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1 Introduction

In this paper we continue the study of the power domination number of
graphs started in [5]. The notion of power domination in graphs was in-
spired by a problem in the electric power system industry. Electric power
companies need to continually monitor their system’s state as defined by a
set of state variables, for example, the voltage magnitude at loads and the
machine phase angle at generators [8]. One method of monitoring these
variables is to place Phasor Measurement Units, called PMU'’s, at selected
locations in the system. Because of the high cost of a PMU, it is desirable to
minimize their number while maintaining the ability to monitor (observe)
the entire system. A system is said to be observed if all of the state variables
of the system can be determined from a set of measurements (e.g., voltages
and currents).

Let G = (V, E) be a graph representing an electric power system, where
a vertex represents an electrical node (a substation bus where transmission
lines, loads, and generators are connected) and an edge represents a trans-
mission line joining two electrical nodes. The problem of locating a smallest
set of PMU’s to monitor the entire system is a graph theory problem closely
related to the well-known vertex covering and domination problems.

A phasor is a complex vector in polar form that has a magnitude and
a phase angle. This stems from the fact that a power system operates in
the steady-state as an Alternate Current (AC) network where the voltages
and currents are sinusoidal functions of time with constant frequency (60
Hz). As a result, a nodal voltage at a bus and a current through a line are
expressed, respectively, as

v(t) =V cos(2pft + q) and i(t) = Icos(2pft +y),
where f is the frequency (60 Hz in the US), V and I are the magnitudes,
and ¢ and y are the phase angles of v(¢) and i(¢), respectively.

A PMU measures the state variable (voltage and phase angle) for the
vertex at which it is placed and its incident edges and their end-vertices
(these vertices and edges are said to be observed). Using Ohm’s Law and
Kirchoff’s Law, we can state the other rules to show observability.

Rules for Direct Current network:

1. Ohm’s Lew, P=IR: Any bus (vertex) that is incident to an observed
line (edge) connected to an observed bus is observed (the known cur-
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rent in the line, the known voltage at the observed bus, and the known
resistance of the line determines the voltage at the bus).

. Ohm’s Law, I=P/R: Any line joining two observed buses is observed
(the known voltage at both observed buses and the known re31stance
of the line determines the current on the line).

. Kirchoff’s Law: If all the lines incident to an observed bus are ob-
served, except one, then all of the lines incident to that bus are ob-
served (the net current flowing through a bus is zero).

Rules for Alternate Current network:

1. Ohm’s Law, V; = V; + Z;;I;;. Here, Z;; is the impedance of the
line connecting buses numbered 7 and j. It is a complex quantity
expressed as Z = R+ jX, where R is the resistance and X is the
reactance of the line. ‘

. Ohm’s Law, I;; = (V;—V;)/Zi;: Any line joining two observed buses is
observed (the known voltages at both observed buses and the known
impedance of the line determines the current of the line).

. Kirchoff’s Law: If the current injection at an observed bus is known
and if the lines incident to that bus are observed, except one, then all
the lines incident at that bus are observed (the net current flowing
through the bus is zero).

For a given set of vertices P C V representing the nodes where the PMU’s
are placed, the following algorithm determines the sets of (observed) ver-
tices C' and edges F.

. Initialize C = P and F = {e € E | e is incident to a vertex in P}.

. Add to C any vertex not already in C which is incident to an edge

in F.

. Add to F any edge not already in F such that

a. both of its end-vertices are in C or

b. it is incident to a vertex v of degree greater than one for which
all the other edges incident to v are in F.

. If steps 2 and 3 fail to locate any new edges or vertices for inclusion,

stop. Otherwise, go to step 2.

Therefore, to solve the power system monitoring problem, we want C =
V, F = E, and to minimize |P|. This monitoring problem was introduced
and studied in [1, 2, 4, 8].
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In [5], the power system monitoring problem was first studied as a varia-
tion of the well-known dominating set problem (see [6, 7]). Let G = (V, E)
be a graph. A set S C V is a power dominating set (PDS) in G if every
vertex and every edge in G is observed by S and the power domination
number vp(G) is the minimum cardinality of a PDS of G. A PDS of
cardinality vp(G) we call a yp(G)-set. The following observation is proven
in [5).

