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Abstract: The maximum genus, a topological invariant of graphs, was
inaugurated by Nordhaus, et,al [16]. In this paper, the relations between
the maximum non-adjacent edge set and the upper embeddability of a
graph are discussed, and the lower bounds on maximum genus of a graph
in terms of its girth and maximum non-adjacent edge set are given. Fur-
thermore these bounds are shown to be best possible. Thus, some new
results on the upper embeddability and the lower bounds on the maximum
genus of graphs are given.
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1 Introduction

A graph is often denoted by G = (V, E) with v = |V| and € = |E]|
which are called the cardinality of vertex set and cardinality of edge set of
G respectively. A graph is simple if it neither contain multiple edges nor
self-loops. In this paper, the graphs G are permitted to have multiple edges
and self-loops. If a graph doesn’t contain self-loops but contain multiple
edges, we call it multi-graph. The vertez-connectivity x(G) of a graph
G is the minimum number vertices whose removal from G results in a
disconnected or trivial graph. The edge-connectivity x1(G) of a graph G is
the minimum number edges whose removal from G results in a disconnected
or trivial graph. The length of the shortest cycle in a simple graph that
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contains cycle is called the girth of G and is denoted by g(G). If G has no
cycles, then g(G) = oo. If G has multiple edges (self-loops), then we define
9(G) = 2 (g(G) = 1). Recall that an independent set of vertex in a graph G
is one whose elements are pairwise non-adjacent. The independence number
o(G) of a graph G is the number of vertices in a maximum independent set
of G. We define the line graph of L(G) of G as that graph whose vertices
can be put in one-to-one correspondence with the edges of G in such a
way that two vertices of L(G) are adjacent if and only if the corresponding
edges of G are adjacent. Thus the maximum non-adjacent edge set of a
graph G corresponds to maximum vertex independent set of its line graph
L(G). We denote the cardinality of the mazimum non-adjacent edge set
by a;(G). It has been shown by R.Duke [5]that if a connected graph G
has embedding on compact orientable 2-manifolds, or in other words, on
the surfaces of genera m and n, then for all k (m < k < n), G has an
embedding on an orientable surface of genus k. It can be shown from the
Eulerian formula for polyhedra that

2922 f] v |22)

where 8(G) = € — v + 1 is called the Betti number of G and 4(G) is the
orientable genus of G.

For a graph G, if yu(G) = l.ﬂglj , then G is said to be upper embed-
dable on the orientable surfaces.

The study of the maximum genus of a graph was inaugurated by Nord-
haus, Stewart and White [15]. From then on, various classes of graphs have
been proved upper embeddable. For example (1) 4-edge connected graphs
[11,26]; (2)cyclically 4-edge connected graphs|22}, (3)connected, and locally
connected graphs [17]; (4)connected, and locally quasi-connected graphs
(19]; (5)connected 4k + 2-regular graphs(24]; (6)a graph which has a tri-
angulation on some surface [8]; (7) a simple graph with diameter two[23];
(8) a simple graph that has a 2-cell embedding in some surface(orientable
or not) such that the length of every face does not exceed five[21]; (9)con-
nected, Na-locally connected graphs [20]. However there are examples of
k-edge-connected (k-vertex-connected) graphs that are not upper embed-
dable [9], for £ = 1,2,3. Thus, one may want to obtain the lower bounds
for the maximum genus of a k-edge-connected graphs (k < 3). Chen et
al. [4] have shown that the maximum genus of a simple graph is at least
one-quarter of its Betti number. Chen et al. [3] gave tight lower bounds
of the maximum genus via connectivity. Huang [6,7] obtained the lower
bounds of maximum genus via girth, chromatic number and independence
number. Li and Liu [12] obtained the lower bounds of maximum genus
via girth and connectivity. Archdeacon et al. [1] gave shortened proofs of
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the known results and a new bounds of maximum genus in the non-simple
case. For more details, one may see [1,3,4,6,7,12], etc. In this paper, we
first discuss the relations between the maximum non-adjacent edge set and
the upper embeddability of a graph, then characterize the lower bounds on
the maximum genus of graphs by using maximum non-adjacent edge set
and girth. It’s shown that the lower bounds are best possible.

2 Preliminaries

There are two equivalent characterizations on the maximum genus of a
graph, due to Xuong [26], Liu[13,15] and Nebesky[18], respectively.

Let T be a spanning tree of a connected graph G. The edge comple-
ment G — T of the spanning tree T is called a co-tree. A component H of
G —T is called an odd component if H has an odd number of edges; other-
wise, it is called an even component. The deficiency (G, T) of a spanning
tree T of a connected graph G is defined to be the number of odd compo-
nents of G—T. The deficiency £(G) of a graph G is the minimum of (G, T)
over all spanning trees T. Now we restate the characlerization theorem.

