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ABSTRACT. A (p,q)-graph G in which the edges are labeled 1,2,3,...q so that
the vertex sums are constant, is called supermagic. If the vertex sum mod p is
a constant, then G is called edge-magic. We investigate the supermagic
characteristic of a simple graph G, and its edge-splitting extension SPE(G,f).
The construction provides an abundance of new supermagic multigraphs.
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1. Introduction. Magic graphs were first initiated by Sedlacek (around
1963) [14,15] as the problem of labeling the edges of the graph with real
numbers so that the sum of the edges label to a vertex is same as all the other
vertices. Jeurissen [5], Jezney and Trenkler [6] gave characterizations of magic
graphs. A characterization of regular magic graphs in term of even circuits is
given by Doob [1]. Korig, Sun, Lee et al [7,24,25] provided some general
constructions of magic graphs. Since Sedlacek's original article [14], literally
hundred of papers have been wntten on magic graph labehngs (see the survey
article [2])

If G is a (p,q)-graph in which the edges are labeled 1,2,3,...q so that the vertex

sums defined by f*(u) =2{f(u,v): (u,v) in-E} is constant, then G is called
supermagic. Figure 1 shows a graph with 6 vertices and 8 edges which is
supermagic.
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Supermagic
Figure 1

B.M. Stewart [22,23] showed that K3, K4, K5 are not supermagic and when n
= 0 (mod 4), K}, is not supermagic. For n>5, K, is supermagic if and only if n =
0 (mod 4). Hartsfield and G. Ringel [2] provided some classes of supermagic
graphs. Ho and Lee [4] extended the result of Stewart to regular complete k-
partite graphs. Recently Shiu, Lam and Cheng [17] considered a class of

supermagic graphs which are disjoint union of K3 3.
A generalization of supermagic graphs was introduced by Lee, Seah and Tan
[10]. A graph G = (V, E) with p vertices and q edges is called edge-magic if
there is a bijection f : E—>{1, 2,..., q} such that the induced mapping f* V—Zp,

given by fT(u) =Z{fu,v): (u,v) in E} (mod p) is a constant. A necessary
condition for a (p,q)-graph to be edge-magic is q(q+1)= 0(mod p). However,
there are infinitely many connected graphs such as trees, cycles satisfy the
necessary condition but are not edge-magic.

&

not super-magic

Figure 2

The concept of edge-magic labeling of graphs is the dual concept of edge-
graceful labeling [10]. In 1985, Lo Sheng-Ping [13] introduced the concept of
edge-graceful graphs. A (p,q)-graph G = ( V, E), of p vertices and q edges, is
said to be edge-graceful if there exists a bijection f : E—{l, 2,.....q} such that
the induced mapping f* : V_ {0,1,......p-1}, defined by f'(v) == {fu,v): (u,v) €
E(G)} (mod p) is a bijection.
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The cartesian product of two paths is frequently called the grid graph. The
cartesian product of two cycles is called the torus graph. It was shown in [16]
that the torus graph C,, x C, is edge-magic for all m,n >2.

Karl Schaffer and Sin-Min Lee [16] have shown that  if G and H are both
odd-order, regular, edge-graceful graphs, where G is d-regular and has m
vertices, and H is k-regular and has n vertices, and furthermore GCD(d,n) =
GCD (k,m) =1, then G x H is edge-graceful. In particular, they showed that the
torus graph C 2j +1 x C 2 j+] is edge-graceful.

Finding the magic labeling of graphs are related to solving system of linear
Diophantine equations [21]. In general it is difficult to find an edge-magic or
supermagic labeling of a graph. Several classes of graphs had been shown to be
edge-magic ( [8,9,10,11,12,17,18] ). For more conjectures and open problems on
edge-magic graphs the reader is referred to [8.9,10,11,12].

Shiu, Lam and Lee [18,19] give a general construction of supermagic
graphs and edge-magic graphs. The reader should see the survey article of
Gallian [2] for various labeling problems.