Observation 1 ([5])) If G is a connected graph with mazimum degree at
least 3, then G contains a yp(G)-set in which every vertex has degree at
least 3.

Boisen, Baldwin, and Mili [2] investigated approximation algorithms to
find a solution to the power system monitoring problem. Haynes et. al. [5]
showed that the PDS problem is NP-complete even when restricted to bi-
partite graphs or chordal graphs. On the other hand, they give a linear
algorithm to solve the problem for trees and study theoretical properties
of the power domination number in trees. In [3], the power domination
number of an n x m grid graph is determined. In this paper, we investigate
the power domination number of a block graph.

2 Notation

We shall follow the notation in [6]. In particular, G = (V, E) denotes a
graph with vertex set V and edge set E. An end-verter is a vertex of
degree 1. A spider is defined in [5] as a tree with at most one vertex of
degree 3 or more. The spider number of a tree T, denoted by sp(T'), is the
minimum number of subsets into which V(T) can be partitioned so that
each subset induces a spider.

A block of a graph G is a maximal, 2-connected subgraph of G. A graph
G is a block graph if and only if every block of G is a complete graph. In
particular, a tree is a block graph in which every block is a K3. We call a
block of G that is a complete graph K,, a K,-block of G. We define the
block-degree of a vertex v in G as the number of blocks in G that contain v.
An end-block of G is a block that contains only one cut-vertex of G. The
number of blocks in G is denoted by b(G).

Let G be a block graph. If G itself is a block or if every block of G is
an end-block, then we call G a block-star. In particular, a star K, , where
n > 1 is a block-star in which every block is a K.

132



A block graph formed from a block-star by attaching a path to all or to
some (including the possibility of none) of its vertices so that the resulting
paths are vertex-disjoint, we call a block-spider. In particular, if every block
is a K, then a block-spider is a spider. If the block-star of a block-spider
has a cut-vertex, then we call it the head of the block-spider; otherwise, we
designate any vertex of the block-star as the kead of the block-spider. Thus
every vertex of a block-spider, except for possibly its head, belongs to at
most two blocks in the block-spider. If any vertex except the head belongs
to two blocks, then at least one of these blocks is a Ks.

We define the block-spider number of a block graph G, denoted by
spy(G), to be the minimum number of subsets into which V(G) can be
partitioned so that each subset induces a block-spider. We call such a
partition a block-spider partition and each set of the partition a block-spider
subset.

Given a connected block graph G, we root G as follows. We first identify
a vertex r of G which we call the root of G. For each vertex v € V(G), define
the level number of v, which we denote by (v), to be its distance d(v,r)
from r. If a vertex u of G is adjacent to v and £(u) > £(v), then we call u’
a block-child of v, and v its block-parent. A vertex w is a block-descendant
of v (and v is a block-ancestor of w) if the level numbers of the vertices
on the v—w path are monotonically increasing. We let Dy(v) denote the
set of block-descendants of v in the rooted block graph G, and we define
Dy[v] = Dp(v) U {v}. We define the mazimal block subgraph of G rooted at
v to be the block subgraph of G induced by D;[v], and we denote it by G,.

3 Main Results

The following result which states that the power domination number of a
tree is precisely its spider number is established in [5].

Theorem 2 ([5]) For any tree T, vp(T) = sp(T).

Our aim in this paper is to extend the result of Theorem 2 by establishing
a relationship between the power domination number of a block graph and
its block-spider number.

We prove first that the power domination number of a block graph G
equals one if and only if G is a block-spider. A proof of Theorem 3 is given
in Section 4.
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Theorem 3 For any block graph G, vp(G) = 1 if and only if G is a block-
spider. Purthermore, the head of a block-spider is a PDS of G.

