Placing monitoring devices in electric power networks modelled by block graphs ¹David Atkins, ¹Teresa W. Haynes, and ²Michael A. Henning* ¹Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA ²School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa #### Abstract The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see SIAM J. Discrete Math. 15(4) (2002), 519-529). A set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph is its power domination number. We investigate the power domination number of a block graph. Keywords: block graph, phase measurement units (PMU's), power domination; AMS subject classification: 05C69 ^{*}Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal. ## 1 Introduction In this paper we continue the study of the power domination number of graphs started in [5]. The notion of power domination in graphs was inspired by a problem in the electric power system industry. Electric power companies need to continually monitor their system's state as defined by a set of state variables, for example, the voltage magnitude at loads and the machine phase angle at generators [8]. One method of monitoring these variables is to place *Phasor Measurement Units*, called PMU's, at selected locations in the system. Because of the high cost of a PMU, it is desirable to minimize their number while maintaining the ability to monitor (observe) the entire system. A system is said to be *observed* if all of the state variables of the system can be determined from a set of measurements (e.g., voltages and currents). Let G=(V,E) be a graph representing an electric power system, where a vertex represents an electrical node (a substation bus where transmission lines, loads, and generators are connected) and an edge represents a transmission line joining two electrical nodes. The problem of locating a smallest set of PMU's to monitor the entire system is a graph theory problem closely related to the well-known vertex covering and domination problems. A phasor is a complex vector in polar form that has a magnitude and a phase angle. This stems from the fact that a power system operates in the steady-state as an Alternate Current (AC) network where the voltages and currents are sinusoidal functions of time with constant frequency (60 Hz). As a result, a nodal voltage at a bus and a current through a line are expressed, respectively, as $$v(t) = V \cos(2pft + q)$$ and $i(t) = I \cos(2pft + y)$, where f is the frequency (60 Hz in the US), V and I are the magnitudes, and q and y are the phase angles of v(t) and i(t), respectively. A PMU measures the state variable (voltage and phase angle) for the vertex at which it is placed and its incident edges and their end-vertices (these vertices and edges are said to be observed). Using Ohm's Law and Kirchoff's Law, we can state the other rules to show observability. #### Rules for Direct Current network: 1. Ohm's Law, P=IR: Any bus (vertex) that is incident to an observed line (edge) connected to an observed bus is observed (the known cur- - rent in the line, the known voltage at the observed bus, and the known resistance of the line determines the voltage at the bus). - 2. Ohm's Law, I=P/R: Any line joining two observed buses is observed (the known voltage at both observed buses and the known resistance of the line determines the current on the line). - 3. Kirchoff's Law: If all the lines incident to an observed bus are observed, except one, then all of the lines incident to that bus are observed (the net current flowing through a bus is zero). #### Rules for Alternate Current network: - 1. Ohm's Law, $V_i = V_j + Z_{ij}I_{ij}$. Here, Z_{ij} is the impedance of the line connecting buses numbered i and j. It is a complex quantity expressed as Z = R + jX, where R is the resistance and X is the reactance of the line. - 2. Ohm's Law, $I_{ij} = (V_i V_j)/Z_{ij}$: Any line joining two observed buses is observed (the known voltages at