The Dynamic Coloring Numbers of Pseudo-Halin Graphs

Xianyong Meng^a *Lianying Miao^b, Bentang Su^a, Rensuo Li^a a College of Information Science and Engineering,
Shandong Agriculture University, Taian, Shandong, 27100, China b College of Science, China University of Mining and Technology,
Xuzhou, Jiangsu, 221008, China

Abstract

In this paper, we have discussed the dynamic coloring of an kind of planar graph. Let G be a Pseudo-Halin graph, we prove that the dynamic chromatic number of G is at most 4. Examples are given to show the bounds can be attained.

Key words: Pseudo-Halin graph; dynamic coloring; dynamic coloring number.

Classification: AMS(2000) 05c15/clc o157.5

Document Code: A

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, let V(G), E(G), |V(G)|, $\Delta(G)$ and δ denote, respectively, its vertex set, edge set, number of vertices, maximum degree, and minimum degree. For a vertex v, let d(v) and N(v) denote its degree and neighbor vertex set respectively. A vertex of degree k is called a k-vertex. For two vertices $u, v \in V(G)$, let

^{*}xym@sdau.edu.cn

 $dist_G(u, v)$ denote the distance between u and v in G, the length of the shortest path connecting them.

A k-dynamic coloring of a graph G is a mapping σ from V(G) to the set of colors $\{1,2,\cdots\}$, such that $\sigma(x) \neq \sigma(y)$ for every xy of G and for every $v \in V(G)$, $|C(v)| \geq \min\{2,d(v)\}$, where $C(v) = \{\sigma(u)|u \in N(v)\}$. We call G k-dynamic colorable if it has a k-dynamic coloring. The dynamic chromatic number $\chi_d(G)$ of G is the smallest integer k such that G is k-dynamic colorable.

The concept was first introduced in [2] and developed by Bruce Montgomery [4]. In this paper, we proved that $\chi_d(G) \leq 4$ for every Pseudo-Halin graph.

Pseudo-Halin graph is first studied by Lin-zhong Liu and Zhong-fu Zhang in [3]. Let G(V,E) be a 2-connected planar graph, f_0 be a face without chord on its boundary (a cycle) and $d(v) \geq 3$ for every $v \in V(f_0)$. When a tree T, in which all vertices $v \in V \setminus V(f_0)$ satisfies $d(v) \geq 3$, is obtained from G(V,E) by deleting all edges on the boundary of f_0 , then G(V,E) is called a Pseudo-Halin graph; G(V,E) is said to be Halin graph iff d(v)=3 for every $v \in V(f_0)$. f_0 is called exterior face (the other is called interior face). The every vertex on f_0 is called exterior vertex (the other is called interior vertex), the vertex $v \in V(f_0)$ and d(v)=3 is called regular vertex, the other on f_0 is irregular vertex. The regular vertex-set is denoted by $R(f_0)$, the irregular vertex-set by $IR(f_0)$.

2 Main results

Lemma 1^[3]. Let G be a Pseudo-Halin graph with outer face f_0 , then:

- (1) $v \in IR(f_0)$, all interior vertices adjacent to v aren't adjacent to each other.
- (2) $v \in IR(f_0)$, there are at most two vertices in N(v) in the same interior face.

Lemma $2^{[3]}$. Let G be a Pseudo-Halin graph $(G \neq W_p)$ with outer face f_0 , $p = u_1u_2 \cdots u_k$ is a longest path in $G - E(f_0)$, $w \in \{u_2, u_{k-1}\}$, then one of the following holds:

(1) w is the interior vertex of G, $N(w) \subset V(f_0)$, $|N(w) \cap IR(f_0)| = 1$, let $N(w) = \{y_1, u_1, u_2, \dots, u_m\} (m \ge 2)$, $xu_1, yu_m, u_iu_{i+1} \in E(f_0)$,

 $y \in IR(f_0), x \neq u_2, y \neq u_{m-1}, (i = 1, 2, \dots, m-1), \text{ then the graphes:}$

$$G_1^1 = G - \{w, u_i | i = 1, 2, \cdots, k\} + \{xy\}$$

$$G_1^2 = G - \{u_i, u_{i+1}, \dots, u_j\} + \{u_{i-1}u_{j+1}\} (2 \le i < j \le m-1)$$

are also Pseudo-Halin graphes.