Our main result is the following relationship between the power domi-
nation number of a block graph and its block-spider number. A proof of
Theorem 4 is given in Section 5.

Theorem 4 If G is a connected block graph, then sp,(G) < vp(G) <
2sp,(G) — 1.

The next result shows that the result of Theorem 4 is sharp. A proof of
Theorem 5 is given in Section 6.

Theorem 5 Given any integers k and € with1 < ¢ < k < 2¢ — 1, there
exists a connected block graph G satisfying sp,(G) = € and vp(G) = k.

As a consequence of Theorem 4, we can determine a lower bound on
the power domination number of a connected block graph in terms of the
number of vertices of block-degree at least 3. A proof of Theorem 6 is given
in Section 7.

Theorem 6 If G is a connected block graph having k vertices of block-
degree at least three, then

k+2
1w(6) 2 T3,

with equality if and only if G has a block-spider partition such that the blocks
of G containing vertices from different block-spiders form a disjoint union
Of Kss.

We show finally that if every block of a connected block graph is K2 or
K3, then its power domination number is precisely its block-spider number.
A proof of Theorem 7 is given in Section 8.

Theorem 7 If G is a connected block graph in which every block is K» or
K3, then the heads of the block-spiders induced by a block-spider partition
of V(G) form a PDS of G. Conseguently, vp(G) = sp,(G).
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Theorem 2 is a special case of Theorem 7. As illustrated in Section 6,
Theorem 7 is not true if we allow our block graph to contain complete
graphs of order greater than 3. We close with the following observation, a
proof of which is given in Section 9.

Observation 8 For any integert > 4, there exists a connected block graph
G with one K-block and all other blocks either K2 or Ka that satisfies

YP(G) > spy(G).

4 Proof of Theorem 3

Suppose G is a block-spider. Then its head is a PDS in G, and so 7p(G) = 1.
To prove the necessity, suppose that G is not a block-spider. Then G
contains at least two vertices, u and v say, that both have block-degree at
least 3 or that both belong to at least two blocks of order at least 3. We
now root the block graph G at any vertex of G. Let S be any PDS of G.
If |S| = 1, then, renaming u and v if necessary, we may assume that no
vertex in the maximal block subgraph G,, rooted at u belongs to S. Since
there at least two edges of G, incident with u, no edge in G, is observed,
a contradiction. Therefore, |S| > 2, and so vp(G) > 2.

5 Proof of Theorem 4

To prove Theorem 4, we consider the lower bound and the upper bound
cases in turn.

5.1 Lower Bound

To prove that sp,(G) < vp(G), we proceed by induction on m = yp(G).
Suppose m = 1. Then G is a block-spider, and so, by Theorem 3, spy(G@) =
1 = 7p(G). Suppose, then, that for all connected block graphs G' with
v7p(G') = m, where m > 1, that sp,(G') < 7p(G"). Let G be a connected
block graph with vp(G) = m+1. By Observation 1, G contains a yp(G)-set
S = {h1,h2,...,hm41} in which every vertex has degree at least 3.

We now root the block graph G at the vertex A,,4;. Renaming the
vertices of S if necessary, we may assume that among all the vertices of
S, h; has the largest level number, i.e., among all vertices in S, h; is at
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maximum distance from h,,+; in G. Let w be the block-parent of h; and
let By be the block containing h; and w. We now consider two possibilities.

Case 1. w has block-degree two.

Let u be the block-ancestor of w of degree at least 3 that is at minimum
distance from w. Then every internal vertex on the u—w path has degree 2
in G. Let v be the block-child of u on the u-w path (possibly, v = w). Note
that no internal-vertex on the u-h; path (including the vertex w) belongs
to S.

We now define a set V; as follows. If S contains two vertices of By, let
Vi = Dy[hy]. If by is the only vertex of S in By and if u € S, let Vi = Dy[v].
If b, is the only vertex of S in B; and if u ¢ S, let V) = Dy[v]U {u}. If
now G — V| contains a path-component P that contains no vertex of S,
then let Vi = V{ U V(P) (notice that since S is a PDS of G, there is at
most one such path-component P and u is adjacent to an end-vertex of P
and to no other vertex of P). On the other hand, if every component of
G - V{ contains a vertex of S, then let ¥} = V{. In all the above cases, let
G =G-W.