both observed buses and the known impedance of the line determines the current of the line). - 3. Kirchoff's Law: If the current injection at an observed bus is known and if the lines incident to that bus are observed, except one, then all the lines incident at that bus are observed (the net current flowing through the bus is zero). For a given set of vertices $P \subseteq V$ representing the nodes where the PMU's are placed, the following algorithm determines the sets of (observed) vertices C and edges F. - 1. Initialize C = P and $F = \{e \in E \mid e \text{ is incident to a vertex in } P\}$. - 2. Add to C any vertex not already in C which is incident to an edge in F. - 3. Add to F any edge not already in F such that - a. both of its end-vertices are in C or - b. it is incident to a vertex v of degree greater than one for which all the other edges incident to v are in F. - 4. If steps 2 and 3 fail to locate any new edges or vertices for inclusion, stop. Otherwise, go to step 2. Therefore, to solve the power system monitoring problem, we want C = V, F = E, and to minimize |P|. This monitoring problem was introduced and studied in [1, 2, 4, 8]. In [5], the power system monitoring problem was first studied as a variation of the well-known dominating set problem (see [6, 7]). Let G = (V, E) be a graph. A set $S \subseteq V$ is a **power dominating set** (PDS) in G if every vertex and every edge in G is observed by S and the **power domination number** $\gamma_P(G)$ is the minimum cardinality of a PDS of G. A PDS of cardinality $\gamma_P(G)$ we call a $\gamma_P(G)$ -set. The following observation is proven in [5]. **Observation 1** ([5]) If G is a connected graph with maximum degree at least 3, then G contains a $\gamma_P(G)$ -set in which every vertex has degree at least 3. Boisen, Baldwin, and Mili [2] investigated approximation algorithms to find a solution to the power system monitoring problem. Haynes et. al. [5] showed that the PDS problem is NP-complete even when restricted to bipartite graphs or chordal graphs. On the other hand, they give a linear algorithm to solve the problem for trees and study theoretical properties of the power domination number in trees. In [3], the power domination number of an $n \times m$ grid graph is determined. In this paper, we investigate the power domination number of a block graph. ## 2 Notation We shall follow the notation in [6]. In particular, G = (V, E) denotes a graph with vertex set V and edge set E. An end-vertex is a vertex of degree 1. A spider is defined in [5] as a tree with at most one vertex of degree 3 or more. The spider number of a tree T, denoted by $\operatorname{sp}(T)$, is the minimum number of subsets into which V(T) can be partitioned so that each subset induces a spider. A block of a graph G is a maximal, 2-connected subgraph of G. A graph G is a block graph if and only if every block of G is a complete graph. In particular, a tree is a block graph in which every block is a K_2 . We call a block of G that is a complete graph K_r , a K_r -block of G. We define the block-degree of a vertex v in G as the number of blocks in G that contain v. An end-block of G is a block that contains only one cut-vertex of G. The number of blocks in G is denoted by b(G). Let G be a block graph. If G itself is a block or if every block of G is an end-block, then we call G a block-star. In particular, a star $K_{1,n}$ where $n \ge 1$ is a block-star in which every block is a K_2 . A block graph formed from a block-star by attaching a path to all or to some (including the possibility of none) of its vertices so that the resulting paths are vertex-disjoint, we call a block-spider. In particular, if every block is a K_2 , then a block-spider is a spider. If the block-star of a block-spider has a cut-vertex, then we call it the head of the block-spider; otherwise, we designate any vertex of the block-star as the head of the block-spider. Thus