In this paper we introduce a construction of super magic graphs by splitting
some of the edges of the graphs. We consider this construction for perfect
matchings and cycles.

2. Edge-splitting extensions of graphs.

In this section, we shall introduce a general construction of  muitigraphs
from a given simple graph. Let N={1,2,3,...} be a set of natural numbers.

Given a pair (G, f) where G = (V ,E) is a simple graph with p vertices and
q edges and f: E(G) — N, we can construct a graph SPE(G,f) as follows:

For each edge e of E(G) if f{e)= k, we associate a set of parallel edges
P(e) = {e).€z,...,ex}. We observe that V(SPE(G,f)) = V(G) and E(SPE(G,f)) = U
{P(e): e € E(G)}

We shall call the graph SPE(G,f) as an edge-splitting extension graph of
G.D.

We illustrate here with one example:

Example 1. Let G= C, and f:E(C;)—> N as follows:
2

G.H SPE(G,)

Figure 3
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A necessary condition for a (p,q)-graph to be supermagic is q(q+1)= 0 (mod
p). However, this is not the sufficient condition. Consider the following
example:
Example 2. Let G= Cq and h:E(Cs)— N be defined as follows:

albjc|d]e |f
hjl]2(1]2]11]2

Then we see that the following SPE(Cq,h) (Figure 4) has 6 vertices and 9 edges.

Figure 4

If the graph is supermagic then three single edges must be labeled by x for some
x which is not possible.

Remark. In fact, if G is a graph with three edges a, b, and c such that a is
adjacent to b and b is adjacent to ¢ but a and c are not adjacent and f: E(G)— N
with property f(a) = f{c) = 1, then SPE(G,f) is not supermagic.

Theorem 1. If G is a regular simple graph and f: E(G) — N is a constant map
with f{e)=2t for a fixed t, then SPE(G,f) is supermagic.
Proof. Suppose G is a (p,q)-graph. We see that SPE(G,f) has 2tq edges. We
divide the set of integers {1,2,...,2tq} into tq pairs {1,2tq},{2,2tq-1},...,{k,2tq-
k+1}...,{tq,tq+1}. We denote this set by H

For each e of G, P(e)= {e,e...,ex} We form the t pairs {e |,e2}, {es,es}...{€x.
IyeZt}'

Then the set of edges  SPE(G,f) has tq pairs. We denote the set by Q. Any
bijection F : Q—H induces a super edge-magic labeling g : E(SPE(G.f)) —
{1,2,...,2tq} by letting g(a)= i and g(b)=j if F({a,b})={ij}.0 :

There exists graph G such that SPE(G,f) is not supermagic for any f : E(G) —
N. For example a connected graph G has a tail of length greater than or equal to
one has this property. We can formulate the above observation by the following
result.

Theorem 2. Any graph G with two vertices u,v such that deg(u)=1 and deg(v)>2
and u,v are adjacent has the property that SPE(G, f) is not supermagic for any f
E(G) — N.

Corollary 3. For any n>1, the complete bipartite graph K , has the property that
SEP(K ,,, f) is not supermagic for any f E(G) — N.
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Corollary 4. If n > 2, then the graph SEP(P,,f) is not supermagic for all f: E(G)
—N.

Theorem 5.(a) The graph G=P, has the property that SPE(G, f) is supermagic
forany f: E(G) = N.[J

(b) P, is the only graph G with the property that  SPE(G, f) is supermagic for
any f: E(G) = N.[]

3. Edge-splitting extension of perfect matchings.
Let mK; be the m perfect matching and f: E(mK,) — N with f{e) = n for all
e in E(G). A
Shiu and Lee [20] showed that:

Theorem 6. For m,n = 2, the splitting-edge extension of the m perfect matching
and f: E(G) — N with f{e) = n for all e in E(G) is supermagic if and only if n is
even or both m and n are odd.