By construction, G[V;] is a block-spider with head h;, and G' is a block
graph (possibly disconnected) in which S — {h;} is a PDS of G'. Thus,
vp(G') < m. Applying the inductive hypothesis to each component of
G’, we have sp,(G') < vp(G'). Thus there exists a block-spider partition
of V(G’') with m or fewer subsets. Adding the subset V; to the block-
spider partition of V(G') produces a block-spider partition of V(G) with
at most m + 1 subsets. Thus, sp,(G) < 7p(G).

Case 2. w has block-degree at least 3.

We now define a set V; as follows. If S contains at least two vertices of By,
let Vi = Dy[hy]. If hy € S and w € S, let Vj = Dy[hy]. If by is the only
vertex of S in By and if w ¢ S, let

EN[h1])-{w}

If now G — V{ contains a path-component P that contains no vertex of
S, then let V; = VJ/ UV(P). On the other hand, if every component of
G — V{ contains a vertex of S, then let V) = V. In all the above cases,
let G' = G — V3. Proceeding now exactly as in paragraph three of Case 1
above, we have sp,(G) < vp(G).
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5.2 Upper bound

Next we prove that yp(G) < 2sp,(G) — 1. Suppose sp,(G) =m. fm =1,
then G is a block-spider, and so, by Theorem 3, its head is a PDS of G
and 7p(G) = 1 = sp,(G). Suppose, then, that m > 2. Let G be a block
graph with sp,(G) = m. Let {W}, Va,...,V,»} be a block-spider partition of
V(G). For i = 1,2, ...,m, let G; be the block-spider induced by V;, and so
G = G[V}], and let h; be the head of G;. Then, {h;} is a PDS of G;. Let
F be the graph with vertex set {Vi,Va,...,V,,} where two vertices V; and
V; are adjacent in F if and only if there is an edge of G joining a vertex
of V; and a vertex of V. Since G is a block graph, so too is F. Further,
every block in F' corresponds to a block in G. For each block in F, we
select one vertex from the corresponding block in G and we let Sr denote
the resulting set of selected vertices. Since F has order m, there are at
most m — 1 blocks in F, and so [Sr| = b(F) < m — 1 with equality if and
only if F is a tree. Then, Sp U {h1,hs,...,hy} is a PDS of G, and so
p(G) < |SF|+m < 2m — 1 = 2sp,(G) — 1.

6 Proof of Theorem 5

Let ¢t > 3 be a fixed integer. Consider two complete graphs K, that have
exactly one vertex h in common. Let u; be a vertex from one of these
complete graphs and v; from the other where u; # h and v; # h. Attach
to u; a path uj,u2,u3,u4 and to vy a path vy, va, v3,v4 (so that the resulting
paths are vertex disjoint). Let F' denote the resulting graph. Then, F is
a block-spider with head h. Let Fy,...,Fy be € disjoint copies of F. For
i =1,...,¢ we label the vertices u; and v;, 1 < j < 4, of F by u;; and
v;,5, respectively, in F; and the vertex h of I by h; in F;. Let F' be the
disjoint union UL, F; of the graphs F;.

Suppose that k = € + 7 wherer € {0,...,6 —-1}. If r = 0, let E; = 0;
otherwise, let F; = {v,-,gu,'ﬂ,j,vg,au.-.,.l,j I 1<i<rand2<j< 3} It
r={~1,let E> = 0; otherwise, let E; = {v;3uit13|i=r+1,...,4—1}.
Let G be obtained from F by adding the set of edges E; U E». (The graph
G when t = 3, £ = 4 and k = 6 is illustrated in Figure 1 where the six large
darkened vertices from a yp(G)-set.)

