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Abstract

In this paper, we have discussed the dynamic coloring of an kind of
planar graph. Let G be a Pseudo-Halin graph, vﬁe prove that the dynamic
chromatic number of G is at most 4. Examplés are given to show the
bounds can be attained.
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1 Introduction

All graphs considered in this paper are finite, loopless, and with-
out multiple edges. For a graph G, let V(G) ]E(G) [V(G)|,A(G) and
0 denote, respectively, its vertex set, edge set number of vertices,
maximum degree, and minimum degree. For a vertex v, let d(v)and
N(v) denote its degree and neighbor vertex set respectively. A ver-
tex of degree k is called a k-vertex. For two vertices u,v € V(G), let
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distg(u,v) denote the distance between % and v in G, the length of
the shortest path connecting them.

A k-dynamic coloring of a graph G is a mapping o from V(G)
to the set of colors {1,2,---}, such that o(z) # o(y) for every zy
of G and for every v € V(G), |C(v)| > min{2,d(v)}, where C(v) =
{o(u)jlu € N(v)}. We call G k-dynamic colorable if it has a k-
dynamic coloring. The dynamic chromatic number x4(G) of G is
the smallest integer & such that G is k-dynamic colorable.

The concept was first introduced in [2] and developed by Bruce
Montgomery [4]. In this paper, we proved that x4(G) < 4 for every
Pseudo-Halin graph.

Pseudo-Halin graph is first studied by Lin-zhong Liu and Zhong-
fu Zhang in [3]. Let G(V, E) be a 2-connected planar graph, fo be
a face without chord on its boundary (a cycle) and d(v) > 3 for
every v € V(fo). When a tree T, in which all vertices v € V' \ V(fo)
satisfies d(v) > 3, is obtained from G(V, E) by deleting all edges on
the boundary of fy, then G(V, E) is called a Pseudo-Halin graph;
G(V, E) is said to be Halin graph iff d(v) = 3 for every v € V(fo). fo
is called exterior face (the other is called interior face ). The every
vertex on fp is called exterior vertex (the other is called interior
vertex), the vertex v € V(fy) and d(v) = 3 is called regular vertex,
the other on fy is irregular vertex. The regular vertex-set is denoted
by R(fa), the irregular vertex-set by IR(fo).

2 Main results

Lemma 181, Let G be o Pseudo-Halin graph with outer face f,
then:

(1) v € IR(fo), all interior vertices adjacent to v aren’t adjacent
to each other.

(2) v € IR(fo), there are at most two vertices in N(v) in the
same interior face.

Lemma 2. Let G be a Pseudo-Halin groph (G # Wp) with
outer face fo, p = uwyug---ux is a longest path in G — E(fp), w €
{uz,ux—1}, then one of the following holds:

(1) w is the interior vertez of G, N(w) C V(fo), |N(w) NIR(fo)| =
1, let N(w) = {y1,v1,u2, "+, um }(m > 2), Tu1, Yum, wsui+1 € E(fo),



ye IR(fO)ax 7& U2, Y 71: um.—l,(i = 1’ 27 :m_1)7 then the gmpheS:
Gl =G — {w,uli=1,2-,k} + {zy}

|
G% =G - {u,;,Ui+1,"',Uj}+{W-l“j+1}(2 $1'<.7 S m_l)

are also Pseudo-Halin graphes. ‘

(2) w is the interior vertez of G and |N(w) N(V(G)\V (fo))| =1,
|N(w)N R(fo)| = d(w) — 1. Let N(w) = {u,u1, -, um}, u is the
interior 'vertem, u; € R(fO)a (7‘ = 11 2a e 7m); TUL, YUm, Uilip1 €
E(fO)!i =142 ,m—1,z#uy# um-l;i then the graphes:

G% =G—{u1,u2,-~-,14,,,}+{:cw,yw}

Gg =G - {ubu‘i-l-l? e 1uj} + {ui+luj+l}'(2 < ) < .7 < m,m > 3)

are also Pseudo-Halin graphes.