(2) w is the interior vertex of G and $|N(w) \cap (V(G) \setminus V(f_0))| = 1$, $|N(w) \cap R(f_0)| = d(w) - 1$. Let $N(w) = \{u, u_1, \dots, u_m\}$, u is the interior vertex, $u_i \in R(f_0)$, $(i = 1, 2, \dots, m)$, xu_1, yu_m , $u_iu_{i+1} \in E(f_0)$, $i = 1, 2, \dots, m-1$, $x \neq u_2, y \neq u_{m-1}$, then the graphes:

$$G_2^1 = G - \{u_1, u_2, \cdots, u_m\} + \{xw, yw\}$$

$$G_2^2 = G - \{u_i, u_{i+1}, \dots, u_j\} + \{u_{i+1}u_{j+1}\} \cdot (2 \le i \le j \le m, m \ge 3)$$

are also Pseudo-Halin graphes.

Lemma $3^{[3]}$. Let G be a Pseudo-Halin graph $(G \neq W_p)$. Then the followings hold:

- (1) if w, x and y are vertices such as Case 1 in Lemma 2, then $xy \notin E(G)$.
- (2) if w, x and y are vertices such as Case 2 in Lemma 2, then $|\{x,y\} \cap IR(f_0)| \leq 1$.

Lemma 4. Let G be a pseudo-Halin graph, w, x and y are vertices such as Case 2 in Lemma 2, $u \in N(w) \setminus \{u_1, \dots, u_m\}$. Then there is at least one vertex $a \in \{x, y\}$, such that $dist_T(a, u) \leq 2$ holds.

Proof. By the former lemma, suppose that $p = v_1 v_2 \cdots v_{k-3} uwv_k$ is the longest path in $T, v_k \in \{u_1, \dots, u_m\}$. The proof is divided into the following two cases.

Case 1: $x \in IR(f_0)$. By Lemma 3, $y \in R(f_0)$. Since $p = v_1v_2\cdots v_{k-3}uwv_k$ is the longest path, we know that $x \in \{v_1, v_2, \cdots, v_{k-3}\}$. Otherwise, p isn't the longest path in T. In fact, there is one interior vertex $b \in N(x) \setminus \{u\}$. Let $c \in N(b) \setminus \{x\}$, $p' = v_1 \cdots u \cdots xbc$. Obviously, p' is the path in T and longer than p.

Suppose that $dist_T(u, y) \ge 3$, then $dist_T(v_1, y) \ge dist_T(v_1, v_k) + 1$. This is contradiction. Let a = y, the conclusion is true.

Case 2: $x \in R(f_0)$. By Lemma 3, $y \in IR(f_0)$ or $y \in R(f_0)$.

Subcase 2.1: $y \in IR(f_0)$. According to the analysis above, $dist_T(u, x) \leq 2$. Let a = x, the conclusion is true.

Subcase 2.2: $y \in R(f_0)$. If $dist_T(u,y) \leq 2$, suppose a = y. If $dist_T(u,y) \geq 3$. In T, let $P = v_1v_2 \cdots v_{k-3}uwv_k$ is the longest path and $p_1 = u \cdots y$. If $(V(p) \cap V(p_1)) \setminus \{u\} \neq \phi$, let $p_2 = v_1v_2 \cdots v_{k-3}u \cdots y$. Obviously, p_2 is longer than p in T. So $(V(p) \cap V(p_1)) \setminus \{u\} = \phi$. As same as the analysis above, $dist_T(u,x) \leq 2$. Let a = x, the conclusion is true.

Lemma 5. Let w, x, y and u be vertices such as in Lemma 4. If $dist_T(u, y) = 2$, then one of the followings holds:

- (1) y is the vertex of an triangle;
- (2) $dist_T(u, x) = 1, x \in R(f_0);$
- (3) $dist_T(u, x) = 2$, x is the vertex of an triangle.