Then, G is a connected block graph in which every block is Ka, K4 or
K,. The partition {V(F}),...,V(Fe)} of V(G) is a minimum block-spider
partition of G, and so sp,(G) = €. If r = 0, let S = @; otherwise, let
S = U_,;{vi3}. Then, the set {hy,...,he} US is a minimum PDS of G,

137



R

Figure 1: A connected block graph G with sp,(G) = 4 and yp(G) = 6.

and so yp(G) ={¢+r =k.

7 Proof of Theorem 6

Let sp,(G) = m. Then by Theorem 3, yp(G) > m. Let {V4,V5,...,V;;} be
a block-spider partition of V(G). For i = 1,2,...,m, let G; be the block-
spider induced by V;; that is, G; = G[V;]. Further, let h; be the head of
G;. Since each G| is a block-spider, every vertex of G;, except for possibly
its head, belongs to at most two blocks in the block-spider.

Let F be the graph with vertex set {V;,Va,...,V,,} where two vertices V;
and Vj; are adjacent in F' if and only if there is an edge of G joining a vertex
of V; and a vertex of V;. Since G is a block graph, so too is F. Suppose
that K, is the largest block in F. For £ = 2,...,¢, let b, denote the number
of Ky-blocks in F. Let Tr be the tree obtained from F by replacing every
K-block in F' where £ > 3 by a spanning tree of the K,-block (of order ¢
and size £ — 1). Then,

t

t
m=1=|ETr)| =Y _(E-1be > be. (1)

=2

Each vertex of V; — {h;} that is adjacent in G to only vertices of V;
has block-degree at most 2 in G. Let B be a block in G corresponding
to a K-block of F. Then, |[V(B)NV;| < 2 for all j = 1,2,...,m unless
h; € V(B) in which case possibly [V(B) N V;| > 2. Let Eg denote the
set of all edges of B that do not belong to any of the block-spiders Gj.
Suppose |V(B) N V;| > 2 for some i. Then the block-degree of each vertex
of V(B) NV, in G is the same as its block-degree in G — Eg. On the other
hand, if V(B) NV; = {v} for some %, then the block-degree of v in G is one
larger than its block-degree in G — Eg. Since |V(B) NV;| > 1 for exactly ¢
values of %, at most £ vertices in G (each from different sets V;) have block-
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degrees in G one more than their block-degrees in G ~ Eg. This implies
that G contains at most m + Y j_, £be vertices of block-degree at least 3.

Hence, t
t
k_<_m+(§ b¢)+§ (€ —1)b,. (2)

=2 =2

Thus, by Equations (1) and (2), £ < 3m — 2. Hence, vp(T) > m >
(k + 2)/3. Suppose yp(T) = (k + 2)/3. Then we must have equality
throughout Equations (1) and (2). In particular, F is a tree and each block
B of G corresponding to an edge of F is a K-block the two vertices of
which are from different block-spiders and are not the heads of the block-
spiders. Further, no two such blocks B have any vertex in common. The
desired characterization follows.

That this bound is sharp, may be seen as follows. Let n > 1 and ¢ > 2
be integers. Let G’ be the corona of a path P on (2t — 1)n vertices; that is,
G' = P(a;_1)n 0K (the corona of a path is also called a combd). Let the path
be denoted by P: vy, va,...,Ya2i-1)n- Foreachi =0,...,n-1,let E! and E¥
be the set of edges defined by E; = {v(ar—1)i4j vae-1)ite | 1 S j < €<t}
and E{ = {v(a_1)isj Vae-1)i+e | t £ J < € < 2t — 1}. Each of the sets
E;} and E} induce a complete graph K, and have only the vertex v(a;_1)i¢
in common. For i = 0,. -1, let E; = (E{U E]) — E(P). Let G be
the graph obtained from G’ by adding the edges U,_IE-. Then, G is a
connected block graph in which every block is K> or K;. (The graph G
when n = ¢ = 3 is illustrated in Figure 2 where the three large darkened
vertices from a vp(G)-set.) Let D = UL} {"’("t 1)i+t}- Then, D is a PDS
of G and so 'YP(G) < lDl =n. Let § = UL i=1 {'U(og 1)is ’v(gg 1),+1} Then
the set of vertices of G of block-degree at least three is the set D U S.
Hence, G has k = |D| + |S| = 3n — 2 vertices of block-degree at least
three, and so as shown earlier, yp(G) > (k + 2)/3 = n. Consequently,
1P(G) = (k+2)/3 =n.