Example 3. We label SPE(3K,,f) where f: E(3K;) — N with f{e) = 3 for all e of

bé

Figure 5

Theorem 7. If the graph SPE(2K,,f) where f : E(2K;) — N is supermagic, then
Zf{e)=1 (mod 4) or Zf(e)»2 (mod 4). ‘
Proof. If Zf(e)=1 (mod 4) then Zf(e)=4k+1 for some k. As q=4k+1, we have
q(q+1) = (4k+1)(4k+2) = 2(4k+1)(2k+1). ,

Now p=4. It is clear that q(q+1) = 0 (mod 4). Thus SPE(2K,,f) cannot be
supermagic.

If Zf(e)n2 (mod 4) then Zf(e)=4k+2 for some k. As q = 4k+2, we have g(q+1)
= (4k+2)(4k+3) = 2(4k+3)(2k+1). Now p=4. It is clear that q(q+1)= 0 (mod 4).
Thus SPE(2K,;, f) cannot be supermagic. [ '

Theorem 8. The graph SPE(2K,,f) where f : E(2K;) — N is supermagic if
fa)=2k-1, f(b)=2k for k>1. ‘
Proof. We see that SPE(2K,,f) has 4k-1 edges. We label the edges P(a) =
{anaz,..., axa} by A = {1, 2, 3,...,[(2k-1)/2], 4k-1, 4k-2,..., 4k-[(2k-1)/2]-1}.
The other edges P(b) = {b,, b,..., by} will be labeled by the complement of A
in {1, 2,..., 4k-1}.

We observe that this is a supermagic labeling. []
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Example 4. We can have a supermagic labeling of SPE(2K;f) with
f{a)=7,f{b)=8 as follows:

{1,2,3, 15,14,13,12}, {4,5,6,7,8,9,10,11}.

Theorem 9. The graph SPE(2K,,f), where f : E(2K;, f) — N, is supermagic if

fle;) =n, f{e;) = 2n for n = 0 (mod 4) or n = 1 (mod 4).

Proof. We consider two cases:

Casel. n=0(mod4). Letn=4k, k> 1.

The sum of the first 8k inters is 4k(8k+1), and the sum of the last 4k mtergers is

2k(20k+1). Since they differ by 8k” - 2k = (k-1)8k + 6k. We switch {7k + 2, 7k
., 8k} with {11k +2, 11k +3, ..., 12k} and 10k with 7k. For the k-1 pairs

of swap, the first sum increases by 4k and the second sum decreases by 4k,

while the last pair increases the first sum by 3k and decreases the second sum by

3k. As a result, they both sum up to 3k(12k + 1) = 3n(3n + 1)/4. Therefore

SPE(2K;, f) is supermagic.

Case2. n= 1 (mod 4). Letn=4k+1,k> 1.

The sum of the first 8k +2 numbers is (4k + 1)(8k + 3), and the last 4k + 1

numbers sum up to be (4k +1)(10k + 3). They differ by 2k(4k + 1); switching

the last k numbers will give both sums (4k + 1)(9k + 3). We see that SPE(2K», f)

is supermagic. [

Example 5. (a) If SPE(2K,, f) has f(e;) = 8 and f(e;) = 16, we follow case 1 of
Theorem 10, with k = 2 and label P(e;) = {ey, €12, .--, €18} by {17, 18, ..., 24}
P(e2) = {e21, €22, .., €216} by {1, 2, ..., 16}, switching 24 with 16 and 20 with
14, we have a supermagic labeling.

(b) If SPE(2K;, f) has f{e;) = 13 and f{e;) = 26, we follow case 2 of Theorem 10,
with k =3 and label P(el) = {31_1, €125 o e|,|3} by {27, 28, ceey 39} P(ez) = {eg,,,
€2, ..., €226} by {1, 2, ..., 26}, switching 39 with 26, 38 with 25, and 37 with
24, we have a supermagic labeling.

