Matrices with maximum exponent in the class of central symmetric primitive matrices *

Shexi Chen

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China F-mail: sxchen@hnust.edu.cn

Abstract

The extremal matrix problem of symmetric primitive matrices has been completely solved in [Sci. Sinica Ser. A 9(1986) 931-939] and [Linear Algebra Appl. 133(1990) 121-131]. In this paper, we determine the maximum exponent in the class of central symmetric primitive matrices, and give a complete characterization of those central symmetric primitive matrices whose exponents actually attain the maximum exponent.

Keywords: Primitive matrix, Symmetric primitive matrix, Exponent, Extremal matrix, Associated graph

AMS classification: 05C50, 15A33

1 Introduction

An $n \times n$ (0,1)-matrix A over the binary Boolean algebra $\{0,1\}$ is said to be primitive if $A^k > 0$ for some positive integer k. The least such k is called the exponent of A, denoted by $\gamma(A)$. The associated graph of symmetric matrix $A = (a_{ij})$, denoted by G(A), is the graph with a vertex set $V(G(A)) = \{1, 2, \dots, n\}$ such that there is an edge from i to j in G(A)

^{*}Research supported by NSF of Hunan (04JJ40002).

if and only if $a_{ij} = 1$. A graph G is called to be primitive if there exists an integer k > 0 such that for all ordered pairs of vertices $i, j \in V(G)$ (not necessarily distinct), there is a walk from i to j with length k. The least such k is called the exponent of G, denoted by $\gamma(G)$. It is well known (see e.g. [1]) that a symmetric matrix A is primitive if and only if its associated graph G(A) is primitive, namely, G(A) is connected and contains at least one odd cycle. In this case we have $\gamma(A) = \gamma(G(A))$.

The extremal matrix problem (EMP) is a main problem in the study of exponents. As remarked in [2], the problem of complete characterization of the extremal matrices of certain matrix classes is usually very difficult. In 1980, Brualdi and Ross [3] settled the EMP for the class of $n \times n$ primitive nearly reducible matrices. In 1986, Shao [4] settled the EMP for the class of $n \times n$ symmetric primitive Boolean matrices. In 1990, Liu et al. [5] settled the EMP for the class of $n \times n$ symmetric primitive Boolean matrices with zero trace. Huang [6] settled the EMP for the class of $n \times n$ primitive circulant matrices. In 1991, Liu and Shao [7] settled the EMP for the class of $n \times n$ primitive matrices with exactly d nonzero diagonal entries. In 1999, B. Zhou and B. Liu [8] settled the EMP for the class of $n \times n$ doubly stochastic primitive matrices. In 2003, B. Zhou [9] settled the EMP for the class of $n \times n$ symmetric primitive Boolean matrices whose graphs having given odd girth.

In this paper, we consider a particular class of symmetric primitive matrices—central symmetric primitive matrices. An $n \times n$ symmetric primitive matrix $A = (a_{ij})$ is said to be a central symmetric primitive matrix if $a_{ij} = a_{n+1-i,n+1-j}$ $(i,j=1,2,\cdots,n)$. Clearly, If A is an $n \times n$ central symmetric primitive matrix, then its associated graph G(A) is primitive and for each ordered pair of vertices i and j (not necessarily distinct), there is an edge [i,j] if and only if there is an edge [n+1-i,n+1-j]. The vertex n+1-i is called the central symmetric vertex of i, denoted by i^d . If $n \equiv 1 \pmod{2}$ and the vertex $i = \frac{n+1}{2}$, then $i = i^d$; otherwise, we always have $i \neq i^d$ for $i \in V(G(A))$. If $W = i_1 i_2 \cdots i_m$ is a walk from a vertex i_1 to a vertex i_m in G(A), then $i_1^d i_2^d \cdots i_m^d$ is a walk from i_1^d to i_m^d in G(A), and denoted by i_m^d . In particular, if i_m^d is the shortest path joining a vertex i_m^d and i_m^d in i_m^d in i_m^d is a cycle in i_m^d is a cycle in i_m^d in i_m^d of i_m^d in i_m^d is also a cycle in i_m^d .

Denote by CSP(n) the set of all $n \times n$ central symmetric primitive matrices. Using the graph theoretical method we determine the maximum exponent in CSP(n), and characterize the extremal matrices completely. Since the cases n=1 and n=2 are trivial, we always assume that $n\geq 3$ in this paper.

2 The maximum exponent

In this section we determine the maximum exponent in CSP(n). Let G be a primitive graph. For $i, j \in V(G)$, the exponent from i to j, denoted by $\gamma(i,j)$, is defined to be the least integer k such that there exists a walk of length p from i to j for every $p \geq k$. The following two lemmas are contained in [4] and [5], respectively.

Lemma 2.1 [4] If G is a primitive graph, then $\gamma(G) = \max_{i,j \in V(G)} \gamma(i,j)$.

Lemma 2.2 [5] Let G be a primitive graph, and let $i, j \in V(G)$. If there are two walks from i to j with lengths k_1 and k_2 , respectively, where $k_1 + k_2 \equiv 1 \pmod{2}$, then $\gamma(i, j) \leq \max\{k_1, k_2\} - 1$.

We will make use of the following notation. Let G be a graph. If W is a walk in G, then |W| denotes the length of W. If P is a path (i.e. a walk without repeated vertices) in G and $i, j \in V(P)$, then iPj denotes the subpath of P joining i and j. In particular, |iPi| = 0. If C is an odd cycle and $i, j \in V(C)$, then C contains two walks joining i and j, and these walks are of different length since |C| is odd. We denote these walks by iC'j and iC''j where |iC'j| < |iC''j|. Note that if i = j, then |iC'j| = 0 and iC''j = C. The concatenation of a walk W_1 from a vertex i to a vertex i, and a walk i walks i from i to a vertex i is denoted by i to a vertex i and i walks i to a vertex i is denoted by i the i to a vertex i to a vertex i to a vertex i to a vertex i and i walks i to a vertex i to a vertex i to a vertex i and i walks i to a vertex i to a vertex i to a vertex i and i walks i to a vertex i and i denotes the shortest path between i and i and i its length i the i then i the i then i and i the i then i then

Lemma 2.3 Let i be any vertex of G = G(A) with $A \in CSP(n)$. Let C_i be any odd cycle such that $d(i, C_i) = \min\{d(i, C) : C \text{ is an odd cycle in } G\}$. Assume that $d(i, C_i) = m \ge 1$. Let $P = i_0i_1 \cdots i_m$ be any shortest path between i and C_i , where $i_0 = i$ and $i_m \in V(C_i)$. Then the following hold:

(i) If
$$V(P^d) \cap V(P) \neq \phi$$
, then $V(P^d) \cap V(P) = \{i_t\} = \{i_t^d\} \ (0 \le t \le m)$.

- (ii) If $V(P^d) \cap V(C_i) \neq \phi$, then $V(P^d) \cap V(C_i) = \{i_m^d\}$.
- (iii) $|V(P^d) \cap (V(P) \cup V(C_i))| \le 1$.

Proof. We first assume that $V(P^d) \cap V(P) \neq \phi$ and prove (i). Let i_t be any vertex in $V(P^d) \cap V(P)$. Then there exists $i_k^d \in V(P^d)$ such that

 $i_k^d = i_t$ (and thus $i_t^d = i_k$). Suppose that $k \neq t$. If k > t, then

$$d(i, C_i^d) \le |i_0 P_i| + |i_k^d P^d_i| = m - (k - t) < m = d(i, C_i).$$

If k < t, then

$$d(i, C_i^d) \le |i_0 P_i| + |i_t^d P_i^d| = m - (t - k) < m = d(i, C_i).$$

Thus in any case we have $d(i, C_i^d) < d(i, C_i)$, contradicting the definition of C_i . Hence k = t, and hence (i) holds.

We now assume that $V(P^d) \cap V(C_i) \neq \phi$ and prove (ii). Let i_t^d be any vertex in $V(P^d) \cap V(C_i)$. Then $i_t \in V(P) \cap V(C_i^d)$. If $0 \leq t \leq m-1$, then

$$d(i, C_i^d) \le |i_0 P i_t| = t \le m - 1 < m = d(i, C_i).$$

This contradicts the definition of C_i . Hence t = m, and (ii) holds.