Theorem 2.1(13,26] Let G be a connected graph. Then
(1) G is upper embeddable if and only if £(G) <1
(2) TM(G) = EAEA),

The characterization of Nebesky is in terms of an edge cut set of the
graph. The two are mutually dual. Let A be a subset of E. let ¢ = ¢(G — A)
be the number of components of G — A, and let b = b(G — A) be the number
of components of G — A with odd Betti number.

Theorem 2.2[18] Let G be a connected graph. Then
(1) G is upper embeddable if and only if (G — A) +b(C — A) — 2 < |A],
for any subset A of £
(@) §(G) = maxac 5{elG = A) + UG~ 4) = 4] - 1)

Let F},,-- . be some connected components of G — A, and E(F;,,

-, Fy,) be t.he set of edges whose one end vertex is in V(F;, ), the other
in V(F,,)(1 £ m,n < k,m # n). Any set A C E such that £G) =
c(G — A) + b(G — A) — |A] = 1 will be called a Nebesky set, furthermore, if
A is minimal, then it will be called a minimal Nebesky set. The following
Lemma can be seen in (7], etc.

Lemma 2.3(7] Let G be a connected graph. if G is not upper embed-
dable, there exists a minimal Nebesky set A such that the following proper-
ties are satisfied,

(8) (G —A) 2 2, and B(F) =1 (mod 2) for any connected component
Fof G- A;

(b) F is an vertez-induced graph of G for any connected component F
of G- A;
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() |E(F;y, -+, Fi\)| € 2k—3 for any k distinct components Fy, -, F;,
of G- A;

(d) €&(F) =1 for any connected component F of G — A;

(e) &(G) =2¢(G — A) — |A| - 1.

Let A be a minimal Nebesky set and F, - - -, F; be all connected com-
ponents of G — A. Let E(F;, A) be the set of edges whose one end vertex is
in V(F;), the other in V(A), for i =1,--.,l. The following fact is obvious.

4
1Al = 5 3" 1B(F, A) 1)
i=1

3 The maximum non-adjacent edge set and
Upper embeddability

In this section, we will discuss the relations between the upper embeddabil-
ity and maximum non-adjacent edge set of a graph.

Theorem 3.1 Let G be a connected graph. If 01(G) < 1, then G is
upper embeddable.

Proof. Suppose that the graph G is not upper embeddable. By
Lemma 2.1, there exists A C E such that the properties (a)-(e) of Lemma
2.3 are satisfied. Let Fy, Fy,---, Fi(! > 2) be the all connected compo-
nents of G — A. By (a) of Lemma 2.3, we know that a;(F;) > 1. Since

1

a1(G) 2 Z a1 (Fi) 2 1 > 2, it’s impossible.
k=1
Theorem 3.2 Let G be a simple graph. If a1(G) < 2, then G is upper
embeddable.

Proof. Note that if G is a simple graph, by (a) of Lemma 2.3, we
{

know that [V(F)| > g(G) > 3. If 1 2 3, we have a1(G) 2 ) an(Fi) 21 >
k=1

3, otherwise ! = 2, let E(F, F2) = {e}, since g(G) > 3, we can easily find

three non-adjacent edges {e, f, g} where [ € F,g € F5. Thus, ay(G) 2> 3,

it’s impossible.

Remark 1 The upper bound 1 (2) of Theorem 3.1 (Theorem 3.2)
can’t be replaced by 2 (3). Since the graphs G, and G2 shown in Fig.1.
are two counter-examples. Note that a;(G) = 2 and 1(G2) = 3. It’sa
easy task to see that G| and G, are not upper embeddable. The dipole
D,, is the graph which consists of two vertices joined by p edges. By is the
bouquet of n-cycles. The bouguet of n p—dipoles By, , be the graph defined
as followings: The vertex set consists of n + 1 vertices, say vo,vi, -+, ¥n,
and for each j = 1,2, ..., n, there are exactly p edges, say €(;-1)p+1," 1 €jps
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between vp and v;. By Theorem 2.2, the dipole Dj, the bouquet of n-cycles
B, and the bouquet of n p — dipoles B, , are upper embeddable. Since
a1(Cy) = ai1(Ky) = 2, by Theorem 3.2, the cycle c; and the complete
graph K are upper embeddable. Thus, the upper bounds of Theorem 3.1
and Theorem 3.2 are best possible and can’t be improved.

Gy s

Fig. 1.

Theorem 3.3 Let G be a graph and k1(G) = 2. If a1(G) < 2, then
G is upper embeddable.