Proof. Let $p = v_1v_2 \cdots v_{k-3}uwv_k, v_k \in \{u_1, \cdots, u_m\}$ be the longest path in $T, v \in N(u) \cap N(y), u_1, \cdots, u_m$ referenced Lemma 2. The proof is divided into the following two cases:

Case 1: $v \in V(P)$. Similarly the analysis in Lemma 4, we obtain that $dist_T(u, x) \leq 2$.

If $dist_T(u, x) = 1$, we know that $x \in R(f_0)$. Otherwise, p isn't the longest path in T. So Case 2 holds.

If $dist_T(u, x) = 2$. Let ubx is the path in T, then b is the interior vertex such as w. x is the vertex of an triangle. Case 3 holds.

Case 2: $v \notin V(p)$. According to the former analysis, y is the vertex of triangle. Case 1 holds.

Similarly, we get the Lemma 6.

Lemma 6. Let w, x, y and u be vertices such as in Lemma 4. If $dist_T(u, y) = 1$, then one of the following holds:

- (1) $y \in R(f_0)$;
- (2) $dist_T(u, x) = 1, x \in R(f_0);$
- (3) $dist_T(u, x) = 2$, x is the vertex of an triangle.

Theorem 1. Let G be a pseudo-Halin graph, then $\chi_d(G) \leq 4$.

Proof. It is sufficient to prove that G has a 4-dynamic coloring. Our proof proceeds by induction on the number of vertices of G. In the following proof, let $C = \{1, 2, 3, 4\}$; For the set S of vertices, $C_0(S) = \{\sigma_0(u)|u \in S\}$. In the following proof, the uncolored elements of V(G) are colored with the same colors as in σ_0 of G_0 .

The conclusion follows immediately if $|G| \le 7$. Now assume that $|G| \ge 8$ and the conclusion holds for graph H with |H| < |G|. When $G = W_p(p \ge 8)$, G has a 4-dynamic coloring. If $G \ne W_p$, it has

one vertex w such as in Lemma 2. So the proof is divided into the following two cases.

Case 1: w is the vertex such as Case 1 in Lemma 2.

Subcase 1.1: d(w) = 3.

Consider the graph $G_0 = G - \{w, u_1, u_2\} + \{xy\}$. Then G_0 is a Pseudo-Halin graph and $|V(G_0)| = n - 3 < n$. By the induction hypothesis, G_0 has a 4-dynamic coloring σ_0 . We now extend σ_0 to the dynamic coloring σ of G.

Let $\sigma(u_1) = \sigma_0(y)$; $\sigma(u_2) \in C \setminus \{\sigma_0(y)\}$; $\sigma(w) = C \setminus \{\sigma_0(y), \sigma(u_2)\}$. Subcase 1.2: $d(w) \geq 4$.

Consider the graph $G_0 = G - \{u_1, u_2, \dots, u_m, w\} + \{xy\}$. Then G_0 is a pseudo-Halin graph and $|V(G_0)| = n - m - 1 < n$. By the induction hypothesis, G_0 has a 4-dynamic coloring σ_0 . Now ,we construct a 4-dynamic coloring σ on σ_0 .

Let $\sigma(u_1) = \sigma_0(y)$; $\sigma(w) \in C \setminus \{\sigma_0(y)\}$; u_2, u_3, \dots, u_m are colored alternatively by the two colors in the set $C \setminus \{\sigma_0(y), \sigma(w)\}$ in turn.

Case 2: w is the vertex such as Case 2 in Lemma 2.

Subcase 2.1: d(w) = 3.

Consider the graph $G_0 = G - \{u_1, u_2\} + \{xw, yw\}$, then the graph G_0 is a pseudo-Halin graph and $|V(G_0)| = n - 2 < n$. By the induction hypotheses, G_0 has a 4-dynamic coloring σ_0 . Now, we construct a 4-dynamic coloring σ on the founder of σ_0 . For simplicity, let $N_1 = N(x) \setminus \{u_1\}, N_2 = N(y) \setminus \{u_2\}$ in the following proof. According to the order of the set $C_0(N_1)$ and $C_0(N_2)$, the proof is divided into the following two cases.