Remark. When m = 3 and f: E(3K;) — N satisfies the necessary condition of
supermagicness, that is (Zf{e)) (1+=f{e) ) = 0 (mod 6), we do not guarantee that
SPE(3K,, f) is supermagic.
For example if E(3K>) = {a,b,c} and we consider the following two mappings:
(1) f(a)=1, f{b)=2 and f(c)=2. We see that 5x6 = 0 (mod 6). The graph SPE(3K;,
. f) is supermagic with the label {5},{1,4} and {2,3}.

(2) f(a)=1, f(b)=2 and f{c)=3. We see that 6x7 = 0 (mod 6). If SPE(3K,,f) is
supermagic then the vertex sum should be 7 which is not possible to have such a
labeling.

Theorem 10 A necessary condition for SPE(3K,f) with f: E(3K;) N, fle)) =

fe;) = n, f{e;) = k to be supermagic is g(q+1) = 0 (mod 6) and q(q+1)/3k< 2q+1
-k.
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Proof. Suppose f{e,) = fle;) = n, f{es) = k and SPE(3K, f) is supermagic. Let A
= {X1, X250.0Xn}, B = {¥1, ¥2,.-0» Yo}» C = {21, Zs,..., 7} be the edge labels of

SPE(3Kj,f). Then we have
2xi= 2y; = Xzm = q(q+1)/6.

Since the sum of {q,(q-1),...,q-k+1} is (k/2)(2q+1-k), thus q(q+1)/6 =
(k/2)(2q+1-k), i.e., q(q+1)/3ks2q+1 -k. []
Remark. The above necessary condition for SPE(3K,,f) to be supermagic is not
sufficient in general. .

Consider SPE(3K,,f) with f{e,) = f(e;) = 2, f(e3) = 7. Here q = 11 and q(q+1)/6
=22. We observe that q(q+1)/3k s 2q+1-k.

However, it is impossible to find two numbers from {1_2_-—_11} whose sum
is 22; hence, SPE(3K,,f) is not supermagic.[J .

Theorem 11. SPE(3K,,f) is supermagic if f : E(3K, ) — N is f{e;) = f(ez) = n,
f(es) = 2n, for n = 0(mod 3) or n = 2(mod 3).

Proof. Case 1. n m O(mod 3). Let n = 3k. Break the set {1, 2, ...,12k} into 3
piles: {1, 2, ...,6k}, {6k+1, 6k+2, ...,9k}, and {9k + 1, 9k + 2, ...,12k}. The
first pile sums up to 3k(6k +1) = 18k* + 3k; the second pile sums up to
(3k/2)(15k + 1) = (1/2)(45k*+3k); and the third pile sums up to (3k/2)(21k + 1) =
(1/2)(63k*+3k).

Switch k numbers in the first pile with k numbers in the third pile with pairwise
difference 6k - 1; e.g., {4k+2, 4k+3, ...,5k+1} with {10k+1, 10k+2, ..., 11k}.

Next if k is odd, we switch k numbers in the second pile with k number in the
third pile with pairwise difference (3k+1)/2; e.g., {7k+(k+1)/2, 7k+(k+3)/2,...,
8k+(k-1)/2} with {9k+1, 9k+2,..., 10k}.

If k is even, we simply switch any k/2 numbers of the second pile with the k/2
numbers of the third pile which differ pairwise by 3k + 1; e.g., {8k+(k/2),..., 9k-
1} with {11k +(k/2)+1,...,12k}. Now all three piles sum up to 24k* +2k.

Case 2, For n = 2(mod 3), let n = 3k +2. We break the set {1,2,...,12k+8} into
three piles as before, {1, 2, ..., 6k+4}, {6k+5,6k+6,....9k+6}, {9k+7, ..., 12k+8}.
The first pile sums up to (3k+2)(6k+5) = 18k* +27k +10, the second pile sums
up to (1/2)(3k+2)(15k+11), and the third pile sums up to (1/2)(3k+2)(21k+15).