G:
Figure 2: A connected block graph G with k = 7 vertices of block-degree

at least 3 and vp(G) = (k + 2)/3.
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8 Proof of Theorem 7

We proceed by induction on m = sp,(G). Suppose m = 1. Then G is a
block-spider, and so, by Theorem 3, its head is a PDS of G and p(G) =
1 = sp,(G). Suppose, then, that for all connected block graphs G’ in
which every block is K, or K3 with sp,(G') = m, where m > 1, the heads
of the block-spiders induced by a block-spider partition of V(G') power
dominate G'. Let G be a block graph in which every block is K2 or K3
with sp,(G) = m+1. Let {V},Va,...,Vin41} be a block-spider partition of
V(G). For i =1,2,...,m +1, let G; be the block-spider induced by V;, and
so G; = G[V;], and let h; be the head of G;.

Let F be the graph with vertex set {V4, V5, ..., Viy41} where two vertices
Vi and V; are adjacent in F if and only if there is an edge of G joining a
vertex of V; and a vertex of V;. Since G is a block graph in which every
block is K5 or K3, so too is F. We must now consider two cases, depending
on whether F' contains an end-block K» or whether every end-block of F
is a K3.

Case 1. F contains an end-block Ko.

Without loss of generality, we may assume that Vj is an end-vertex of F
and that V1V € E(F). The edge 1V, in F corresponds to a block B in
G that contains at least one vertex of each of V; and Vs, but no vertex
in V(G) - V) — Va. Let G' = G — V;; that is, G’ is the connected block
graph (in which every block is K2 or K3) obtained from G by deleting the
vertices in the subset V;. If sp,(G’) < m, then we can add the subset V)
to a minimum block-spider partition of V(G') to produce a block-spider
partition of V(G) of cardinality sp,(G') + 1 < m + 1 = sp,(G), which is
impossible. Hence, sp,(G’') > m. Since {Va,...,Vn41} is a block-spider
partition of V(G'), sp,(G') < m. Consequently, sp,(G') = m. Applying
the inductive hypothesis to G', S’ = {hs,...,Am+1} is a PDS of G'. Thus
all vertices and edges of G' are observed by S'. Let S = S'U {h;}. We
show that S is a PDS of G, and so yp(G) < m + 1 = sp,(G). We consider
two possibilities depending on whether B = K> or B = K3.

Suppose that B = K. Let V(B) = {v;,v2} where v; € V; for i = 1,2.
Thus, vyv; € E(G) and this is the only edge joining a vertex in V; and
V(G) — V. Since S' is a PDS of G’, the vertex v, is observed by the set
S’ in G. The vertex v, is observed by the vertex h; in G. Hence the edge
172 is observed by the set S. It follows that S is a PDS of G.

Suppose that B = Kj. Suppose, first, that V(B) = {uj,v1,v2} where
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{u1,m1} C V4 and v, € V5. Let G, be rooted at h,. We may assume that u;
is a block-child of v; (possibly, hy = v1). The vertex v, and all its incident
edges except for the edge u v, are observed by the vertex h; in G, while
vs is observed by the set S’ in G. Hence the edge v,v; is observed by S in
G. Thus, the edges v;u; and u;v; in turn become observed by S in G. It
follows that S is a PDS of G.