Now, if $V(P^d) \cap V(P) = \phi$ or $V(P^d) \cap V(C_i) = \phi$, then from (i) and (ii) above we have

$$|V(P^d) \cap (V(P) \cup V(C_i))| \le |V(P^d) \cap (V(P))| + |V(P^d) \cap V(C_i)| \le 1$$

and so (iii) holds. If $V(P^d) \cap V(P) \neq \phi$ and $V(P^d) \cap V(C_i) \neq \phi$, then from (i) and (ii) above we have $V(P^d) \cap V(P) = \{i_t\} = \{i_t^d\} \ (0 \leq t \leq m)$ and $V(P^d) \cap V(C_i) = \{i_m^d\}$. Notice that if there exists a vertex i satisfying $i = i^d$, then the vertex i is unique, that is $i = \frac{n+1}{2}$. We now show that t = m. If $t \neq m$, then $i_m \neq i_m^d$ (since $i_t^d = i_t$), so the walks

$$i_t P i_m + i_m C_i' i_m^d + i_m^d P^d i_t^d$$
 and $i_t P i_m + i_m C_i'' i_m^d + i_m^d P^d i_t^d$

are two cycles, and one of the cycles is an odd cycle, denoted by C_t^* . Hence $d(i, C_t^*) = t < m = d(i, C_i)$, contradicting the definition of C_i . Therefore t = m. This implies that

$$V(P^d) \cap (V(P) \cup V(C_i)) = (V(P^d) \cap V(P)) \cup (V(P^d) \cap V(C_i)) = \{i_m\} = \{i_m^d\},$$

and hence (iii) also holds.

Lemma 2.4 Let i and j be two vertices of G = G(A) with $A \in CSP(n)$. Let P_{ij} be any shortest path joining i and j, and let $C_{P_{ij}}$ be any odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$. Assume that $d(P_{ij}, C_{P_{ij}}) = m \ge 1$. Let $P_* = i_0 i_1 \cdots i_m$ be any shortest path between P_{ij} and $C_{P_{ij}}$, where $i_0 \in V(P_{ij})$ and $i_m \in V(C_{P_{ij}})$. Then the following hold:

(i) If
$$V(P_*^d) \cap V(P_*) \neq \phi$$
, then $V(P_*^d) \cap V(P_*) = \{i_t\} = \{i_t^d\} \ (0 \le t \le m)$.

(ii) If
$$V(P_*^d) \cap V(C_{P_{ij}}) \neq \phi$$
, then $V(P_*^d) \cap V(C_{P_{ij}}) = \{i_m^d\}$.

(iii)
$$|V(P_*^d) \cap (V(P_*) \cup V(C_{P_{ij}}))| \leq 1$$
.

(iv) If
$$V(P_*^d) \cap V(P_{ij}) \neq \phi$$
, then $V(P_*^d) \cap V(P_{ij}) = \{i_0^d\}$.

(v)
$$|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| \leq 2$$
.

Proof. By the definition of $C_{P_{ij}}$ we have that $d(i_0, C_{P_{ij}}) = \min\{d(i_0, C) : C \text{ is an odd cycle in } G\}$, and P_* is the shortest path between i_0 and $C_{P_{ij}}$. Hence by Lemma 2.3 we conclude that (i), (ii) and (iii) hold.

We now assume that $V(P_*^d) \cap V(P_{ij}) \neq \phi$ and prove (iv). Let i_t^d be any vertex in $V(P_*^d) \cap V(P_{ij})$. If $1 \leq t \leq m$, then

$$d(P_{ij}, C_{P_{ij}}^d) \le |i_t^d P_*^d i_m^d| = m - t < m = d(P_{ij}, C_{P_{ij}}),$$

contradicting the definition of $C_{P_{ij}}$. Hence t = 0, and (iv) holds.

We know from (iii) and (iv) above that

$$|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| \le |V(P_*^d) \cap V(P_{ij})| + |V(P_*^d) \cap (V(P_*) \cup V(C_{P_{ij}}))| \le 2.$$

Hence (v) also holds.

Lemma 2.5 Let i be any vertex of G = G(A) with $A \in CSP(n)$. Then $\gamma(i,i) \leq n-1$. In particular, $\gamma(i,i) \leq n-2$ when $n \equiv 0 \pmod{2}$.

Proof. It is trivial if i is the vertex with a loop. Let i be any vertex without loop. Clearly, there is a walk from i to i with length 2. Let C_i be any odd cycle such that $d(i, C_i) = \min\{d(i, C) : C \text{ is an odd cycle in } G\}$, and let P be the shortest path between i and C_i . Then there is a walk $W = P + C_i + P$ from i to i, its length $|W| = 2|P| + |C_i|$ is an odd number not less than 3. So by Lemma 2.2 we have

$$\gamma(i, i) \le \max\{2|P| + |C_i|, 2\} - 1 = 2|P| + |C_i| - 1.$$

If |P| = 0. Then $\gamma(i, i) \le |C_i| - 1 \le n - 1$. In particular, if $n \equiv 0 \pmod{2}$, then $|C_i| \le n - 1$, and hence $\gamma(i, i) \le n - 2$.

If $|P| \ge 1$. Then by Lemma 2.3 we have that

$$n \geq |V(P^{d}) \cup V(P) \cup V(C_{i})|$$

$$= |V(P^{d})| + |V(P) \cup V(C_{i})| - |V(P^{d}) \cap (V(P) \cup V(C_{i}))|$$

$$\geq (|P| + 1) + (|P| + |C_{i}|) - 1$$

$$= 2|P| + |C_{i}|.$$

Therefore $\gamma(i,i) \le 2|P| + |C_i| - 1 \le n - 1$. In particular, if $n \equiv 0 \pmod{2}$, then the odd number $2|P| + |C_i| \le n - 1$, and hence $\gamma(i,i) \le n - 2$.

Lemma 2.6 Let i and j be two vertices of G = G(A) with $A \in CSP(n)$. Then $\gamma(i,j) \leq n-1$.

Proof. Let P_{ij} be any shortest path joining i and j, and let $C_{P_{ij}}$ be any odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$. Let P_* be any shortest path between P_{ij} and $C_{P_{ij}}$. We consider two cases.

Case 1: $|P_*| = 0$. Let $x, y \in V(P_{ij}) \cap V(C_{P_{ij}})$ (perhaps x = y), where x(y) is the first (last) vertex on $C_{P_{ij}}$ along P_{ij} . Then the lengths of walks $iP_{ij}x + xC'_{P_{ij}}y + yP_{ij}j$ and $iP_{ij}x + xC''_{P_{ij}}y + yP_{ij}j$ have different parity and not greater than n. So by Lemma 2.2 we have that $\gamma(i,j) \leq n-1$. In particular, if $|V(P_{ij}) \cap V(C_{P_{ij}})| \geq 2$, then $\gamma(i,j) \leq n-2$.

Case 2: $|P_*| = m \ge 1$. Let $P_* = i_0 i_1 \cdots i_m$, where $i_0 \in V(P_{ij})$ and $i_m \in V(C_{P_{ij}})$. We have by Lemma 2.4 that $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| \le 2$.

Subcase 2.1: $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| \le 1$. Then

$$n \geq |V(P_*^d) \cup (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))|$$

$$= |V(P_*^d)| + |V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}})|$$

$$-|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))|$$

$$\geq (|P_*^d| + 1) + (|P_{ij}| + |P_*| + |C_{P_{ij}}|) - 1$$

$$= |P_{ij}| + |C_{P_{ij}}| + 2|P_*|.$$

Since the lengths of the walks

$$iP_{ij}i_0 + i_0P_*i_m + C_{P_{ij}} + i_mP_*i_0 + i_0P_{ij}j$$
 and P_{ij}

have different parity, and

$$|iP_{ij}i_0 + i_0P_*i_m + C_{P_{ij}} + i_mP_*i_0 + i_0P_{ij}j| = |P_{ij}| + |C_{P_{ij}}| + 2|P_*| > |P_{ij}|,$$

it follows from Lemma 2.2 that $\gamma(i,j) \leq |P_{ij}| + |C_{P_{ij}}| + 2|P_*| - 1$. Therefore $\gamma(i,j) \leq |P_{ij}| + |C_{P_{ij}}| + 2|P_*| - 1 \leq n - 1$. In particular, if $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| = 0$, then $\gamma(i,j) \leq n - 2$ since $|P_{ij}| + |C_{P_{ij}}| + 2|P_*| + 1 \leq n$.