Subcase 2.1.1: Between $C_0(N_1)$ and $C_0(N_2)$, there is at least one set whose order is more than or equate to 2. Without loss of generality, we assume that $|C_0(N_1)| \ge 1$, $|C_0(N_2)| \ge 2$. Suppose that $a \in N(x) \setminus \{u_1\}$.

Let $\sigma(u_1) \in C \setminus \{\sigma_0(x), \sigma_0(w), \sigma_0(a)\}; \sigma(u_2) \in C \setminus \{\sigma_0(y), \sigma_0(w), \sigma(u_1)\}.$ Subcase 2.1.2: $|C_0(N_1)| = |C_0(N_2)| = 1$. By Lemma 4, without

loss of generality, suppose that $dist_T(u, y) \leq 2$.

If $dist_T(u, y) = 1$. By Lemma 6, we have three cases to consider. According to hypothesis $|C_0(N_1)| = |C_0(N_2)| = 1$, it is obviously that Case 3 in Lemma 6 can't hold. Note, the vertex y in Case 1 is as similar as x in Case 2 in Lemma 6. So it is enough only to consider Case 1 in Lemma 6. Suppose that $a \in N(y) \setminus \{u, u_2\}, b \in N(a) \setminus \{y\}$.

Let $\sigma(y) \in C \setminus (\{\sigma_0(y), \sigma_0(b)\} \cup C_0(N_1)); \ \sigma(w) = \sigma_0(y); \ \sigma(u_1) = \sigma_0(w),$

 $\sigma(u_2) \in C \setminus \{\sigma(y), \sigma(w), \sigma(u_1)\}.$

If $dist_T(u, y) = 2$. By Lemma 5 and hypothesis $|C_0(N_1)| = |C_0(N_2)| = 1$, Case 1 and 3 in Lemma 5 can't hold. So Case 2 in Lemma 5 hold. The coloring is referenced the coloring above for Case 1 in Lemma 6.

Case 2.2: $d(w) \ge 4$.

Consider the graph $G_0 = G - \{u_2\} + \{u_1, u_3\}$. Then the graph G_0 is a pseudo-Halin graph and $|V(G_0)| = n - 1 < n$. By the induction hypothesis, G_0 has a 4-dynamic coloring σ_0 . Let $\sigma(u_2) \in C \setminus \{\sigma_0(u_1), \sigma_0(u_3), \sigma(w)\}$.

From all the former cases, it is not difficult to see that σ is a 4 dynamic coloring of G, and thus $\chi_d(G) \leq 4$.

Hence, by induction, we have proved theorem 1 is true.

According to the definition of pseudo-Halin graph, we get the following corollary.

Corollary 1. Let G be a Halin graph, then $\chi_d(G) \leq 4$.

3 Remarks

Now, we give two examples:

- (a) Let $G = W_p$ (p is even number). Then $\chi_d(G) = 4$.
- (b) If the graph G is isomorphic to the graphs in Figure 1, then $\chi_d(G) = 4$.

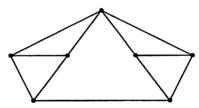


Fig.1

One can easily verify that the dynamic chromatic numbers for these graphs are 4. So for some graph, the bounds can be attained. In this meaning Theorem 1 gives sharp bounds. But on our study, we give the following conjecture: Conjecture: Let G be pseudo-Halin graph, $|V(G)| \geq 8$ and $G \neq W_p$ (p is even number), then $\chi_d(G) = 3$.

Acknowledgements

We would like to express our gratitude to the referees for their careful checking and commenting on our manuscript and for pertinent suggestions.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Application. [M]. New York, Macmillan Press. 1976.
- [2] H. J. Lai, B. Montgomery and H. Poon, Upper bound of dynamic chromatic number, Ars Combinatoria, 68 (2003), 193–201.
- [3] L. Z. Liu, Z. F. Zhang, On the properties and coloring of Pseudo-Halin Graph. [J], J. of Lanzhou Railway Institute. 2001.20(4). 105-107.
- [4] B. Montgomery. Dynamic Graph Coloring, Ph. D. Dissertation, West Virginia University, 2001.