibly empty) such as [i,n+1—i] ({+1 < i< % —1); when
n is odd, $H(n,!, l—;‘—‘-) is obtained from $*(n, !, 2t!) by putting some pairs
of edges (possibly empty) such as [{,n—i]and [i+1,n+1—-3] (1 <i < I-1
orl+1<i< ﬂiz’—’ —-2); H(n,l,s) =H*"(n,l,s)for I+2< s < [§] ~ L.

Now suppose n is odd. Let r be an integer with 0 < 7 < %l, and let
s be an integer with 7+ 1 < s < 2L, Let R*(n,7,s) = (V, E), where
V={,2,ntand E={[i,i+1]:i€ V\{[rnn-—r,n}}u{[r+
1,n—r], [, ], [p+1—7,n+1—s]}. Then we construct the class of graphs
R(n, , ) as lllows: R(n,r, 231) is obtained from R*(n, r, 241) by putting
some pairs of edges (possibly empty) such as [i,n—14) and [i +1,n+ 1 — i
(1<i<r—lorr+1<ig 2L -2), ortwoloops [r+ 1,7+ 1] and
[n=r,n—-7]; R(n,rr+1) (07 < "7'3) is obtained from R*(n,r,7 + 1)
(0<r< "T‘g) by putting some edges (possibly empty) such as [i,n+1— 1]
(r+2<i< "2¢1), R(n,r,8) = R*(n,r,s) forr+2< s < "—;1-

Lemma 3.7 Let G be any graph in H(n,l,s) U R(n,r,s). Then A(G) €
CSP(n) and v(A(G)) = v(G) = n—1, where A(G) is the adjacency matriz
of G.

Proof. By the definitions of $(n, I, s) and R(n, r, s), we have that A(G) €
CSP(n). So by Lemma 2.1 and Theorem 2.1 we only need to show that
4(3,7) = n—1 for some pair of vertices i and j (not necessarily distinct) of
G. This can be obtained by direct verification as follows:

IfG € H(n,1,5) (0 < L < [3]-1,1+1 < s < [§]-1), then ¥(1,7) = n—1.

If n is even and G € $(n,0, ), then ¥(3, -’-‘%2) =n-~1.
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Ifnis even and G € H(n,l, ) (1 <1< 5 —1), then y(l,n)=n-1.
If nis odd and G € $(n,0, 25L), then v(2H, ) =n - 1.

If nis odd and G € $(n,, 2L) (1 <1 < 252), then y(1,1) =n—1.
IfG € R(n,r,s) (1 <7< 251), then y(1,1)=n-1.

If G € R(n,0,s) (ISSSE;—I), then ¥(s,s) =n — 1. (]

Lemma 3.8 Let G = G(A) with A € CSP(n). Assume that v(G) =n—1
and y(%,1) = n—1 for some vertez i € V(G). Then G is isomorphic to some
graph in $H(n,l, —'1'—) (0 <l< "‘3 2=2), or G 1is isomorphic to some graph in
R(n,rs) (0<r<25, r+1< s <z,

Proof. Since ¥(%,i) = n — 1 for some vertex ¢ € V(G), it follows from
Lemma 2.5 that n = 1(mod 2). Suppose that y(w,w) = ¥(G) =n —1 for
a vertex w € V(G). Then v(w?, w?) = y(w,w) = n - 1. Let C, be an odd
cycle such that d(w,Cy) = min{d(w,C) : C is an odd cycle in G}. We
consider two cases.

Case 1: V(Cyw)NV(C2) = ¢. Then by (ii) of Lemma 3.3 we have |C,,| =
|C&| = 1. So by Lemma 3.1 we conclude that 2d(w, Cy,) = y(w,w) =n—1
and 2d(w?, C8) = y(w?, w*) =n — 1.

Now let P = ig2y -1 21 be the shortest path between w and C,,, where

i =wand inz1 € V(Cy) (and thus C,, = [iaz1, inn1]). HV(P)NV(PY) =

¢, then [V(P)UV(P?)| = |V(P)|+|V(P%)| = n+1, a contradiction. Hence

V(P)NV(P?) # ¢. It follows from (i) of Lemma 2.3 that V(P%)NV(P) =

{it} = {if}, where 0 < I < 253 (since insy # id_ ,) Thus V(P)UV(P9%) =

V(G), and G contains a spanning subgraph G' isomorphic to $*(n, !, 241)
(0<i<253).