Subcase 2.2: $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| = 2$. Since $V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}})) = (V(P_*^d) \cap V(P_{ij})) \cup (V(P_*^d) \cap (V(P_*) \cup V(C_{P_{ij}})))$, it follows from Lemma 2.4 that $V(P_*^d) \cap V(P_{ij}) = \{i_0^d\}$ and $V(P_*^d) \cap (V(P_*) \cup V(C_{P_{ij}})) = \{i_t^d\}$, where $1 \leq t \leq m$.

We now show that $i_0 \neq i_0^d$, $i_t = i_t^d$ and $|i_0 P_{ij} i_0^d| \geq 2$.

If $i_0=i_0^d$, then $i_0^d\in V(P_*^d)\cap V(P_*)\subseteq V(P_*^d)\cap (V(P_*)\cup V(C_{P_{ij}}))$, we obtain the contradiction $|V(P_*^d)\cap (V(P_{ij})\cup V(P_*)\cup V(C_{P_{ij}}))|=1$. Hence $i_0\neq i_0^d$.

If $i_t \neq i_t^d$, then $V(P_*^d) \cap V(P_*) = \phi$, and $V(P_*^d) \cap V(C_{P_{ij}}) = V(P_*^d) \cap (V(P_*) \cup V(C_{P_{ij}})) = \{i_t^d\}$. It follows from (ii) of Lemma 2.4 that t = m. So the walks $i_0P_*i_m + i_mC'_{P_{ij}}i_m^d + i_m^dP_*^di_0^d + i_0^dP_{ij}i_0$ and $i_0P_*i_m + i_mC''_{P_{ij}}i_m^d + i_m^dP_*^di_0^d + i_0^dP_{ij}i_0$ are two cycles, and one of these cycles is an odd cycle. This contradictions the definition of $C_{P_{ij}}$. Thus $i_t = i_t^d$.

If $|i_0P_{ij}i_0^d| < 2$, then $|i_0P_{ij}i_0^d| = 1$ (since $i_0 \neq i_0^d$). It follows from $i_t = i_t^d$ that the cycle $i_0P_*i_t + i_t^dP_*^di_0^d + i_0^dP_{ij}i_0$ is an odd cycle, contradicting the definition of $C_{P_{ij}}$. Hence $|i_0P_{ij}i_0^d| \geq 2$.

We now assume without loss of generality that $P_{ij}=iP_{ij}i_0+i_0P_{ij}i_0^d+i_0^dP_{ij}j$. We consider the walks $W_1=iP_{ij}i_0+P_*+C_{P_{ij}}+i_mP_*i_t+i_t^dP_*^di_0^d+i_0^dP_{ij}j$ and $W_2=iP_{ij}i_0+i_0P_*i_t+i_t^dP_*^di_0^d+i_0^dP_{ij}j$.

Clearly, $|W_1| = |iP_{ij}i_0| + |i_0^dP_{ij}j| + |C_{P_{ij}}| + 2|P_*|$, $|W_2| = |iP_{ij}i_0| + |i_0^dP_{ij}j| + 2|i_0P_*i_t|$. So $|W_1|$ and $|W_2|$ have different parity, and $|W_1| > |W_2|$. Hence by Lemma 2.2 we have

$$\gamma(i,j) \leq |iP_{ij}i_0| + |i_0^d P_{ij}j| + |C_{P_{ij}}| + 2|P_*| - 1
= |P_{ij}| - |i_0 P_{ij}i_0^d| + |C_{P_{ij}}| + 2|P_*| - 1
\leq |P_{ij}| + |C_{P_{ij}}| + 2|P_*| - 3.$$

By a similar argument as in subcase 2.1, we have $|P_{ij}| + |C_{P_{ij}}| + 2|P_*| \le n+1$. Thus $\gamma(i,j) \le |P_{ij}| + |C_{P_{ij}}| + 2|P_*| - 3 \le n-2$.

Theorem 2.1 Let $\gamma_n = \max\{\gamma(A) : A \in CSP(n)\}$. Then $\gamma_n = n - 1$.

Proof. Let A be any matrix in CSP(n), and let $i, j \in V(G(A))$. Then by Lemma 2.1, Lemma 2.5 and Lemma 2.6, we have

$$\gamma(A) = \gamma(G(A)) = \max\{\gamma(i,j) : i,j \in V(G(A))\} \le n - 1.$$

Now let G = (V, E) be a graph, where $V = \{1, 2, \dots, n\}$, $E = \{[i, i+1]: 1 \le i \le n-1\} \cup \{[1, 1], [n, n]\}$, and let A(G) be the adjacency matrix of G. Clearly, $A(G) \in CSP(n)$, and $\gamma(A(G)) = \gamma(G) = \max_{i,j \in V} \gamma(i,j) = \gamma(1,n) = d(1,n) = n-1$. Therefore $\gamma_n = n-1$.

3 The extremal matrices

In this section we give a complete characterization of those central symmetric primitive matrices having the maximum exponent n-1, that is the below Theorem 3.1. Before proving it we establish some lemmas.

Lemma 3.1 Let G be a primitive graph, and let i be any vertex of G. If i is the vertex without loop, then there is an odd cycle C_i^0 in G such that $\gamma(i,i) = 2d(i,C_i^0) + |C_i^0| - 1$.

Proof. Since G is primitive, G contains at least one odd cycle. Then there exists an odd cycle C_i^0 such that

$$2d(i, C_i^0) + |C_i^0| = \min\{2d(i, C) + |C| : C \text{ is an odd cycle in } G\}.$$

Clearly, there are two walks from i to i with lengths $2d(i,C_i^0)+|C_i^0|$ and 2, respectively. Since i is the vertex without loop, $2d(i,C_i^0)+|C_i^0|\geq 3$. By Lemma 2.2 we have $\gamma(i,i)\leq \max\{2d(i,C_i^0)+|C_i^0|,2\}-1=2d(i,C_i^0)+|C_i^0|-1$. Conversely, it is clear that there is no any walk from i to i with length $2d(i,C_i^0)+|C_i^0|-2$, so $\gamma(i,i)\geq 2d(i,C_i^0)+|C_i^0|-1$. Hence $\gamma(i,i)=2d(i,C_i^0)+|C_i^0|-1$.

Lemma 3.2 Let i and j be two vertices of G = G(A) with $A \in CSP(n)$, and let P_{ij} be any shortest path joining i and j. If $V(P_{ij}^d) = V(P_{ij})$. Then $j = i^d$, and $|iP_{ij}t| = |t^dP_{ij}j|$ for each vertex $t \in V(P_{ij})$.

Proof. If $j \neq i^d$, then $i \neq j^d$, and we obtain the contradiction $d(i^d, j^d) = |i^d P_{ij} j^d| < d(i, j)$. Hence $j = i^d$, and hence for each vertex $t \in V(P_{ij})$, we have $|iP_{ij}t| = d(i, t) = d(t^d, i^d) = |t^d P_{ij}^d i^d| = |t^d P_{ij} j|$.

Lemma 3.3 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n - 1$ and $\gamma(i,i) = n - 1$ for some vertex i of G. Let C_i be any odd cycle such that $d(i,C_i) = \min\{d(i,C) : C \text{ is an odd cycle in } G\}$. Then the following hold:

- (i) If $V(C_i) \cap V(C_i^d) \neq \phi$, then $C_i = C_i^d$.
- (ii) If $V(C_i) \cap V(C_i^d) = \phi$, then $|C_i| = |C_i^d| = 1$.