Suppose, secondly, that V' (B) = {v1,v2,u2} where v, € V; and {u2,v2} C
V2. The vertex v, is observed by h; in G. If us and v, are both observed
by S’ in G’ before the edge uqv» is observed, then S observes both vjus
and v;v2 in G. Consequently, the edge uovs is observed by S in G. It
follows that S is a PDS of G. On the other hand, if us or va, say us, is
only observed after the edge uqv; is observed by S’ in G’, then S observes
the vertices v; and v, in G, and therefore the edge viv,. Thus, all edges
incident with v, are observed by S in G, and so the vertex us becomes
observed by S in G. It follows that S is a PDS of G

Case 2. Every end-block of F is K3.

Without loss of generality, we may assume that F[{V},V,2,V3}] is an end-
block of F. The block F[{V;,V2,V3}] in F corresponds to a block B =
G[{v1,v2,v3}] = K3 in G where v; € V; for i = 1,2,3. If m = 3, then the
set {hy, ha, hg} observes each of v, v» and v3 in G, and therefore observes
each of the edges vyv2, vyv3 and vavs. It follows that if m = 3, then
{h1,h2,h3} is a PDS of G. Hence we may assume that m > 4 and that V3
is a cut-vertex of F. Thus each of V; and V> has degree 2 in F, while V3
has degree at least 3 in F.

Let G' = G - V4 — V;; that is, G’ is the connected block graph (in which
every block is Ka or K3) obtained from G by deleting the vertices in the
subsets V] and Va. If sp,(G') < m — 1, then we can add the subsets V) and
V2 to a minimum block-spider partition of V(G’) to produce a block-spider
partition of V(G) of cardinality sp,(G') +1 < m + 1 = sp,(G), which is
impossible. Hence, sp,(G') > m —1. Since {V4,..., Vin41} is a block-spider
partition of V(G'), sp,(G’) < m — 1. Consequently, sp,(G') =m — 1.

Applying the inductive hypothesis to G', S’ = {hs,...,hm4+1} is a PDS
of G'. Therefore all vertices and edges of G’ are observed by $’. Let
S = 8" U {h1, ha}. Then the vertex v; is observed by k), the vertex v, by
hs, and the vertex vz by S’ in G. Thus each of the edges vyva, v1v3 and vav3
is observed by S in G. It follows that since h; isa PDS of G; fori = 1,2 and
since S' is a PDS of G', S is a PDS of G, and so vp(G) < m + 1 = sp,(G).
However by Theorem 4, vp(G) 2 sp,(G). Consequently, vp(G) = sp,(G).
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9 Proof of Theorem 8

Suppose first that ¢t = 2k for some integer k > 2. Fori =1,...,k, let G;
be the graph obtained from the path u;,uiz2,...,u:s by adding the edge
u;4ui6. Then, G; is a block-spider. Let h; = u; 4. Let G be obtained from
the disjoint union U%_;G; of the graphs G; by forming a clique on the set
S = UL, {ui2,ui3}. Then, G[S] = K, and G is a connected block graph
in which every block is K2 or K3, except for the block induced by the set
S. (The graph G when ¢ = 6 is illustrated in Figure 3 where the four large
darkened vertices from a yp(G)-set.) The partition {V(G:),...,V(Gk)} of
V(G) is a minimum block-spider partition of G, and so sp,(G) = k. On
the other hand, the set {h;,..., A} U{u;1 3} is a minimum PDS of G, and
so vp(G) = k + 1. Thus, vp(G) > sp,(G).

v

¢

Figure 3: A connected block graph G with vp(G) > sp,(G) in which all
but one block is K» or Kj3.

Suppose secondly that ¢ = 2k + 1 where ¥ > 2. Let G4, be the
graph obtained from the path ug41,1,Ug+1,2,...,U%k+1,6 and adding the
edge ¥g41,4¥k41,6. Then, G; is a block-spider. Let H be the graph ob-
tained from the disjoint union of graph G constructed earlier and the graph
Gr+1 by adding all edges joining k41,3 to vertices in the set S. Then,
H[S U {ur+1,3}] = K, and H is a connected block graph in which every
block is K or K3, except for the block induced by the set SU {ug41,3},
with vp(G) = k+ 2 > k + 1 = sp,(G).
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