Lemma 30!, Let G be a Pseudo-Halin gmph (G # Wp). Then
the followings hold:

(1) if w,z and y are vertices such as Case 1 in Lemma 2, then
zy € E(G). |

(2) if w,z and y are vertices such as Case 2 in Lemma 2, then
{2y} NIR(fo)| < 1. |

Lemma 4. Let G be a pseudo-Halin graph, w,z and y are ver-
tices such as Case 2 in Lemma 2, u € N(w)\{u1, -, um}. Then
there is at least one verter a € {x,y}, s'u,ch that distr(a,u) < 2
holds.

Proof. By the former lemma, suppose that p = vyu - - - vg_guwuvg
is the longest path in T', v € {u1,- -, %y }. The proof is divided into
the following two cases.

Case 1: z € IR(fy). By Lemma 3, y € R(fo). Since p =

V103 - - - Vg_3uwy, is the longest path, we know that z € {vy,vs,- -, vp— 3}.

Otherwise, p isn’t the longest path in T'. In fact, there is one inte-
rior vertex b € N(z)\{u}. Letc € N (b)\{a:}, P =v- - - zbe.
Obviously, p’ is the path in T and longer than p.

Suppose that distr(u,y) > 3, then dzstT('vl, y) 2 distr(vi,v) +
1. This is contradiction. Let a = y, the condlusmn is true.

Case 2: z € R(fo). By Lemma 3,y € II‘%(fo) or y € R(fo).

Subcase 2.1: y € IR(fp). According: to the analysis above,

distr(u,z) < 2. Let a = z, the conclusion is true.




Subcase 2.2: y € R(fy). If distr(u,y) < 2, suppose ¢ =
y. If distp(u,y) > 3. In T, let P = vjvp---vp_guwuy is the
longest path and p; = w---y. If (V(p) N V(p1))\{u} # ¢, let
P2 = U1V2- - Vgp—3u---y. Obviously, pa is longer than p in T. So
(V(®)NV(p1))\{z} = ¢. Assame as the analysis above, distr(u,z) <
2. Let a = z, the conclusion is true.

Lemma 5. Let w,z,y and u be vertices such as in Lemma 4. If
distp(u,y) = 2, then one of the followings holds:

(1) y is the vertez of an triangle;

(2) distr(u, ) = 1,z € R(fo);

(3) distr(u,x) =2, x is the vertez of an triangle.

Proof. Let p = vjvp--- vp—guwvg, vk € {u1,---,umn} be the
longest path in T, v € N(u) N N(y), w1, -, un, referenced Lemma
2. The proof is divided into the following two cases:

Case 1: v € V(P). Similarly the analysis in Lemma 4, we obtain
that distr(u,z) < 2. ‘

If disty(u,z) = 1, we know that z € R(fy). Otherwise, p isn’t
the longest path in T'. So Case 2 holds.

If disty(u,x) = 2. Let ubz is the path in T', then b is the interior
vertex such as w. z is the vertex of an triangle. Case 3 holds.

Case 2: v € V(p). According to the former analysis, y is the
vertex of triangle. Case 1 holds.

Similarly, we get the Lemma 6.

Lemma 6. Let w,z,y and u be vertices such as in Lemma 4. If
distr(u,y) = 1, then one of the following holds:

(1) y € R(fo);

(2) distr(u,z) = 1,z € R(fo);

(3) distr(u,x) = 2, z is the vertezx of an triangle.

Theorem 1. Let G be a pseudo-Halin graph, then x4(G) < 4.

Proof. It is sufficient to prove that G has a 4-dynamic color-
ing. Our proof proceeds by induction on the number of vertices of
G. In the following proof, let C = {1,2,3,4}; For the set S of ver-
tices, Cp(S) = {oo(uw)|u € S}. In the following proof, the uncolored
elements of V(G) are colored with the same colors as in gg of Gy.

The conclusion follows immediately if |G| < 7. Now assume that
|G| > 8 and the conclusion holds for graph H with |H| < |G|. When
G = Wy(p > 8), G has a 4-dynamic coloring. If G # W, it has



one vertex w such as in Lemma 2. So the proof is divided into the
following two cases.

Case 1: w is the vertex such as Case 1 i m Lemma 2.