Proof. Clearly, if $i \in V(C_i)$, then $n-1 = \gamma(i,i) \le \max\{|C_i|, 2\} - 1 = |C_i| - 1$ (since $n \ge 3$). We conclude that $|C_i| = n$ and so $C_i = C_i^d$.

Now let $i \notin V(C_i)$, and let $P = i_0 i_1 \cdots i_m$ be the shortest path between i and C_i , where $i_0 = i$ and $i_m \in V(C_i)$. Since $|P| \geq 1$ and $\gamma(i,i) = n-1$, according to the proof in Lemma 2.5 we have that $|V(P^d) \cap (V(P) \cup V(C_i))| = 1$ and $|V(P^d) \cup V(P) \cup V(C_i)| = 2|P| + |C_i| = n$. Hence $V(C_i^d) \subseteq V(P^d) \cup V(P) \cup V(C_i) = V(G)$. Since $V(C_i^d) \cap V(P^d) = \{i_m^d\}$ and $V(C_i^d) \cap V(P) \subseteq \{i_m\} \subseteq V(C_i)$, it follows that $V(C_i^d) \setminus \{i_m^d\} \subseteq V(C_i)$.

We now assume that $V(C_i)\cap V(C_i^d)\neq \phi$ and prove that $C_i=C_i^d$. Clearly, we only need to show that $i_m^d\in V(C_i)$. It is trivial if $|C_i|=1$. Let $|C_i|\geq 3$. Suppose that $i_m^d\notin V(C_i)$. Then $i_m\notin V(C_i^d)$ and, by (ii) of Lemma 2.3 we have $V(P^d)\cap V(C_i)=\phi$. So $|V(P^d)\cap V(P)|=|V(P^d)\cap (V(P)\cup V(C_i))|=1$, and we do have that a path $P(i_m,i_m^d)$ from i_m to i_m^d (in $C_i\cup C_i^d$) with odd length $|C_i|$. By (i) and (ii) of Lemma 2.3 we conclude that $V(P^d)\cap V(P)=\{i_t\}=\{i_t^d\}$, where $0\leq t\leq m-1$. So the walk $i_tPi_m+P(i_m,i_m^d)+i_m^dP^di_t^d$ is an odd cycle, denoted by C_i^* , and so $d(i,C_i^*)=t< m=d(i,C_i)$, contradicting the definition of C_i . Thus $i_m^d\in V(C_i)$, and hence $C_i^d=C_i$.

We now assume that $V(C_i) \cap V(C_i^d) = \phi$ and prove $|C_i| = |C_i^d| = 1$. Since $V(C_i^d) \setminus \{i_m^d\} \subseteq V(C_i)$, we have $V(C_i^d) \setminus \{i_m^d\} = \phi$. Hence $V(C_i^d) = \{i_m^d\}$, and hence $|C_i| = |C_i^d| = 1$. The lemma now follows.

Lemma 3.4 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n - 1$ and $\gamma(i,j) = n - 1$ for two vertices $i, j \in V(G)$. Let P_{ij} be any shortest path joining i and j, and let $C_{P_{ij}}$ be any odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$. Then the following hold:

- (i) If $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$, then $C_{P_{ij}} = C_{P_{ij}}^d$.
- (ii) If $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) = \phi$, then $|C_{P_{ij}}| = |C_{P_{ij}}^d| = 1$.

Proof. Let P_* be any shortest path between P_{ij} and $C_{P_{ij}}$. We consider two cases.

Case 1: $|P_*| = 0$. Since $\gamma(i,j) = n-1$, according to the proof in Lemma 2.6 we have that $|V(C_{P_{ij}}) \cap V(P_{ij})| = 1$ and $\gamma(i,j) \leq |P_{ij}| + |C_{P_{ij}}| - 1$. It follows that $|P_{ij}| + |C_{P_{ij}}| = n$ and $|V(P_{ij}) \cup V(C_{P_{ij}})| = n$. So $V(C_{P_{ij}}^d) \subseteq V(P_{ij}) \cup V(C_{P_{ii}})$.

We first assume that $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$ and prove $C_{P_{ij}} = C_{P_{ij}}^d$. Let $V(C_{P_{ij}}) \cap V(P_{ij}) = \{x\}$. If $V(C_{P_{ij}}^d) \setminus V(C_{P_{ij}}) \neq \phi$, then $V(C_{P_{ij}}^d) \setminus V(C_{P_{ij}}) = \{y\} \subseteq V(P_{ij})$, and $y \neq x$. So we have two paths P' and P'' (in $C_{P_{ij}} \cup C_{P_{ij}}^d$) from x to y with lengths |P'| = 2 and $|P''| = |C_{P_{ij}}|$, respectively. By Lemma 2.2 we have $\gamma(i,j) \leq (|C_{P_{ij}}| + |P_{ij}| - |xP_{ij}y|) - 1 \leq n - 2$, a contradiction. Hence $V(C_{P_{ij}}^d) \setminus V(C_{P_{ij}}) = \phi$, and hence $C_{P_{ij}} = C_{P_{ij}}^d$.

We now assume that $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) = \phi$. Then $V(C_{P_{ij}}^d) \subseteq V(P_{ij})$. Hence $|V(C_{P_{ij}}^d)| = 1$, and hence $|C_{P_{ij}}| = |C_{P_{ij}}^d| = 1$.

Case 2: $|P_*| = m > 0$. Let $P_* = i_0 i_1 \cdots i_m$, where $i_0 \in V(P_{ij})$ and $i_m \in V(C_{P_{ij}})$. According to the proof in Lemma 2.6 we have that $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| = 1$ and $|V(P_*^d) \cup V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}})| = |P_{ij}| + |C_{P_{ij}}| + 2|P_*| = n$. Hence $V(C_{P_{ij}}^d) \subseteq V(P_*^d) \cup V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}) = V(G)$. Since $|P_*| > 0$, $d(P_{ij}, C_{P_{ij}}^d) \ge d(P_{ij}, C_{P_{ij}}) = |P_*| > 0$. Since $V(C_{P_{ij}}^d) \cap V(P_*^d) = \{i_m^d\}$ and $V(C_{P_{ij}}^d) \cap V(P_*) \subseteq \{i_m\} \subseteq V(C_{P_{ij}})$, it follows that $V(C_{P_{ij}}^d) \setminus \{i_m^d\} \subseteq V(C_{P_{ij}})$.

We assume that $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$ and prove $C_{P_{ij}} = C_{P_{ij}}^d$. Clearly, we only need to show that $i_m^d \in V(C_{P_{ij}})$. Suppose that $i_m^d \notin V(C_{P_{ij}})$. Then by (ii) of Lemma 2.4 we have $V(C_{P_{ij}}) \cap V(P_*^d) = \phi$. So $|V(P_*^d) \cap (V(P_{ij}) \cup V(P_*))| = |V(P_*^d) \cap (V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}))| = 1$, and we do have two paths P' and P'' (in $C_{P_{ij}} \cup C_{P_{ij}}^d$) from i_m to i_m^d with lengths |P'| = 2 and $|P''| = |C_{P_{ij}}|$, respectively.

If $V(P_*^d) \cap V(P_*) = \phi$, then $|V(P_*^d) \cap V(P_{ij})| = |V(P_*^d) \cap (V(P_{ij}) \cup V(P_*))| = 1$. It follows from (iv) of Lemma 2.4 that $V(P_*^d) \cap V(P_{ij}) = \{i_0^d\}$. Hence one of the walks

 $i_0P_*i_m + P' + i_m^dP_*^di_0^d + i_0^dP_{ij}i_0$ and $i_0P_*i_m + P'' + i_m^dP_*^di_0^d + i_0^dP_{ij}i_0$ is odd cycle, contradicting the definition of $C_{P_{ij}}$ and $d(P_{ij}, C_{P_{ij}}) = m > 0$.

If $V(P_*^d) \cap V(P_*) \neq \phi$, then from (i) and (ii) of Lemma 2.4 we have $V(P_*^d) \cap V(P_*) = \{i_t^d\} = \{i_t\}$, where $0 \leq t \leq m-1$. So the walk $C_t^* =$

 $i_t P_* i_m + P'' + i_m^d P_*^d i_t^d$ is an odd cycle, and $d(P_{ij}, C_t^*) = t < m$, contradicting the definition of $C_{P_{ij}}$.