Proof. Suppose that the graph G is not upper embeddable. By
Lemma 2.3, there exists A C E such that the properties (a)-(e) of Lemma
2.3 are satisfied. Let Fy, Fy,---, Fj(! > 2) be the all connected components
of G- A. By (a) of Lemma 2.3, we know that o (F;) > 1. Since G is 2-edge
connected, we have |E(F;, A)| > 2, fori=1,2,...,l. Let = be the number
of such F; with the property that |[E(F;, A)| = 2, and y be the number of
such F; with the property that |E(F;, A)| = 3, for i = 1,2,---,1. By (1),
we have .

1Al = 5 IR, A 22+ y+20 -2 ) )

By the (e) of Lemma 2.3, we have
§G)=2-A-122 ®3)
By (2) and (3), we can easily get
1
-y > 3.
T+ 23/ >3

Therefore, we have .
T+y2z+gy2 3.
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l
Since a;(G) > Z a1(F) 2 1 >z +y 2 3, it’s impossible.

k=1 .
Theorem 3.4 Let G be a simple graph and x,(G) = 2. If a1(G) £ 3,
then G i3 upper embeddable.
Proof. Note that if G is a simple graph, by (a) of Lemma 2.3, we know
i

that [V(F;)| > ¢(G) > 3. 11 > 4, we have 01(G) > Y _au(Fi) > 1 > 4,

k=1
otherwise | = 3, let E(Fy, F3) = {e}, since g(G) > 3, we can easily find
four non-adjacent edges {e, f,g,h} where f € F\,g € F2,h € F3. Thus,
a1(G) > 4.

Remark 2 The upper bound 2 (3) of Theorem 3.3 (Theorem 3.4)
can’t be replaced by 3 (4). Since the two graphs G3 and G4 shown in
Fig.2. are two counter examples. Note that a;(G3) = 3 and a;(G,) = 4.
However, let A = {c,d, e}. It’s easy to see that

(G —A)+b(G; - A)~2=4>|A|=3 fori=3,4.
by Theorem 1.2, G3 and G4 are not upper embeddable. Let D, a dipole
and D, be a copy of D, Suppose V(D,) = {v1,v2} and V(D,) = {u1,us}.
Let graph D = D, U D; U {u1v1, ugup}. It's routine task to check that
a1(D) = k(D) = 2, by Theorem 3.3, the graph D is upper embeddable.
Let e = uvy, f = wvs and g = uv3 be three adjacent edges of the complete
graph Kg (Note that u, vy,v2 and v3 are four vertices of Kg) . It’s easy
to check that ai(Ke\{e, f,g}) = 3 and x,(Kg\{e, f,9}) = 2, by Theorem
3.4, the graph Ks\{e, f, g} is upper embeddable. Thus, the upper bounds
of Theorem 3.3 and Theorem 3.4 are best possible and can’t be improved.

7N 1.\

Gs Gy
Fig. 2

Theorem 3.5 Let G be a graph and x,(G) = 3. If 1(G) £ 5, then
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G 13 upper embeddable.

Proof. By contradiction, assume that the theorem is not true. By
Lemma 2.3, there exists A C E such that the properties (a)-(e) of Lemma
2.3 are satisfied. Let Fy, F,---, Fi(l 2 2) be the all connected compo-
nents of G — A. Since G is 3-edge connected, we have |E(F;, A)| > 3, for
i = 1,2,-..,l. Let z be the number of such F; with the property that
|E(F;,A)]=3fori=1,2,.--,l. By (1), we have

[
1 3
= = . > = -
Al =3 g;IE(F:.A)I > 52+l -q) @
By the (e) of Lemma 2.3, we have
§G)=2-A]-122 (5)
By (4) and (5), we can easily get
1
53 Z 3.

Therefore, we have z > 6
{

Since oy (G) > Z ay(Fi) 2 1 > z > 6, it’s impossible

k=1

Theorem 3.6 Let G be a simple graph and k1(G) = 3. If 01(G) < 8,
then G is upper embeddable.

Proof. Note that if G is a simple graph, by (a) of Lemma 2.3, we
know that |V (F;)| > g(G) > 3. We now construct a graph G* with respect
to A as follows: V(G*) is the set of components of G — A and two vertices
in G* are adjacent if and only if they are joined in G by an edge of A. It’s
easy to know that G* are also connected and ,(G) < x,(G*).

Gs Ce

Fig. 3
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Case 1 [=#6. By (c) of Lemma 2.3, we know that
|E(G*)|=]A|£2x6-3=09.

Since G is 3-edge-connected, we have

0BG = ) de-(v)23x6=18.
veEV(G*)

Thus, |E(G*)| = 9 and G* is a 3—regular graph. By (c) of Lemma 2.3,
|B(F;, Fy)| €1, for 4,5 = {1,2,---,6}. In other words G* is simple. Thus,
G* is isomorphic to one of graphs shown in Fig. 3. It’s a routine task to
check that a;(G*) = 3.