Clearly, there is no any vertex in V(G)\{: a1, i‘f.j._l} with loop. Let i,

and i, be two vertices in V(P). If [ip, i¢] is an edge of G, but not of G*, then
(o, zo) < n-1, a contradiction. If |p—gq| # 1, then there is no edge joining
ip and ¢ ig since y(io, %) = n— 1. If |[p —q| = 1, then the edge [ip, “] € E(G)
is permltted (and thus [zp,zq] € E(G)), and we also have —y(zo,zo) =n-—1.
Hence, G is isomorphic to some graph in $(n,[, 28) (0 <1 < 7‘“3)

Case 2: V(Cy,) NV(C2) # ¢. Then by (i) of Lemma 3.3 we have C,, =
C&. So the vertex E{,’—l € V(Cy). Let P be the shortest path between w
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and C,,. We consider two subcases.

Subcase 2.1: |P| = r 2 1. According to the proof in Lemma 3.3 we
have that V(P) U V(C,)U V(P%) = V(G). Note that if V(P) N V(P?) #
#, then from (i) of Lemma 2.3 we have that V(P)nV(P%) = {2} C
V(Cy). Hence we conclude that G has a spanning subgraph G* isomorphic
to R*(n,7,s), where1 <r < 23land r+1 < s < 2. We assume without
loss of generality that G* = R*(n,r, s) and the vertex w = 1. We consider
the edges in E(G)\E(G*).

If G* = R*(n,r, %) (1 < r < 251). Then there is no any vertex in
V(G)\{r+1,n—r} with loop since 7(1 1) = v(n,n) = n—1. [t is trivial if
E(G)\E(G*) = ¢. Now let L(G)\E(G*) # ¢, and let [¢, j] be any edge in
E(G)\E(G*) (and thus [i¢, j9] € E(G)\E(G*)), where i # j. Il i € V(C)
and j € V(P) U V(P?), then we have ¥(1,1) < n — 2, a contradiction. If
i€ V(CO\{2t} and j € V(C)\ {251} with =i = li+j—(rn+1) #1,
then we can obt.am the conl;radlct,lon ¥(1,1)<n-21lie V(P)\{—'L}
and j € V(PH\{25} with |j —i%| = i +j — (n + 1)] # 1, then we also
obtain the comradlct,lon %(1,1) < n — 2. Therefore, accordmg to the proof
of Lemma 3.7 and the definition of R(n,r, —L) we conclude that G is
isomorphic to some graph in R(n,r, "“ (1<r<2s 1)

G =R*(n,r,r+1) (1 <7< 1;—") It is trivial if E(G)\E(G*) = ¢
Now let E(C)\E(G*) # ¢, and let [z, 7] be any edge in E(G)\E(C*) (and
thus [i4, 79 € B(C)\[E(C*)). Il j # i%, then we can obtain the contradiction
¥(1,1) < n-=2.1{j=14 and i € {1,---,7}, then i lies on an odd cycle
denoted by C;, and we obtain d(1,C;) € d(1,7) < r -1 < r = d(1,C).
This contradicts the definition of Ci(= C,). Therelore, according to the
proof of Lemma 3.7 and the definition of R(n,r,r + 1), we conclude that
G is isomorphic to some graph in R(n,r,r +1) (1 < r < 253).

IfG* = R*(n,r,s) forr+2 < s < 25, Notice that if [u, v] € E(G)\E(C*),
then [uf, v%] € B(C)\E(G*). Hence E(G)\E(G*) = ¢ by v(1,1) = 7(n,n) =
n—1. Thus G = G* = R*(n,r,s) = R(n,7,5) (r +2 < s < 251,

Subcase 2.2: |P| = 0. Then we have |Cy| = n by y(w,w) = n —1. So
G contains a subgraph G* isomorphic to R*(n,0,s) (that is a Hamilton
cycle), where 1 < s < 251, We assume without loss of generality that
G* = R*(n,0, s) and the vertex w = s. Similar to the proof in Subcase 2.1
we have that G is isomorphic to some graph in R(n,0,5) (1 < s < 1‘2L1).

a

Lemma 3.9 Let G = G(A) with A € CSP(n). Assume that v(G) =n -1
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and ¥(1,1) < n—1 for any vertex i € V(G). Then G is isomorphic Lo some
graph in $(n,1,s) (0< 1< |3 -1, 14+1<s< |5)).

Proof. Since y(G) =n —1 and v(4,7) < n — 1 for any vertex i € V(G),
there exists two vertices 7, 7 € V(G) such that ¥(i,j) = ¥(G) = n — 1.
Let P;; be any shortest path joining 7 and j. Then 1 < |P;;| <n—1. We
consider two cases.