Thus $i_m^d \in V(C_{P_{ij}})$, and hence $C_{P_{ij}} = C_{P_{ij}}^d$.

We now assume that $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) = \phi$. We then have $V(C_{P_{ij}}^d) \setminus \{i_m^d\} = \phi$ (since $V(C_{P_{ij}}^d) \setminus \{i_m^d\} \subseteq V(C_{P_{ij}})$). Hence $V(C_{P_{ij}}^d) = \{i_m^d\}$, and hence $|C_{P_{ij}}| = |C_{P_{ij}}^d| = 1$. The lemma now follows.

Lemma 3.5 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n-1$ and $\gamma(i,j) = n-1$ for two vertices $i, j \in V(G)$. Let P_{ij} be any shortest path joining i and j, and let $C_{P_{ij}}$ be any odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$. Assume that $|P_{ij}| < n-1$ and $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$. Then $\gamma(i,i) = \gamma(j,j) = n-1$.

Proof. Let P_* be the shortest path between P_{ij} and $C_{P_{ij}}$. According to the proof in Lemma 3.4 we have $V(P_*^d) \cup V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}) = V(G)$ and $|P_{ij}| + |C_{P_{ij}}| + 2|P_*| = n$ (In particular, if $|P_*| = 0$, then $V(P_{ij}) \cup V(C_{P_{ij}}) = V(G)$ and $|P_{ij}| + |C_{P_{ij}}| = n$). Since $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$, we have by (i) of Lemma 3.4 that $C_{P_{ij}} = C_{P_{ij}}^d$. Since $\gamma(i,j) = n-1$ and $|P_{ij}| < n-1$, we have that there is no any vertex in $V(G) \setminus V(C_{P_{ij}})$ with loop, and $V(C) \subseteq V(C_{P_{ij}})$ for any odd cycle C in G.

Let $i_0 = V(P_*) \cap V(P_{ij})$ (In particular, if $|P_*| = 0$ then $i_0 = V(P_{ij}) \cap V(C_{P_{ij}})$). Clearly, $d(i, C_{P_{ij}}) \le |iP_{ij}i_0| + |P_*|$, $d(j, C_{P_{ij}}) \le |P_*| + |i_0P_{ij}j|$. So we can use Lemma 2.2 to obtain $\gamma(i,j) \le d(i, C_{P_{ij}}) + |C_{P_{ij}}| + d(j, C_{P_{ij}}) - 1$.

If $d(i, C_{P_{ij}}) < |iP_{ij}i_0| + |P_*|$. Then $\gamma(i, j) < |P_{ij}| + 2|P_*| + |C_{P_{ij}}| - 1 = n - 1$, a contradiction. Hence $d(i, C_{P_{ij}}) = |iP_{ij}i_0| + |P_*|$.

Now Let C_i^0 be the odd cycle such that $\gamma(i,i) = 2d(i,C_i^0) + |C_i^0| - 1$ (see Lemma 3.1). Then by $V(C_i^0) \subseteq V(C_{P_{ij}})$ we have that $d(i,C_i^0) \le d(i,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2}$ and $d(j,C_i^0) \le d(j,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2}$.

If $d(i,C_i^0) < d(i,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2}$. Then $\gamma(i,j) \le d(i,C_i^0) + d(j,C_i^0) + |C_i^0| - 1 < d(i,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2} + d(j,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2} + |C_i^0| - 1 = d(i,C_{P_{ij}}) + d(j,C_{P_{ij}}) + |C_{P_{ij}}| - 1 \le |P_{ij}| + 2|P_*| + |C_{P_{ij}}| - 1 = n - 1$, a contradiction. Hence $d(i,C_i^0) = d(i,C_{P_{ij}}) + \frac{|C_{P_{ij}}| - |C_i^0|}{2} = |iP_{ij}i_0| + |P_*| + \frac{|C_{P_{ij}}| - |C_i^0|}{2}$, and hence $\gamma(i,i) = 2d(i,C_i^0) + |C_i^0| - 1 = 2(|iP_{ij}i_0| + |P_*| + |C_{P_{ij}}| - |C_i^0|)$

$$\frac{|C_{P_{ij}}| - |C_i^0|}{2}) + |C_i^0| - 1 = 2|iP_{ij}i_0| + 2|P_*| + |C_{P_{ij}}| - 1.$$

Similarly, we have $\gamma(j,j) = 2|i_0P_{ij}j| + 2|P_*| + |C_{P_{ij}}| - 1$. So $\gamma(i,i) + \gamma(j,j) = 2(|P_{ij}| + 2|P_*| + |C_{P_{ij}}|) - 2 = 2(n-1)$. Since $\gamma(i,i) \le n-1$ and $\gamma(j,j) \le n-1$, it follows that $\gamma(i,i) = \gamma(j,j) = n-1$.

Lemma 3.6 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n - 1$ and $\gamma(i,j) = n - 1$ for two vertices $i, j \in V(G)$. Let P_{ij} be any shortest path joining i and j, and let $C_{P_{ij}}$ be any odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$. Let P_* be any shortest path between P_{ij} and $C_{P_{ij}}$. Assume that $|P_*| = m \ge 1$ and $V(P_*) \cap V(P_*^d) \ne \phi$. Then $\gamma(i,i) = \gamma(j,j) = n - 1$.

Proof. Let $P_* = i_0 i_1 \cdots i_m$. We have by (i) of Lemma 2.4 that $V(P_*^d) \cap V(P_*) = \{i_t\} = \{i_t^d\} \ (0 \le t \le m)$. We consider two cases.

Case 1: $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) \neq \phi$. Then by Lemma 3.5 we have $\gamma(i, i) = \gamma(j, j) = n - 1$.

Case 2: $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) = \phi$. Then by (ii) of Lemma 3.4 we have $|C_{P_{ij}}| = |C_{P_{ij}}^d| = 1$. According to the proof in Lemma 3.4 we have $V(P_*^d) \cup V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}) = V(G)$ and $|P_{ij}| + |C_{P_{ij}}| + 2|P_*| = n$. So $V(P_*^d) \cup V(P_{ij}) \cup V(P_*) = V(G)$ and $|P_{ij}| + 2|P_*| + 1 = n$ (since $|C_{P_{ij}}| = 1$). This implies that G contains exactly two odd cycles $C_{P_{ij}}$ and $C_{P_{ij}}^d$.

Now we show that $d(i_0, C^d_{P_{ij}}) = |P_*|$. Clearly, $d(i_0, C^d_{P_{ij}}) \leq |i_0 P_* i_t| + |i_t^d P_*^d i_m^d| = |P_*|$, on the other hand, $d(i_0, C^d_{P_{ij}}) \geq d(i_0, C_{P_{ij}}) = |P_*|$ by the definition of $C_{P_{ij}}$. Hance $d(i_0, C^d_{P_{ij}}) = |P_*|$.

Now let C_i^0 be the odd cycle such that $\gamma(i,i) = 2d(i,C_i^0) + |C_i^0| - 1$. Notice that either $C_i^0 = C_{P_{ij}}$ or $C_i^0 = C_{P_{ij}}^d$, so $\gamma(i,i) = 2d(i,C_i^0)$ and $d(i_0,C_i^0) = |P_*|$. Hence $d(i,C_i^0) \leq |iP_{ij}i_0| + d(i_0,C_i^0) = |iP_{ij}i_0| + |P_*|$.

If $d(i, C_i^0) < |iP_{ij}i_0| + |P_*|$. Then by Lemma 2.2 we obtain $\gamma(i, j) \le d(i, C_i^0) + d(i_0, C_i^0) + |i_0P_{ij}j| < |P_{ij}| + 2|P_*| = n - 1$. This contradicts the condition $\gamma(i, j) = n - 1$. Hence $d(i, C_i^0) = |iP_{ij}i_0| + |P_*|$, and hence $\gamma(i, i) = 2d(i, C_i^0) = 2|iP_{ij}i_0| + 2|P_*|$.