We first switch k numbers in the first pile with the k numbers in the third pile
with pairwise difference 6k, and an extra pair with difference 7k + 2; e.g.,
{5k+5, ..., 6k+4; 2k+5} with {11k+5, ..., 12k+4; 9k+7}.

If k is odd, we switch (k+1)/2 numbers in the second pile with the (k+1)/2
numbers in the third pile with pairwise difference 3k+2; e.g.,

{7k+1,...,7Tk+(k+1)/2} with {10k+3, 10k+H4,...,10k-+k-+1)/2 +2}.

If k is even, we simply switch any k/2 numbers in the second pile with the k/2
numbers in the third pile with pairwise difference 3k and one pair with
difference (5k+2)/2.

Then all three piles sum up to (6k+4)(4k+3).[]
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Example 6. If n = 14, f{e;) = f{e;) = 14, and f(e;) = 28, we label ¢, with {29, 30,
..37,45,46,...,49}, e, with {1, 26, 27,28,38,39,40,41,42,44,50,51,52,53}, and e;
with {2,3,..., 25,43, 54, 55, 56}.

Now all three piles sum up to 532.

Remark. SPE(3K»,f) is not supermagic if f : E3K,) — N is f{e;) = f{e;) = n,
f(es) = 2n, and n = 1(mod 3). For if n = 3k+1, then as q = 4n = 12k+4. We see
that the q(q+1) = 4(3k+1)(12k+5) # O(mod 6). Therefore it is not supermagic.

4. Edge-splitting extensions of cycles
In this section we investigate supermagicness of edge-splitting extensions

of cycles.
Theorem 12. If m is odd and k > 1, then the cycle Cy, has supermagic edge
splitting extension for all f, : E(Cy,) — N with f,(¢) =n for all ¢ in Cp,.

For even n, Theorem 12 is a corollary of Theorem 1. For odd n, it is
sufficient to prove for n = 3, a simple induction will prove for all odd n> 3.

We need the following Lemmas in the system of Diophantine equations:

Lemma 4.1. Let m be odd and let s = 3(3m+1)/2. A system of m Diophantine
equations
' X+ Xo 1+ Xs)=s
Xiz2+ X2+ X32=s
X3+ X3+ X33=5
Xl,m + x2.m+ x3.m =S
has a solution with distinct X;; in {1,2,...3m}.
Proof. Set X|_| = 1, X,,z =2, Xu =3, ...Xl,k = k, e X|'m =m, Xz.m= m+l,
Xom2 = m+2,..., Xomax = mtl+k, ... Xz; = m+ (m+1)/2 and Xom-1 =
m+m+3)/2, Xp 3 = mHm+5)/2,..., X2 =2m.
The sums in each row are now distinct consecutive integers m+ (m+3)/2, m+
(m+5)72,...,,2m+m+1)/2,
Thus setting X3 = 2m+1, X;343 = 2m+2,....., X532 = 2m+(m-1)/2; X35 =
2mHm+1)/2, X3 52 = 2mHm+3)/2,..., X;3,= 3m.
We see that the sum of each line yields 4m+m+3)/2 =3(3m+1)/2. ]

Lemma 4.2. Let m > 4 be even, and let s = (9m+2)/2. Then the system of m
Diophantine equations

X+ X1+ X5, =5

X1+ Xp ot X3, =541

X3+ Xo3t+ X33=5

Xim + Xomt Xsm = st
has a solution in distinct integers in {1,2,...3m}.
Proof. Set X” =1, Xl,2 =2, X|J =3, ...Xu =K, ... , Xim = m; X2.m.1 =mtl,
X2'm.3 = m+2,...,. X2'1 = m+(m/2) x2,m = m+(m/2)+l, xlm.z = m+(m/2)+2,...,.
XZ’z =2m.
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The sums of each row are now m+ (m/2)+1, m+ (m/2)+ 2,...,,2m+m/2). They
are consecutive and distinct, except 2m+1 does not occur. By setting Xs
2m+1, X3 p2 = 2m+2,....., X32 = 2m+(m/2); X3 pma = 2mHm/2)+1, X; .3
2mH(m/2)+2,....., X3, = 3m..