Subcase 1.1: d(w) =

Consider the graph Go = G — {w,u1,u2} + {zy}. Then Gy is
a Pseudo-Halin graph and |V(Gp)| = n — 3 < n. By the induction
hypothesis, Gy has a 4-dynamic coloring ao.' We now extend op to
the dynamic coloring o of G.

Let o(u1) = a0(y); o(u2) € C\{oo()}; C"(w) C\{oo(y), o(us)}.

Subcase 1.2: d(w) > 4.

Consider the graph Gy = G — {u;,ug,--- ,um,'w} + {zy}. Then
Go is a pseudo-Halin graph and |V(Gg)] = n—m —1 < n. By
the induction hypothesis, Gy has a 4-dynamic coloring oy. Now ,we
construct a 4-dynamic coloring o on ay.

Let o(u1) = 0o(y); o(w) € C\{o0(y)};uz,u3,- -, um are colored
alternatively by the two colors in the set C\{oo(y),o(w)} in turn.

Case 2: w is the vertex such as Case 2 in Lemma. 2.

Subcase 2.1: d(w) = |

Consider the graph Go = G {ua, u2}+{mw yw}, then the graph
Go is a pseudo-Halin graph and |V(Gp)| = n‘ 2 < n. By the induc-
tion hypotheses, Gy has a 4-dynamic coloring og. Now, we construct
a 4—dynam1c coloring o on the founder of go. For simplicity, let

= N(z)\{u1}, N2 = N(y)\{u2} in the following proof. Accord-

mg to the order of the set Co(N1) and Cp (Ng), the proof is divided
into the following two cases.

Subcase 2.1.1: Between Cy(N;) and Cy(INV2), there is at least
one set whose order is more than or equate to 2. Without loss of
generality, we assume that |Co(N;)| > 1, lC’o(Nz)[ > 2. Suppose
that @ € N(z)\{u1}.

Let o(u1) € C\{a0(z), 30(w), o0(a)}; o (us) € C\{o0(y), oo(w), o (1)}

Subcase 2.1.2: |Cp(N1) |=| Co(N2)| = 1. By Lemma 4, without
loss of generality, suppose that distr(u,y) < 2.

If distr(u,y) = 1. By Lemma 6, we have three cases to consider.
According to hypothesis | Co(V7) |=| C()(Ng) |= 1, it is obviously
that Case 3 in Lemma 6 can’t hold. Note, the vertex y in Case 1 is as
similar as z in Case 2 in Lemma 6. So it is enough only to consider
Case 1 in Lemma 6. Suppose that a € N (y)\’{u, uz},b € N(e)\{y}:




Let o(y) € C\({o0(y),00(b)} U Co(M1)); o(w) = oo(y); o(w1) =
GO(w)’

0'('[1,2) € C\{o(y), O(T.U), 0‘(’&1)}-

If distr(u,y) = 2. By Lemma 5 and hypothesis | Co(N1) |=|
Co(N2) |= 1, Case 1 and 3 in Lemma 5 can’t hold. So Case 2 in
Lemma 5 hold. The coloring is referenced the coloring above for
Case 1 in Lemma, 6.

Case 2.2: d(w) > 4.

Consider the graph Gy = G — {u2} + {u1,u3}. Then the graph
Gy is a pseudo-Halin graph and |V(Gp)] = n — 1 < n.. By the
induction hypothesis, Gy has a 4-dynamic coloring og. Let o(ug) €
C\{oo(u1), o0(u3), o(w)}.

From all the former cases, it is not difficult to see that o is a 4
dynamic coloring of G, and thus x4(G) < 4.

Hence, by induction, we have proved theorem 1 is true.

According to the definition of pseudo-Halin graph, we get the
following corollary.

Corollary 1. Let G be a Halin graph, then xq4(G) < 4.

3 Remarks

Now, we give two examples :

(a) Let G =W, (p is even number). Then x4(G) = 4.

(b) If the graph G is isomorphic to the graphs in Figure 1, then
xd(G) = 4.

Fig.1

One can easily verify that the dynamic chromatic numbers for
these graphs are 4. So for some graph, the bounds can be attained.
In this meaning Theorem 1 gives sharp bounds. But on our study,
we give the following conjecture:



Conjecture: Let G be pseudo-Halin graph, |V(G)| > 8 and
G # W, (p is even number), then x4(G) =
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