Similarly, we have that $\gamma(j,j) = 2|i_0P_{ij}j| + 2|P_*|$.

Thus, $\gamma(i,i) + \gamma(j,j) = 2(|P_{ij}| + 2|P_*|) = 2(n-1)$. Since $\gamma(i,i) \le n-1$ and $\gamma(j,j) \le n-1$, it follows that $\gamma(i,i) = \gamma(j,j) = n-1$.

We now construct two classes of graphs $\mathfrak{H}(n,l,s)$ $(0 \le l \le \lfloor \frac{n}{2} \rfloor - 1, l+1 \le s \le \lceil \frac{n}{2} \rceil)$ and $\mathfrak{R}(n,r,s)$ $(n \text{ is odd}, 0 \le r \le \frac{n-1}{2}, r+1 \le s \le \frac{n+1}{2}).$

Let l be an integer with $0 \le l \le \lfloor \frac{n}{2} \rfloor - 1$, and let s be an integer with $l+1 \le s \le \lceil \frac{n}{2} \rceil$, where $\lfloor a \rfloor$ denotes the largest integer not exceeding a, and $\lceil b \rceil$ denotes the smallest integer not less than b. Let $\mathfrak{H}^*(n,l,s) = (V,E)$, where $V = \{1,2,\cdots,n\}$ and $E = \{[i,i+1]:i \in V\setminus\{l,n-l,n\}\}\cup\{[l+1,l+1],[n-l,n-l],[l,s],[n+1-l,n+1-s]\}$. Clearly, $\mathfrak{H}^*(n,0,1)=\mathfrak{H}^*(n,0,s)$ for $2 \le s \le \lceil \frac{n}{2} \rceil$. We now construct the class of graphs $\mathfrak{H}(n,l,s)$ as follows: $\mathfrak{H}(n,l,l+1)$ is obtained from $\mathfrak{H}^*(n,l,l+1)$ by putting some pairs of edges (possibly empty) such as [i,i] and [n+1-i,n+1-i] ($l+2 \le i \le \lceil \frac{n}{2} \rceil$), in particular, if n is odd, then $\mathfrak{H}(n,0,1)$ is obtained from $\mathfrak{H}^*(n,0,1)$ by putting at least one pair of edges such as [i,i] and [n+1-i,n+1-i] (l+1-i,n+1-i) (l+1-i,n+1-i) some edges (possibly empty) such as [i,n+1-i] ($l+1 \le i \le \frac{n}{2}-1$); when n is odd, $\mathfrak{H}(n,l,\frac{n+1}{2})$ is obtained from $\mathfrak{H}^*(n,l,\frac{n+1}{2})$ by putting some pairs of edges (possibly empty) such as [i,n+1-i] ($l+1 \le i \le \frac{n}{2}-1$); when $n \ge 1$ or $n \ge 1$ is obtained from $n \ge 1$ in $n \ge$

Now suppose n is odd. Let r be an integer with $0 \le r \le \frac{n-1}{2}$, and let s be an integer with $r+1 \le s \le \frac{n+1}{2}$. Let $\Re^*(n,r,s) = (V,E)$, where $V = \{1,2,\cdots,n\}$ and $E = \{[i,i+1]: i \in V \setminus \{r,n-r,n\}\} \cup \{[r+1,n-r],[r,s],[n+1-r,n+1-s]\}$. Then we construct the class of graphs $\Re(n,r,s)$ as follows: $\Re(n,r,\frac{n+1}{2})$ is obtained from $\Re^*(n,r,\frac{n+1}{2})$ by putting some pairs of edges (possibly empty) such as [i,n-i] and [i+1,n+1-i] $(1 \le i \le r-1 \text{ or } r+1 \le i \le \frac{n+1}{2}-2)$, or two loops [r+1,r+1] and [n-r,n-r]; $\Re(n,r,r+1)$ $(0 \le r \le \frac{n-3}{2})$ is obtained from $\Re^*(n,r,r+1)$ $(0 \le r \le \frac{n-3}{2})$ by putting some edges (possibly empty) such as [i,n+1-i] $(r+2 \le i \le \frac{n+1}{2})$; $\Re(n,r,s) = \Re^*(n,r,s)$ for $r+2 \le s \le \frac{n-1}{2}$.

Lemma 3.7 Let G be any graph in $\mathfrak{H}(n,l,s) \cup \mathfrak{R}(n,r,s)$. Then $A(G) \in CSP(n)$ and $\gamma(A(G)) = \gamma(G) = n-1$, where A(G) is the adjacency matrix of G.

Proof. By the definitions of $\mathfrak{H}(n,l,s)$ and $\mathfrak{R}(n,r,s)$, we have that $A(G) \in CSP(n)$. So by Lemma 2.1 and Theorem 2.1 we only need to show that $\gamma(i,j) = n-1$ for some pair of vertices i and j (not necessarily distinct) of G. This can be obtained by direct verification as follows:

If $G \in \mathfrak{H}(n, l, s)$ $(0 \le l \le \lfloor \frac{n}{2} \rfloor - 1, l + 1 \le s \le \lceil \frac{n}{2} \rceil - 1)$, then $\gamma(1, n) = n - 1$.

If n is even and $G \in \mathfrak{H}(n,0,\frac{n}{2})$, then $\gamma(\frac{n}{2},\frac{n+2}{2}) = n-1$.

If n is even and $G \in \mathfrak{H}(n, l, \frac{n}{2})$ $(1 \le l \le \frac{n}{2} - 1)$, then $\gamma(1, n) = n - 1$.

If n is odd and $G \in \mathfrak{H}(n,0,\frac{n+1}{2})$, then $\gamma(\frac{n+1}{2},\frac{n+1}{2}) = n-1$.

If n is odd and $G \in \mathfrak{H}(n, l, \frac{n+1}{2})$ $(1 \le l \le \frac{n-3}{2})$, then $\gamma(1, 1) = n - 1$.

If $G \in \Re(n, r, s)$ $(1 \le r \le \frac{n-1}{2})$, then $\gamma(1, 1) = n - 1$.

If
$$G \in \mathfrak{R}(n,0,s)$$
 $(1 \le s \le \frac{n+1}{2})$, then $\gamma(s,s) = n-1$.

Lemma 3.8 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n - 1$ and $\gamma(i, i) = n - 1$ for some vertex $i \in V(G)$. Then G is isomorphic to some graph in $\mathfrak{H}(n, l, \frac{n+1}{2})$ $(0 \le l \le \frac{n-3}{2})$, or G is isomorphic to some graph in $\mathfrak{R}(n, r, s)$ $(0 \le r \le \frac{n-1}{2}, r+1 \le s \le \frac{n+1}{2})$.

Proof. Since $\gamma(i,i) = n-1$ for some vertex $i \in V(G)$, it follows from Lemma 2.5 that $n \equiv 1 \pmod{2}$. Suppose that $\gamma(w,w) = \gamma(G) = n-1$ for a vertex $w \in V(G)$. Then $\gamma(w^d,w^d) = \gamma(w,w) = n-1$. Let C_w be an odd cycle such that $d(w,C_w) = \min\{d(w,C) : C \text{ is an odd cycle in } G\}$. We consider two cases.

Case 1: $V(C_w) \cap V(C_w^d) = \phi$. Then by (ii) of Lemma 3.3 we have $|C_w| = |C_w^d| = 1$. So by Lemma 3.1 we conclude that $2d(w, C_w) = \gamma(w, w) = n - 1$ and $2d(w^d, C_w^d) = \gamma(w^d, w^d) = n - 1$.