every vertex of a block-spider, except for possibly its head, belongs to at most two blocks in the block-spider. If any vertex except the head belongs to two blocks, then at least one of these blocks is a K_2 . We define the **block-spider number** of a block graph G, denoted by $\operatorname{sp}_b(G)$, to be the minimum number of subsets into which V(G) can be partitioned so that each subset induces a block-spider. We call such a partition a block-spider partition and each set of the partition a block-spider subset. Given a connected block graph G, we root G as follows. We first identify a vertex $v \in G$ which we call the root of G. For each vertex $v \in V(G)$, define the level number of v, which we denote by $\ell(v)$, to be its distance d(v,r) from r. If a vertex u of G is adjacent to v and $\ell(u) > \ell(v)$, then we call u a block-child of v, and v its block-parent. A vertex w is a block-descendant of v (and v is a block-ancestor of w) if the level numbers of the vertices on the v-w path are monotonically increasing. We let $D_b(v)$ denote the set of block-descendants of v in the rooted block graph G, and we define $D_b[v] = D_b(v) \cup \{v\}$. We define the maximal block subgraph of G rooted at v to be the block subgraph of G induced by $D_b[v]$, and we denote it by G_v . # 3 Main Results The following result which states that the power domination number of a tree is precisely its spider number is established in [5]. **Theorem 2** ([5]) For any tree T, $\gamma_P(T) = \operatorname{sp}(T)$. Our aim in this paper is to extend the result of Theorem 2 by establishing a relationship between the power domination number of a block graph and its block-spider number. We prove first that the power domination number of a block graph G equals one if and only if G is a block-spider. A proof of Theorem 3 is given in Section 4. **Theorem 3** For any block graph G, $\gamma_P(G) = 1$ if and only if G is a block-spider. Furthermore, the head of a block-spider is a PDS of G. Our main result is the following relationship between the power domination number of a block graph and its block-spider number. A proof of Theorem 4 is given in Section 5. **Theorem 4** If G is a connected block graph, then $\operatorname{sp}_b(G) \leq \gamma_P(G) \leq 2\operatorname{sp}_b(G) - 1$. The next result shows that the result of Theorem 4 is sharp. A proof of Theorem 5 is given in Section 6. Theorem 5 Given any integers k and ℓ with $1 \le \ell \le k \le 2\ell - 1$, there exists a connected block graph G satisfying $\operatorname{sp}_b(G) = \ell$ and $\gamma_P(G) = k$. As a consequence of Theorem 4, we can determine a lower bound on the power domination number of a connected block graph in terms of the number of vertices of block-degree at least 3. A proof of Theorem 6 is given in Section 7. **Theorem 6** If G is a connected block graph having k vertices of block-degree at least three, then $$\gamma_P(G) \geq \frac{k+2}{3},$$ with equality if and only if G has a block-spider partition such that the blocks of G containing vertices from different block-spiders form a disjoint union of K_2s . We show finally that if every block of a connected block graph is K_2 or K_3 , then its power domination number is precisely its block-spider number. A proof of Theorem 7 is given in Section 8. Theorem 7 If G is a connected block graph in which every block is K_2 or K_3 , then the heads of the block-spiders induced by a block-spider partition of V(G) form a PDS of G. Consequently, $\gamma_P(G) = \operatorname{sp}_b(G)$. Theorem 2 is a special case of Theorem 7. As illustrated in Section 6, Theorem 7 is not true if we allow our block graph to contain complete graphs of order greater than 3. We close with the following observation, a proof of which is given in Section 9. Observation 8 For any integer $t \geq 4$, there exists a connected block graph G with one K_t -block and all other blocks either K_2 or K_3 that