We see that the odd rows sum up to be 4m+ (m/2) +1 = s, and the even rows
4m+ (m/2) +2=s+1. ]

nn

Proof of Theorem 12. Let E(C,) = {e,e2,...,en} and for each k between 1 and
m, let {ey 1,64 2,...,€kn} be the parallel edges of SPE(Cy,f) correspond to ey.

We define the edge labeling g: SPE(C,f) — {1,2,...,mn} by setting g( ;) =
Xy; for each k between 1 and m and j between 1 and 3.

Then by Lemma 4.1 and Lemma 4.2, it is a supermagic labeling.

Forn >5, we label the edges 3m+1, 3m+ 2,...,4m consecutively in the
counterclockwise manner; then label the next cycle 4m+1, 4m+2,...,5m in the
clockwise manner, with the edge labels 4m and 4m+1 having the same vertices.

This process is repeated until all the edges are labeled.

It is easy to see the labeling is supermagic.

Example 7. We give a supermagic labeling of SPE(C5, f3). We set X1 =1, X2
=2, X13=3,X13=4,X15=5,X)6 =6, X;7=7, X1 =11, X33=10, X55=9,
X2'7= 8, Xu= 14, X2'4 = ]3, X2'6 =12.

Then we set X32=17, X34=16, X36= 15, X3, =21, X33=20,X35=19,X357=
18, then we observe that each vertex has sum 2s = 2x33 = 66 (see Figure 6):

Figure 6

Example 8. We give a supermagic labeling of SPE(C;, fs), we see that
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Example 9. Let G = C; and f; : E(C;) = N for i = 1,2 be defined as follows:

alb|c
fil]l1]1]3
H1212]1

Then we see that SPE(C;,f}) is not supermagic. However, SEP(Cs,f,) is
supermagic (see Figure 8).

o N

SPE(C3.fy) is not supermagls  SPE(Cs.f) is supermaagic
Figure 8

Theorem 13. Suppose f{a) = f{b) = n and f(c) = 1 in C; then SPE(C;,f) is super
magic if and only if n =2.

Theorem 14 Suppose f(a) = f{lb) = n and f{c) = 2 in C;, then SPE(C;,f) is super
magic if and only if n=2 or 3.
Proof. If n = 2 or 3, the supermagicness of SPE(C;,f) is shown as Figure 9
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15 3 4

6 7
24(4 ﬁé\?
8

Theorem 15. Suppose fle;) = k, f(e;) = k+1 and f(e;) = k+2 in Cj, then
SPE(C;,f) is (a) not super magic for k = 1. (b) supermagic for k > 2.
Proof. (a) If k = 1, SPE(C;,f) has the following configuration (see Figure 10):

Figure 9

Figure 10

Weseethata=b+c=d+e+fora+b+c=a+d+e+f=b+c+d+e+f
has no solution in {1,2,3,4,5,6}. '
The only way to havea=d +e +fisa =6, {d, e, f} ={1,2,3} but there is no way
to obtain b and c.
(b) Assume now that k= 2, we see that q(q+1) = 3(n+1)(3n+4) = 0 (mod 3).
Now we set

Ci= { x: xa 4 (mod 6) or x = 3 (mod 6), 9<x < q}
C;={y: y=2(mod 3),9<x<q}

C;={zza0(mod 6) orz= 1 (mod 6), 9<x < q}

Ifk is even and k = 2m, fle;) = k, fle;) =k + 1 and f(e; )=k+2.