Now let $P=i_0i_1\cdots i_{\frac{n-1}{2}}$ be the shortest path between w and C_w , where $i_0=w$ and $i_{\frac{n-1}{2}}\in V(C_w)$ (and thus $C_w=[i_{\frac{n-1}{2}},\,i_{\frac{n-1}{2}}]$). If $V(P)\cap V(P^d)=\phi$, then $|V(P)\cup V(P^d)|=|V(P)|+|V(P^d)|=n+1$, a contradiction. Hence $V(P)\cap V(P^d)\neq \phi$. It follows from (i) of Lemma 2.3 that $V(P^d)\cap V(P)=\{i_l\}=\{i_l^d\}$, where $0\leq l\leq \frac{n-3}{2}$ (since $i_{\frac{n-1}{2}}\neq i_{\frac{n-1}{2}}^d$). Thus $V(P)\cup V(P^d)=V(G)$, and G contains a spanning subgraph G^* isomorphic to $\mathfrak{H}^*(n,l,\frac{n+1}{2})$ ($0\leq l\leq \frac{n-3}{2}$).

Clearly, there is no any vertex in $V(G)\backslash\{i_{\frac{n-1}{2}},i_{\frac{n-1}{2}}^d\}$ with loop. Let i_p and i_q be two vertices in V(P). If $[i_p,i_q]$ is an edge of G, but not of G^* , then $\gamma(i_0,i_0)< n-1$, a contradiction. If $|p-q|\neq 1$, then there is no edge joining i_p and i_q^d since $\gamma(i_0,i_0)=n-1$. If |p-q|=1, then the edge $[i_p,i_q^d]\in E(G)$ is permitted (and thus $[i_p^d,i_q]\in E(G)$), and we also have $\gamma(i_0,i_0)=n-1$. Hence, G is isomorphic to some graph in $\mathfrak{H}(n,l,\frac{n+1}{2})$ $(0\leq l\leq \frac{n-3}{2})$.

Case 2: $V(C_w) \cap V(C_w^d) \neq \phi$. Then by (i) of Lemma 3.3 we have $C_w = C_w^d$. So the vertex $\frac{n+1}{2} \in V(C_w)$. Let P be the shortest path between w

and C_w . We consider two subcases.

Subcase 2.1: $|P| = r \ge 1$. According to the proof in Lemma 3.3 we have that $V(P) \cup V(C_w) \cup V(P^d) = V(G)$. Note that if $V(P) \cap V(P^d) \ne \phi$, then from (i) of Lemma 2.3 we have that $V(P) \cap V(P^d) = \{\frac{n+1}{2}\} \subseteq V(C_w)$. Hence we conclude that G has a spanning subgraph G^* isomorphic to $\mathfrak{R}^*(n,r,s)$, where $1 \le r \le \frac{n-1}{2}$ and $r+1 \le s \le \frac{n+1}{2}$. We assume without loss of generality that $G^* = \mathfrak{R}^*(n,r,s)$ and the vertex w=1. We consider the edges in $E(G) \setminus E(G^*)$.

If $G^*=\mathfrak{R}^*(n,r,\frac{n+1}{2})$ $(1\leq r\leq \frac{n-1}{2}).$ Then there is no any vertex in $V(G)\backslash\{r+1,n-r\}$ with loop since $\gamma(1,1)=\gamma(n,n)=n-1.$ It is trivial if $E(G)\backslash E(G^*)=\phi.$ Now let $E(G)\backslash E(G^*)\neq\phi,$ and let [i,j] be any edge in $E(G)\backslash E(G^*)$ (and thus $[i^d,j^d]\in E(G)\backslash E(G^*)$), where $i\neq j.$ If $i\in V(C_1)$ and $j\in V(P)\cup V(P^d)$, then we have $\gamma(1,1)\leq n-2,$ a contradiction. If $i\in V(C_1)\backslash \{\frac{n+1}{2}\}$ and $j\in V(C_1)\backslash \{\frac{n+1}{2}\}$ with $|j-i^d|=|i+j-(n+1)|\neq 1,$ then we can obtain the contradiction $\gamma(1,1)\leq n-2.$ If $i\in V(P)\backslash \{\frac{n+1}{2}\}$ and $j\in V(P^d)\backslash \{\frac{n+1}{2}\}$ with $|j-i^d|=|i+j-(n+1)|\neq 1,$ then we also obtain the contradiction $\gamma(1,1)\leq n-2.$ Therefore, according to the proof of Lemma 3.7 and the definition of $\mathfrak{R}(n,r,\frac{n+1}{2}),$ we conclude that G is isomorphic to some graph in $\mathfrak{R}(n,r,\frac{n+1}{2})$ $(1\leq r\leq \frac{n-1}{2}).$

If $G^* = \mathfrak{R}^*(n,r,r+1)$ $(1 \le r \le \frac{n-3}{2})$. It is trivial if $E(G) \setminus E(G^*) = \phi$. Now let $E(G) \setminus E(G^*) \ne \phi$, and let [i,j] be any edge in $E(G) \setminus E(G^*)$ (and thus $[i^d,j^d] \in E(G) \setminus E(G^*)$). If $j \ne i^d$, then we can obtain the contradiction $\gamma(1,1) \le n-2$. If $j=i^d$ and $i \in \{1,\cdots,r\}$, then i lies on an odd cycle denoted by C_i , and we obtain $d(1,C_i) \le d(1,i) \le r-1 < r = d(1,C_1)$. This contradicts the definition of $C_1(=C_w)$. Therefore, according to the proof of Lemma 3.7 and the definition of $\mathfrak{R}(n,r,r+1)$, we conclude that G is isomorphic to some graph in $\mathfrak{R}(n,r,r+1)$ $(1 \le r \le \frac{n-3}{2})$.

If $G^*=\mathfrak{R}^*(n,r,s)$ for $r+2\leq s\leq \frac{n-1}{2}$. Notice that if $[u,v]\in E(G)\backslash E(G^*)$, then $[u^d,v^d]\in E(G)\backslash E(G^*)$. Hence $E(G)\backslash E(G^*)=\phi$ by $\gamma(1,1)=\gamma(n,n)=n-1$. Thus $G=G^*=\mathfrak{R}^*(n,r,s)=\mathfrak{R}(n,r,s)$ $(r+2\leq s\leq \frac{n-1}{2})$.

Subcase 2.2: |P|=0. Then we have $|C_w|=n$ by $\gamma(w,w)=n-1$. So G contains a subgraph G^* isomorphic to $\mathfrak{R}^*(n,0,s)$ (that is a Hamilton cycle), where $1\leq s\leq \frac{n+1}{2}$. We assume without loss of generality that $G^*=\mathfrak{R}^*(n,0,s)$ and the vertex w=s. Similar to the proof in Subcase 2.1 we have that G is isomorphic to some graph in $\mathfrak{R}(n,0,s)$ $(1\leq s\leq \frac{n+1}{2})$.

Lemma 3.9 Let G = G(A) with $A \in CSP(n)$. Assume that $\gamma(G) = n - 1$

and $\gamma(i,i) < n-1$ for any vertex $i \in V(G)$. Then G is isomorphic to some graph in $\mathfrak{H}(n,l,s)$ $(0 \le l \le \lfloor \frac{n}{2} \rfloor - 1, l+1 \le s \le \lfloor \frac{n}{2} \rfloor)$.

Proof. Since $\gamma(G) = n - 1$ and $\gamma(i, i) < n - 1$ for any vertex $i \in V(G)$, there exists two vertices $i, j \in V(G)$ such that $\gamma(i, j) = \gamma(G) = n - 1$. Let P_{ij} be any shortest path joining i and j. Then $1 \le |P_{ij}| \le n - 1$. We consider two cases.

Case 1: $|P_{ij}| = n-1$. Then $V(P_{ij}) = V(G)$, and so $V(P_{ij}) = V(P_{ij}^d)$. By Lemma 3.2 we have $j = i^d$, and $|iP_{ij}t| = |t^dP_{ij}j|$ for each vertex $t \in V(P_{ij})$. Without loss of generality, let $P_{ij} = P_{1n} = 12 \cdots (n-1)n$. Clearly, $E(G) \setminus E(P_{1n}) \neq \phi$ since G is primitive. Let [u, v] be any edge in $E(G) \setminus E(P_{1n})$. If $u \neq v$, then $d(1, n) \leq n-2$, contradicting the condition $|P_{1n}| = n-1$. Thus u = v. Now let l+1 be the first vertex with a loop along P_{1n} , then $0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$ (since $\gamma(1, 1) < n-1$), and n-l is the last vertex with a loop along P_{1n} . Hence G has a spanning subgraph $\mathfrak{H}^*(n, l, l+1)$ ($0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$). Notice that if n is odd and l = 0, then $E(G) \setminus E(\mathfrak{H}^*(n, 0, 1)) \neq \phi$ since $\gamma(\frac{n+1}{2}, \frac{n+1}{2}) < n-1$. Thus, we conclude that G is isomorphic to some graph in $\mathfrak{H}(n, l, l+1)$ ($0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$).