satisfies $\gamma_P(G) > \mathrm{sp}_b(G)$. ## 4 Proof of Theorem 3 Suppose G is a block-spider. Then its head is a PDS in G, and so $\gamma_P(G)=1$. To prove the necessity, suppose that G is not a block-spider. Then G contains at least two vertices, u and v say, that both have block-degree at least 3 or that both belong to at least two blocks of order at least 3. We now root the block graph G at any vertex of G. Let S be any PDS of G. If |S|=1, then, renaming u and v if necessary, we may assume that no vertex in the maximal block subgraph G_u rooted at u belongs to S. Since there at least two edges of G_u incident with u, no edge in G_u is observed, a contradiction. Therefore, $|S| \geq 2$, and so $\gamma_P(G) \geq 2$. # 5 Proof of Theorem 4 To prove Theorem 4, we consider the lower bound and the upper bound cases in turn. #### 5.1 Lower Bound To prove that $\operatorname{sp}_b(G) \leq \gamma_P(G)$, we proceed by induction on $m = \gamma_P(G)$. Suppose m = 1. Then G is a block-spider, and so, by Theorem 3, $\operatorname{sp}_b(G) = 1 = \gamma_P(G)$. Suppose, then, that for all connected block graphs G' with $\gamma_P(G') = m$, where $m \geq 1$, that $\operatorname{sp}_b(G') \leq \gamma_P(G')$. Let G be a connected block graph with $\gamma_P(G) = m+1$. By Observation 1, G contains a $\gamma_P(G)$ -set $S = \{h_1, h_2, \ldots, h_{m+1}\}$ in which every vertex has degree at least 3. We now root the block graph G at the vertex h_{m+1} . Renaming the vertices of S if necessary, we may assume that among all the vertices of S, h_1 has the largest level number, i.e., among all vertices in S, h_1 is at maximum distance from h_{m+1} in G. Let w be the block-parent of h_1 and let B_1 be the block containing h_1 and w. We now consider two possibilities. #### Case 1. w has block-degree two. Let u be the block-ancestor of w of degree at least 3 that is at minimum distance from w. Then every internal vertex on the u-w path has degree 2 in G. Let v be the block-child of u on the u-w path (possibly, v=w). Note that no internal-vertex on the $u-h_1$ path (including the vertex w) belongs to S. We now define a set V_1 as follows. If S contains two vertices of B_1 , let $V_1 = D_b[h_1]$. If h_1 is the only vertex of S in B_1 and if $u \in S$, let $V_1 = D_b[v]$. If h_1 is the only vertex of S in B_1 and if $u \notin S$, let $V_1' = D_b[v] \cup \{u\}$. If now $G - V_1'$ contains a path-component P that contains no vertex of S, then let $V_1 = V_1' \cup V(P)$ (notice that since S is a PDS of G, there is at most one such path-component P and u is adjacent to an end-vertex of P and to no other vertex of P). On the other hand, if every component of $G - V_1'$ contains a vertex of S, then let $V_1 = V_1'$. In all the above cases, let $G' = G - V_1$. By construction, $G[V_1]$ is a block-spider with head h_1 , and G' is a block graph (possibly disconnected) in which $S - \{h_1\}$ is a PDS of G'. Thus, $\gamma_P(G') \leq m$. Applying the inductive hypothesis to each component of G', we have $\mathrm{sp}_b(G') \leq \gamma_P(G')$. Thus there exists a block-spider partition of V(G') with m or fewer subsets. Adding the subset V_1 to the block-spider partition of V(G') produces a block-spider partition of V(G) with at most m+1 subsets. Thus, $\mathrm{sp}_b(G) \leq \gamma_P(G)$. #### Case 2. w has block-degree at least 3. We now define a set V_1 as follows. If S contains at least two vertices of B_1 , let $V_1 = D_b[h_1]$. If $h_1 \in S$ and $w \in S$, let $V_1 = D_b[h_1]$. If h_1 is the only vertex of S in B_1 and if $w \notin S$, let $$V_1' = \left(\bigcup_{x \in N[h_1] - \{w\}} D_b[x]\right) \cup \{w\}.