Let A ={6,9}UC,, A, = {2,5,8} UC,, A; = {1,3,4,7} UC; be the edge labels for
parallel edges of e,e,,e; respectively.

For any u in C; we have f'(u) = 2(3m+2)(2m+1).

Ifkisodd k = 2m+1, wesetB | ={7,9} UC,,B, = {2,5,8} UC,, B; =
{1,3,4,6}UC; as the edge labels for parallel edges of e;,e;,e; respectively.

For all u in C we have f'(u)=2(m+1)(6m+7) .

Thus when k = 2, SPE(C;,f) is supermagic. []

Example 10. We label SPE(C3, ) fork =2 as follows:{7,8}, {2,4,9}, {1,3,5,6};
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for k = 3 as follows: {7,9,10}, {1,2,11,12}, {3,4,5,6,8} for k = 4 as follows:
{1,10,14,15}, {4,5,6,12,13}, {2,3,7,8,9,10}.
If we use the method of Theorem 16 we can have another super magic labeling:
A= {6,9,10,15}, A, = {2,5,8,11,14} and A; = {1,3,4,7,12,13}
For each u in C, we have f'(u) = 80.
Fork =35, fle)) =k, f{e; = k+1, f{ez) = k+1, fles) = k+2, in C, the labels of spltting
edges of ej,e,,e; are
A1={79,10,15,16}, A, = {2,5,8,11,14,17} and A; = {1,3,4,6,12,13,18}
For each u in C;, we have f'(u) = 114.

When n is even, we observe that if we define f; : C;— N by f3(e) = 3 for all e in
Cs. The graph SPE(C,, f) has 12 edges. It satisfies the necessary supermagic
condition: g(q+1) = 0 (mod p). It is possible for us to divide {1,2,...,12} into 4
group of triples {x;,X>,x5} : {1,7,11},{2,8,9} with sum 19 and {3,5,12},{4,6,10}
with sum 20. So if we label the splitting edges of (v,v2), (v2,v3), (v3,v4) and
(vs,1) consecutively by {1,7,11}, {3,5,12}, {2,8,9}, {4,6,10}. Then we see that
SPE(C,, f) is supermagic.

The result can be generalized to the following

Theorem 16. SPE(C;,, f) is supermagic if for any t > 2 fle;) =t for all g; in
E(CZn)'
Proof. (1) When t = 2m by Theorem 1, we conclude that SPE(C,,f) is
supermagic,
(2) Assume t = 2m+l, in order to prove that SPE(C,,,f) is supermagic_it
suffices to show that it is true for t = 3.
Since f{e) = 3, we have q = Yf(e) = 6n, we want to partition the set {1,2,...,6n}
into the following sets: '
Ak)={k, 4n+k, 4n-2(k-1) },k=1,2,...,n,
Bk)={n+k,4n-(2k-1),5n+1}, k=1,2,...,n,
The sum of numbers in A(k) is o; = 8n + 2, and the sum of numbers in B(k) is
o;=10n+1.
Assume E(Cy,) ={e1,e,,...,620} We label the splitting edges of e,; by A(i) and
splitting edges of 5+ by B(i)i=1,2,...,n, then '
f'(u) = oy+02 = 3(6n +1.
Therefore SPE(C;,,f) is supermagic. []

Example 11. For SPE(Co,f) with f(e) = 3 for all e in Cyo, we have q = 30. We
partition {1, 2,..., 30} into the following 3-elements subsets

A(l) ={1,20_21}_ AQ2) ={2,18_22}_ AQ3) ={3,16_23}_

A(4) = {4,14_24}_ A(5) ={5,12_25};

B(1)={6,19_26}_ B(2)={7,17_27}_ B(3)={8, 15_28} _

B(4) = {9, 13_29}_ B(5) = {10, 11_30}.

If we label E(SPE(Cio,f)) according the method of the method proof of
Theorem 16, then we see that 0,= 42 _o, =51_f'(u) = 0,40, = 114.
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