Case 2: $1 \leq |P_{ij}| < n-1$. Let $C_{P_{ij}}$ be an odd cycle such that $d(P_{ij}, C_{P_{ij}}) = \min\{d(P_{ij}, C) : C \text{ is an odd cycle in } G\}$, and let P_* be the shortest path between P_{ij} and $C_{P_{ij}}$. By Lemma 3.5 we conclude $V(C_{P_{ij}}) \cap V(C_{P_{ij}}^d) = \phi$. It follows from (ii) of Lemma 3.4 that $|C_{P_{ij}}| = |C_{P_{ij}}^d| = 1$. Hence $|P_*| \geq 1$, and hence by Lemma 3.6 we conclude $V(P_*) \cap V(P_*^d) = \phi$. According to the proof in Lemma 3.4 we have that $|P_{ij}| + 2|P_*| + |C_{P_{ij}}| = n$ and $V(P_*^d) \cup V(P_{ij}) \cup V(P_*) \cup V(C_{P_{ij}}) = V(G)$, so $|P_{ij}| + 2|P_*| = n - 1$, $V(P_*^d) \cup V(P_{ij}) \cup V(P_*) = V(G)$, and $V(P_{ij}) = V(P_{ij}^d)$. By Lemma 3.2 we have that $j = i^d$ and $|iP_{ij}t| = |t^dP_{ij}j|$ for each vertex $t \in V(P_{ij})$.

Now let $i_0 = V(P_*) \cap V(P_{ij})$. Then $i_0^d \in V(P_*^d) \cap V(P_{ij})$ and $i_0 \neq i_0^d$. It is not difficult to verify that $d(i_0, i_0^d)$ and n have different parity. We assume without loss of generality that $d(i, i_0) = l < d(i, i_0^d)$ and $d(i_0, i_0^d) = n + 1 - 2s$. Then $0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$, $|P_{ij}| = n + 1 - 2s + 2l$ and $|P_*| = s - l - 1$. Since $d(i_0, i_0^d) \geq 1$ and $|P_*| \geq 1$, we have $l + 2 \leq s \leq \lfloor \frac{n}{2} \rfloor$. Thus we conclude that G has a spanning subgraph G^* isomorphic to $\mathfrak{H}^*(n, l, s)$, where $0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$ and $l + 2 \leq s \leq \lfloor \frac{n}{2} \rfloor$. Without loss of generality, let $G^* = \mathfrak{H}^*(n, l, s)$ $(0 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1, l + 2 \leq s \leq \lfloor \frac{n}{2} \rfloor)$. We consider two subcases.

Subcase 2.1: l = 0. Then $2 \le s \le \lfloor \frac{n}{2} \rfloor$. This implies that $i = i_0 = s$, $C_{P_{ij}} = [1, 1], P_* = 1 \cdots (s - 1)$ and $P_{ij} = s \cdots (n + 1 - s)$.

If $2 \le s \le \lfloor \frac{n}{2} \rfloor - 1$. Then $E(G) \setminus E(G^*) = \phi$ by $\gamma(i, j) = \gamma(s, n + 1 - s) = n - 1$, and $\mathfrak{H}(n, 0, s) = \mathfrak{H}^*(n, 0, s)$ by the definition of $\mathfrak{H}(n, l, s)$ for $l + 2 \le s \le \lfloor \frac{n}{2} \rfloor - 1$. Hence $G = G^* = \mathfrak{H}(n, 0, s)$ $(2 \le s \le \lfloor \frac{n}{2} \rfloor - 1)$.

If *n* is odd and $s = \lfloor \frac{n}{2} \rfloor$. Then $s = \frac{n-1}{2} = \lceil \frac{n}{2} \rceil - 1$. Arguing as above we have $G = G^* = \mathfrak{H}(n, 0, \lfloor \frac{n}{2} \rfloor)$.

If n is even and $s = \lfloor \frac{n}{2} \rfloor = \frac{n}{2}$. It is trivial if $E(G) \setminus E(G^*) = \phi$. Now let $E(G) \setminus E(G^*) \neq \phi$, and let [u,v] be any edge in $E(G) \setminus E(G^*)$. Then $[u^d,v^d] \in E(G) \setminus E(G^*)$ and $u,v \in V(G) \setminus \{\frac{n}{2},\frac{n+2}{2}\}$. Suppose $v \neq u^d$, it is easy to see that $\gamma(\frac{n}{2},\frac{n+2}{2}) < n-1$, contradicting the condition $\gamma(\frac{n}{2},\frac{n+2}{2}) = \gamma(i,j) = n-1$. Hence $v = u^d$. Thus, according to the proof of Lemma 3.7 and the definition of $\mathfrak{H}(n,0,\frac{n}{2})$, we conclude that G is isomorphic to some graph in $\mathfrak{H}(n,0,\frac{n}{2})$.

Subcase 2.2: $1 \leq l \leq \lfloor \frac{n}{2} \rfloor - 1$. Then $i = 1, j = n, P_{ij} = 1 \cdots ls \cdots (n + 1 - s)(n + 1 - l) \cdots n, C_{P_{ij}} = [l + 1, l + 1]$ and $P_* = (l + 1) \cdots s$. Notice that $l + 2 \leq s \leq \lfloor \frac{n}{2} \rfloor$.

If $l+2 \le s \le \lceil \frac{n}{2} \rceil - 1$. Suppose $E(G) \setminus E(G^*) \ne \phi$, then it is not difficult to verify that $\gamma(1,n) < n-1$, contradicting the condition $\gamma(1,n) = n-1$. Hence $E(G) \setminus E(G^*) = \phi$, and hence $G = G^* = \mathfrak{H}^*(n,l,s) = \mathfrak{H}(n,l,s)$ $(l+2 \le s \le \lceil \frac{n}{2} \rceil - 1)$.

If n is even and $s = \lfloor \frac{n}{2} \rfloor = \frac{n}{2}$. By a similar argument as in subcase 2.1, we have that G is isomorphic to some graph in $\mathfrak{H}(n,l,\frac{n}{2})$ $(1 \le l \le \frac{n}{2} - 1).\square$

Combining Lemma 3.7, Lemma 3.8 and Lemma 3.9, we have

Theorem 3.1 Let $A \in CSP(n)$. Then $\gamma(A) = n - 1$ if and only if G(A) is isomorphic to some graph in $\mathfrak{H}(n, l, s) \cup \mathfrak{R}(n, r, s)$.

Acknowledgements

The author would like to thank the referees for valuable suggestions.

References

[1] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.

- [2] Q. Li and J. Shao, The index set problem for Boolean (nonnegative) Matrices, *Discrete Math.* 123(1993) 75-92.
- [3] R. A. Brualdi and J. A. Ross, On the exponent of a primitive nearly reducible matrix, *Math. Oper. Res.* 5(1980) 229-241.
- [4] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica(Ser. A) 9(1986) 931-939.
- [5] B. Liu, B. Mckay, N. Wormald and K. Zhang, The exponent set of symmetric primitive (0,1)-matrices with zero trace, *Linear Algebra Appl.* 133(1990) 121-131.
- [6] Huang Deode, On circulant Boolean matrices, Linear Algebra Appl. 136(1990) 107-117.
- [7] B. Liu and J. Shao, The characterization of primitive extremal matrices, Sci. Sinica (Ser. Λ) 1(1991) 5-14.
- [8] B. Zhou and B. Liu, Matrices with maximum exponents in the class of doubly stochastic primitive matrices, *Discrete Appl. Math.* 91(1999) 53-66.
- [9] B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003) 67-72.