$$ If now $G - V_1'$ contains a path-component P that contains no vertex of S, then let $V_1 = V_1' \cup V(P)$. On the other hand, if every component of $G - V_1'$ contains a vertex of S, then let $V_1 = V_1'$. In all the above cases, let $G' = G - V_1$. Proceeding now exactly as in paragraph three of Case 1 above, we have $\operatorname{sp}_b(G) \leq \gamma_P(G)$. ## 5.2 Upper bound Next we prove that $\gamma_P(G) \leq 2\mathrm{sp}_b(G) - 1$. Suppose $\mathrm{sp}_b(G) = m$. If m = 1, then G is a block-spider, and so, by Theorem 3, its head is a PDS of G and $\gamma_P(G) = 1 = \mathrm{sp}_b(G)$. Suppose, then, that $m \geq 2$. Let G be a block graph with $\mathrm{sp}_b(G) = m$. Let $\{V_1, V_2, \ldots, V_m\}$ be a block-spider partition of V(G). For $i = 1, 2, \ldots, m$, let G_i be the block-spider induced by V_i , and so $G_i = G[V_i]$, and let h_i be the head of G_i . Then, $\{h_i\}$ is a PDS of G_i . Let F be the graph with vertex set $\{V_1, V_2, \ldots, V_m\}$ where two vertices V_i and V_j are adjacent in F if and only if there is an edge of G joining a vertex of V_i and a vertex of V_j . Since G is a block graph, so too is F. Further, every block in F corresponds to a block in G. For each block in F, we select one vertex from the corresponding block in G and we let S_F denote the resulting set of selected vertices. Since F has order F, there are at most F blocks in F and so blocks in F and so blocks in F and so F blocks in F blocks in F and so F blocks in block ## 6 Proof of Theorem 5 Let $t \geq 3$ be a fixed integer. Consider two complete graphs K_t that have exactly one vertex h in common. Let u_1 be a vertex from one of these complete graphs and v_1 from the other where $u_1 \neq h$ and $v_1 \neq h$. Attach to u_1 a path u_1, u_2, u_3, u_4 and to v_1 a path v_1, v_2, v_3, v_4 (so that the resulting paths are vertex disjoint). Let F denote the resulting graph. Then, F is a block-spider with head h. Let F_1, \ldots, F_ℓ be ℓ disjoint copies of F. For $i = 1, \ldots, \ell$, we label the vertices u_j and v_j , $1 \leq j \leq 4$, of F by $u_{i,j}$ and $v_{i,j}$, respectively, in F_i and the vertex h of F by h_i in F_i . Let F' be the disjoint union $\bigcup_{i=1}^{\ell} F_i$ of the graphs F_i . Suppose that $k = \ell + r$ where $r \in \{0, \ldots, \ell - 1\}$. If r = 0, let $E_1 = \emptyset$; otherwise, let $E_1 = \{v_{i,2}u_{i+1,j}, v_{i,3}u_{i+1,j} \mid 1 \leq i \leq r \text{ and } 2 \leq j \leq 3\}$. If $r = \ell - 1$, let $E_2 = \emptyset$; otherwise, let $E_2 = \{v_{i,3}u_{i+1,3} \mid i = r+1, \ldots, \ell - 1\}$. Let G be obtained from F by adding the set of edges $E_1 \cup E_2$. (The graph G when t = 3, $\ell = 4$ and k = 6 is illustrated in Figure 1 where the six large darkened vertices from a $\gamma_P(G)$ -set.) Then, G is a connected block graph in which every block is K_2 , K_4 or K_ℓ . The partition $\{V(F_1),\ldots,V(F_\ell)\}$ of V(G) is a minimum block-spider partition of G, and so $\mathrm{sp}_b(G)=\ell$. If r=0, let $S=\emptyset$; otherwise, let $S=\cup_{i=1}^r \{v_{i,3}\}$. Then, the set $\{h_1,\ldots,h_\ell\}\cup S$ is a minimum PDS of G, Figure 1: A connected block graph G with $\operatorname{sp}_b(G) = 4$ and $\gamma_P(G) = 6$. and so $\gamma_P(G) = \ell + r = k$. ## 7 Proof of Theorem 6 Let $\operatorname{sp}_b(G) = m$. Then by Theorem 3, $\gamma_P(G) \geq m$. Let $\{V_1, V_2, \ldots, V_m\}$ be a block-spider partition of V(G). For $i = 1, 2, \ldots, m$, let G_i be the block-spider induced by V_i ; that is, $G_i = G[V_i]$. Further, let h_i be the head of G_i . Since each G_i is a block-spider, every vertex of G_i , except for possibly its head, belongs to at most two blocks in the block-spider. Let F be the graph with vertex set $\{V_1, V_2, \ldots, V_m\}$ where two vertices V_i and V_j are adjacent in F if and only if there is an edge of G joining a vertex of V_i and a vertex of V_j . Since G is a block graph, so too is F. Suppose that K_t is the largest block in F. For $\ell = 2, \ldots, t$, let b_ℓ denote the number of K_ℓ -blocks in F. Let T_F be the tree obtained from F by replacing every K_ℓ -block in F where $\ell \geq 3$ by a spanning tree of the K_ℓ -block (of order ℓ and size $\ell - 1$). Then, $$m-1=|E(T_F)|=\sum_{\ell=2}^t (\ell-1)b_\ell \ge \sum_{\ell=2}^t b_\ell.