Case 1: |Pj| = n— 1. Then V(P;) = V(G), and so V(P,;) = V(P2).
By Lemma 3.2 we have j = 1%, and |iP;t| = [tP,;j| for each vertex
t € V(P;;). Without loss of generality, let P; = P, = 12---(n — 1)n.
Clearly, E(G)\E(P1») # ¢ since G is primitive. Let [u,v] be any edge in
E(G\E(P1y). If u # v, then d(1,n) € n — 2, contradicting the condition
|Pin| = n — 1. Thus u = v. Now let [ + 1 be the first vertex with a loop
along Py, then 0 <1 < [3] — 1 (since ¥(1,1) < n—1), and n -1 is
the last vertex with a loop along Pj,. Hence G has a spanning subgraph
H*(n,L,I1+1) (0 <1 < [5] —1). Notice that if n is odd and | = 0, then
E(G\E(H*(n,0,1)) # ¢ since 7("7*‘-,%') < n — 1. Thus, we conclude
that G is isomorphic to some graph in $(n,,1+1) (0 <1< |}] -1).

Case 2: 1 < |P;| < n—1.Let Cp,; be an odd cycle such that d(P;;,Cp,;) =
min{d(P;;,C) : C is an odd cycle in G}, and let P, be the shortest path
between P;; and Cp,;. By Lemma 3.5 we conclude V(Cp,;) N V(C;‘,‘,j) = ¢.
It follows from (ii) of Lemma 3.4 that |Cp,;| = |C;‘,.,j| = 1. Hence |P.| > 1,
and hence by Lemma 3.6 we conclude V(P,) N V(P3%) = ¢. According
to the proof in Lemma 3.4 we have that |P;| + 2|P.| + |[Cp,| = » and
V(P U V(P;)UV(P)UV(Cp,) = V(G), so |Py| +2|P| = n—1,
V(PHUV(P;)UV(P) = V(G), and V(P;) = V(Pg) By Lemma 3.2 we
have that j = i¢ and [i ;| = |t4P,;j| for cach vertex ¢t € V(P,;).

Now let ip = V(P.)NV(P,;). Then i € V(PE)NV(P;;) and i # 3. It is
not difficult to verily that d(ip,:3) and n have different parity. We assume
without loss of generality that d(i,40) = ! < d(3, i8) and d(io, i) = n+1-2s.
Then0 << |3] -1, |Pjl=n+1-2s+2land |P,| = s — 1 — 1. Since
d(i0,i§) > 1and |P,| > 1, we have [+2 < s < | 2]. Thus we conclude that G
has a spanning subgraph G* isomorphic to $*(n, 1, s), where0 <! < | 3] -1
and I +2 < s < |§]. Without loss of generality, let G* = $*(n,l,s)
(0<I<|5]-1,1+2<s<|%]). We consider two subcases.

Subcase 2.1: 1 = 0. Then 2 < s < |%]. This implies that i = ip = s,
Cp;=[L1,Pi=1---(s—1)and Pj=s---(n+1-35s).
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I12 <s < 3] - 1. Then E(G\E(G*) = & by 7(3,5) = v(s,n+1 -
s) = n—1, and H(n,0,s) = $*(n,0,s) by the definition of $(n,!,s) for
l+2<s<[3]-1.Hence G=G*=5H(n,0,5) (2<s< 3] -1).

Ifnis odd and s = | }]. Then s = 251 = [2] — 1. Arguing as above we
have G = G* = $(n, 0, [-;J)

If nis even and s = |§] = 5. It is trivial if E(G)\E(G") = ¢. Now
let E(G)\E(G*) # ¢, and let [u,v] be any edge in E(G)\E(G') Then
[u?,v%] € E(G)\E(G*) and u, v € V(G)\{%, 2§2}. Suppose v # u, it is
easy to see that y(3 ’”2) < n-—l contradicting the condition (5, "'2‘"2) =
¥(i,5) =n—1. Hence v = u®. Thus, according to the proof of Lemma 3.7
and the definition of $(n, 0, f‘), we conclude that G is isomorphic to some

graph in $(n,0, 3).

Subcase 2.2: 1 <1< |3]-1Theni=1,j=mn, Pj=1.Is---(n+
1-s)(n+1-0)---n,Cp; =[l+1,I+1]and P, = (I41)---5. Notice that
I+2<s<|5).

If1+2 < s <[5]-1. Suppose F(G)\E(G") # ¢, then it is not difficult
to verily that v(1,n) < n — 1, contradicting the condition v(1,n) =n — 1.
Hence E(G)\E(G*) = ¢, and hence G = G* = H*(n,l,s) = $H(n,l,s)
(t+2<s<[3]-1).

If nis even and s = | 5] = 5. By a similar argument as in subcase 2.1,
we have that G is isomorphic to some graph in $(n,, %) (1 <1 < §-1).0

Combining Lemma 3.7, Lemma 3.8 and Lemma 3.9, we have

Theorem 3.1 Let A € CSP(n). Then v(A) = n — 1 if and only if G(A)
is isomorphic to some graph in $(n,l, s) UR(n,r, s).
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