$$ (1) Each vertex of $V_i - \{h_i\}$ that is adjacent in G to only vertices of V_i has block-degree at most 2 in G. Let B be a block in G corresponding to a K_ℓ -block of F. Then, $|V(B) \cap V_j| \leq 2$ for all j = 1, 2, ..., m unless $h_i \in V(B)$ in which case possibly $|V(B) \cap V_j| > 2$. Let E_B denote the set of all edges of B that do not belong to any of the block-spiders G_i . Suppose $|V(B) \cap V_i| \geq 2$ for some i. Then the block-degree of each vertex of $V(B) \cap V_i$ in G is the same as its block-degree in $G - E_B$. On the other hand, if $V(B) \cap V_i = \{v\}$ for some i, then the block-degree of v in G is one larger than its block-degree in $G - E_B$. Since $|V(B) \cap V_i| \geq 1$ for exactly ℓ values of i, at most ℓ vertices in G (each from different sets V_i) have block- degrees in G one more than their block-degrees in $G - E_B$. This implies that G contains at most $m + \sum_{\ell=2}^{t} \ell b_{\ell}$ vertices of block-degree at least 3. Hence, $$k \le m + \left(\sum_{\ell=2}^{t} b_{\ell}\right) + \sum_{\ell=2}^{t} (\ell - 1)b_{\ell}.$$ (2) Thus, by Equations (1) and (2), $k \leq 3m-2$. Hence, $\gamma_P(T) \geq m \geq (k+2)/3$. Suppose $\gamma_P(T) = (k+2)/3$. Then we must have equality throughout Equations (1) and (2). In particular, F is a tree and each block B of G corresponding to an edge of F is a K_2 -block the two vertices of which are from different block-spiders and are not the heads of the block-spiders. Further, no two such blocks B have any vertex in common. The desired characterization follows. That this bound is sharp, may be seen as follows. Let $n \ge 1$ and $t \ge 2$ be integers. Let G' be the corona of a path P on (2t-1)n vertices; that is, $G' = P_{(2t-1)n} \circ K_1$ (the corona of a path is also called a *comb*). Let the path be denoted by $P: v_1, v_2, \ldots, v_{(2t-1)n}$. For each $i = 0, \ldots, n-1$, let E'_i and E''_i be the set of edges defined by $E_i' = \{v_{(2t-1)i+j} \ v_{(2t-1)i+\ell} \ | \ 1 \le j < \ell \le t\}$ and $E_i'' = \{v_{(2t-1)i+j}, v_{(2t-1)i+\ell} \mid t \leq j < \ell \leq 2t-1\}$. Each of the sets E_i' and E_i'' induce a complete graph K_t and have only the vertex $v_{(2t-1)i+t}$ in common. For i = 0, ..., n-1, let $E_i = (E'_i \cup E''_i) - E(P)$. Let G be the graph obtained from G' by adding the edges $\bigcup_{i=1}^{n} E_i$. Then, G is a connected block graph in which every block is K_2 or K_t . (The graph G when n = t = 3 is illustrated in Figure 2 where the three large darkened vertices from a $\gamma_P(G)$ -set.) Let $D = \bigcup_{i=0}^{n-1} \{v_{(2i-1)i+t}\}$. Then, D is a PDS of G, and so $\gamma_P(G) \leq |D| = n$. Let $S = \bigcup_{i=1}^{n-1} \{v_{(2i-1)i}, v_{(2i-1)i+1}\}$. Then the set of vertices of G of block-degree at least three is the set $D \cup S$. Hence, G has k = |D| + |S| = 3n - 2 vertices of block-degree at least three, and so as shown earlier, $\gamma_P(G) \geq (k+2)/3 = n$. Consequently, $\gamma_P(G) = (k+2)/3 = n.$ Figure 2: A connected block graph G with k=7 vertices of block-degree at least 3 and $\gamma_P(G) = (k+2)/3$. # 8 Proof of Theorem 7 We proceed by induction on $m = \operatorname{sp}_b(G)$. Suppose m = 1. Then G is a block-spider, and so, by Theorem 3, its head is a PDS of G and $\gamma_P(G) = 1 = \operatorname{sp}_b(G)$. Suppose, then, that for all connected block graphs G' in which every block is K_2 or K_3 with $\operatorname{sp}_b(G') = m$, where $m \geq 1$, the heads of the block-spiders induced by a block-spider partition of V(G') power dominate G'. Let G be a block graph in which every block is K_2 or K_3 with $\operatorname{sp}_b(G) = m + 1$. Let $\{V_1, V_2, \ldots, V_{m+1}\}$ be a block-spider partition of V(G). For i = 1, 2, ..., m+1, let G_i be the block-spider induced by V_i , and so $G_i = G[V_i]$, and let h_i be the head of G_i . Let F be the graph with vertex set $\{V_1, V_2, \ldots, V_{m+1}\}$ where two vertices V_i and V_j are adjacent in F if and only if there is an edge of G joining a vertex of V_i and a vertex of V_j . Since G is a block graph in which every block is K_2 or K_3 , so too is F. We must now consider two cases, depending on whether F contains an end-block K_2 or whether every end-block of F is a K_3 . ## Case 1. F contains an end-block K_2 . Without loss of generality, we may assume that V_1 is an end-vertex of F and that $V_1V_2 \in E(F)$. The edge V_1V_2 in F corresponds to a block B in G that contains at least one vertex of each of V_1 and V_2 , but no vertex in $V(G) - V_1 - V_2$. Let $G' = G - V_1$; that is, G' is the connected block graph (in which every block is K_2 or K_3) obtained from G by deleting the vertices in the subset V_1 . If $\operatorname{sp}_b(G') < m$, then we can add the subset V_1 to a minimum block-spider partition of V(G') to produce a block-spider partition of V(G) of cardinality $\operatorname{sp}_b(G') + 1 < m + 1 = \operatorname{sp}_b(G)$, which is impossible. Hence, $\operatorname{sp}_b(G') \ge m$. Since $\{V_2, \ldots, V_{m+1}\}$ is a block-spider partition of V(G'), $\operatorname{sp}_b(G') \le m$. Consequently, $\operatorname{sp}_b(G') = m$. Applying the inductive hypothesis to G', $S' = \{h_2, \ldots, h_{m+1}\}$ is a PDS of G'. Thus all vertices and edges of G' are observed by S'. Let $S = S' \cup \{h_1\}$. We show that S is a PDS of G, and so $\gamma_P(G) \le m + 1 = \operatorname{sp}_b(G)$. We consider two possibilities depending on whether $B = K_2$ or $B = K_3$. Suppose that $B = K_2$. Let $V(B) = \{v_1, v_2\}$ where $v_i \in V_i$ for i = 1, 2. Thus, $v_1v_2 \in E(G)$ and this is the only edge joining a vertex in V_1 and $V(G) - V_1$. Since S' is a PDS of G', the vertex v_2 is observed by the set S' in G. The vertex v_1 is observed by the vertex h_1 in G. Hence the edge v_1v_2 is observed by the set S. It follows that S is a PDS of G. Suppose that $B = K_3$. Suppose, first, that $V(B) = \{u_1, v_1, v_2\}$ where $\{u_1, v_1\} \subset V_1$ and $v_2 \in V_2$. Let G_1 be rooted at h_1 . We may assume that u_1 is a block-child of v_1 (possibly, $h_1 = v_1$). The vertex v_1 and all its incident edges except for the edge u_1v_1 are observed by the vertex h_1 in G, while v_2 is observed by the set S' in G. Hence the edge v_1v_2 is observed by S in G. Thus, the edges v_1u_1 and u_1v_2 in turn become observed by S in G. It follows that S is a PDS of G. Suppose, secondly, that $V(B) = \{v_1, v_2, u_2\}$ where $v_1 \in V_1$ and $\{u_2, v_2\} \subset V_2$. The vertex v_1 is observed by h_1 in G. If u_2 and v_2 are both observed by S' in G' before the edge u_2v_2 is observed, then S observes both v_1u_2 and v_1v_2 in G. Consequently, the edge u_2v_2 is observed by S in G. It follows that S is a PDS of G. On the other hand, if u_2 or v_2 , say u_2 , is only observed after the edge u_2v_2 is observed by S' in G', then S observes the vertices v_1 and v_2 in G, and therefore the edge v_1v_2 . Thus, all edges incident with v_2 are observed by S in G, and so the vertex u_2 becomes observed by S in G. It follows that S is a PDS of G. ### Case 2. Every end-block of F is K_3 . Without loss of generality, we may assume that $F[\{V_1, V_2, V_3\}]$ is an end-block of F. The block $F[\{V_1, V_2, V_3\}]$ in F corresponds to a block $B = G[\{v_1, v_2, v_3\}] = K_3$ in G where $v_i \in V_i$ for i = 1, 2, 3. If m = 3, then the set $\{h_1, h_2, h_3\}$ observes each of v_1, v_2 and v_3 in G, and therefore observes each of the edges v_1v_2 , v_1v_3 and v_2v_3 . It follows that if m = 3, then $\{h_1, h_2, h_3\}$ is a PDS of G. Hence we may assume that $m \geq 4$ and that V_3 is a cut-vertex of F. Thus each of V_1 and V_2 has degree 2 in F, while V_3 has degree at least 3 in F. Let $G' = G - V_1 - V_2$; that is, G' is the connected block graph (in which every block is K_2 or K_3) obtained from G by deleting the vertices in the subsets V_1 and V_2 . If $\operatorname{sp}_b(G') < m-1$, then we can add the subsets V_1 and V_2 to a minimum block-spider partition of V(G') to produce a block-spider partition of V(G) of cardinality $\operatorname{sp}_b(G') + 1 < m+1 = \operatorname{sp}_b(G)$, which is impossible. Hence, $\operatorname{sp}_b(G') \ge m-1$. Since $\{V_3, \ldots, V_{m+1}\}$ is a block-spider partition of V(G'), $\operatorname{sp}_b(G') \le m-1$. Consequently, $\operatorname{sp}_b(G') = m-1$. Applying the inductive hypothesis to G', $S' = \{h_3, \ldots, h_{m+1}\}$ is a PDS of G'. Therefore all vertices and edges of G' are observed by S'. Let $S = S' \cup \{h_1, h_2\}$. Then the vertex v_1 is observed by h_1 , the vertex v_2 by h_2 , and the vertex v_3 by S' in G. Thus each of the edges v_1v_2 , v_1v_3 and v_2v_3 is observed by S in G. It follows that since h_i is a PDS of G_i for i = 1, 2 and since S' is a PDS of G', S is a PDS of G, and so $\gamma_P(G) \leq m+1 = \operatorname{sp}_b(G)$. However by Theorem 4, $\gamma_P(G) \geq \operatorname{sp}_b(G)$. Consequently, $\gamma_P(G) = \operatorname{sp}_b(G)$. # 9 Proof of Theorem 8 Suppose first that t=2k for some integer $k\geq 2$. For $i=1,\ldots,k$, let G_i be the graph obtained from the path $u_{i,1},u_{i,2},\ldots,u_{i,6}$ by adding the edge $u_{i,4}u_{i,6}$. Then, G_i is a block-spider. Let $h_i=u_{i,4}$. Let G be obtained from the disjoint union $\bigcup_{i=1}^k G_i$ of the graphs G_i by forming a clique on the set $S=\bigcup_{i=1}^k \{u_{i,2},u_{i,3}\}$. Then, $G[S]=K_t$ and G is a connected block graph in which every block is K_2 or K_3 , except for the block induced by the set S. (The graph G when t=6 is illustrated in Figure 3 where the four large darkened vertices from a $\gamma_P(G)$ -set.) The partition $\{V(G_1),\ldots,V(G_k)\}$ of V(G) is a minimum block-spider partition of G, and so $\mathrm{sp}_b(G)=k$. On the other hand, the set $\{h_1,\ldots,h_k\}\cup\{u_{1,3}\}$ is a minimum PDS of G, and so $\gamma_P(G)=k+1$. Thus, $\gamma_P(G)>\mathrm{sp}_b(G)$. Figure 3: A connected block graph G with $\gamma_P(G) > \operatorname{sp}_b(G)$ in which all but one block is K_2 or K_3 . Suppose secondly that t=2k+1 where $k\geq 2$. Let G_{k+1} be the graph obtained from the path $u_{k+1,1},u_{k+1,2},\ldots,u_{k+1,6}$ and adding the edge $u_{k+1,4}u_{k+1,6}$. Then, G_i is a block-spider. Let H be the graph obtained from the disjoint union of graph G constructed earlier and the graph G_{k+1} by adding all edges joining $u_{k+1,3}$ to vertices in the set S. Then, $H[S \cup \{u_{k+1,3}\}] = K_t$ and H is a connected block graph in which every block is K_2 or K_3 , except for the block induced by the set $S \cup \{u_{k+1,3}\}$, with $\gamma_P(G) = k+2 > k+1 = \operatorname{sp}_b(G)$. ## References - [1] T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, Power system observability with minimal phasor measurement placement, *IEEE Trans. on Power Systems* 8 (1993) 707-715. - [2] M. B. Boisen, Jr., T. L. Baldwin, and L. Mili, Simulated annealing and graph theory applied to electrical power networks, manuscript (2000). - [3] M. Dorfling and M. A. Henning, Power domination in grid graphs. M. Dorfling and M. A. Henning, A note on power domination in grid graphs. To appear in *Discrete Applied Math*. - [4] D. J. Brueni, Minimal PMU Placement for Graph Observability: A Decomposition Approach, Masters Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1993). - [5] T.W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, Power domination in graphs applied to electrical power networks. SIAM J. Discrete Math. 15(4) (2002), 519-529. - [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998. - [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998. - [8] L. Mili, T. Baldwin, and A. Phadke, Phasor measurement placement for voltage and stability monitoring and control, Proceedings of the EPRI-NSF Workshop on Application of Advanced Mathematics to Power Systems, San Francisco, California (1991).