Let E(F\, F,) = {e}, E(F3,Fy) = {f} and E(Fs, Fs) = {e}. since
g(G) > 3, we can easily find nine non-adjacent edges {e, f,g,h1---, he}
where h; € F;,i=1,..-,6. Thus, a;(G) > 9.

Case 2 ! = 7. In this case, it’s a easy to see that a;(G*) > 2.
Similarly, we can find nine non-adjacent edges, Thus a;(G) > 9.

Remark 8 Note that the upper bound 5 (8) of Theorem 3.5 (Theo-
rem 3.6) can’t be replaced by 6 (9). Since the graphs shown in Fig. 4. and
Fig. 5. are two counter examples.

Note that a;(G7) = 6 and a;(Gs) = 9. However, let A = {e}, €2, --,€9}.
It’s easy to see that

(G- A)+bGC-A)-2=10> |A|=9.

by Theorem 1.2, the graph G7 shown in Fig. 4 and Gg shown in Fig. 5.
are not upper embeddable.

Fig. 4.

Let graph H be obtained by replace each vertex of Ks\{e} by the
D,, (e is a edge of K5 and p > 3). It’s easy to see that ay(H) = 5
and «1(G) = 3, by Theorem 3.5, the graph H is upper embeddable. Let
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uvy,---,uv)2 be twelve adjacent edges of the complete graph K5 (Note
that u, vy,v2,-:,v11,and vy are vertices of Kj6) . It’s easy to check
that a;(Kie\{uvy, --,uvi2}) = 8 and ;(Ki6\{uvy, -, uv12}) = 3, by
Theorem 3.4, the graph Kyg\{uvy,---,uv12} is upper embeddable. Thus,
the upper bounds of Theorem 3.5 and Theorem 3.6 are best possible and
can’t be improved.

Fig. 5.

To conclude, we present a table to give a picture of the study of the
maximum genus via graph’s maximum non-adjacent edge set a;(G) and
connectivity k. The rows are correspondence to edge-connectivity k& =
1,2,3 or > 4. Since k(G) < £1(G), we know that the same bounds also
holds for vertex-connectivity.

Type
%1(G) Multigraph Simple upper embeddable
1 a(G) <1 a1(G) <2 Yes
2 o1(G) <2 1(G) <3 Yes
3 a1(G) <5 o1{G) <8 Yes

If the graph G contain self-loops, then the maximum non-adjacent
edge set is not large than cardinality of vertex set. In other words, we have
@1(G) < v. otherwise, a1(G) < %. By the above table, we can present
a table to give a picture of the study of the maximum genus via graph’s
cardinality of vertex set v and connectivity k. The rows are correspondence
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to edge-connectivity £ = 1,2,3 or > 4. The same bounds also holds for
vertex-connectivity.

Type (Selfloops . . upper
%1(C) permitted) Multigraph Simple embeddable

1 v<l1 v<3 v<>5 Yes

2 v<? v<5h v<T Yes

3 v<h v<11 v<17 Yes

4 Maximum Genus, Maximum non-adjacent
edge set and Girth

In this section, we obtain the lower bounds of maximum genus in terms of
maximum non-adjacent edge set and girth.

Theorem 4.1 Let G be a connecied graph with girth g. Then the
lower bounds on the mazimum genus ym(G) are given in the following
table. The rows are correspond to edge-connectivity k = 1,2,3 or > 4. The
same bounds also holds for vertex-connectivily. Furthermore, the bounds
are best possible. Note that we let |§] =1 for non-simple graphs.

K1 (G) Y™ (G)

1| min{[480) - 5] |22}
2 min { [%ﬁ(G) mzlc J—].' lﬂ"’glj }
3 min { [%ﬁ(c) m4f; J—Q-l l_ﬂQQJ }

>4 122

Proof. Since the lower bounds for the k-connected graph implies
those for k-edge-connected graph, we can only show the theorem is true for
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k-edge-connected graph. If the graph G is upper embeddable, the theorem
is obvious. Otherwise we can suppose that G is not upper embeddable. By
Lemma 2.3, there exists A C E such that the properties (a)-(e) of Lemma
2.3 are satisfied. Let Fy, F, - -, Fi(l > 2) be the all connected components
of G- A

It’s easy to see that oy (F;) > |4], fori=1,2,...,L

Since - .
1) 2 Y en(Fi) 2 1| ]
k=1
we have ©)
ay
>1
K1

We now construct a graph G* (with respect to A)as follows: V(G*) is
the set of components of G — A and two vertices in G* are adjacent if and
only if they are joined in G by an edge of A. It’s easy to know that G*
are also connected and #3(G) < x1(G*). Since G* is connected, we have
|Al = |E(G*| 2 |[V(G*| —1=1-1. by Lemma 2.3, we have

EG)=2c(G-A)—|A|-1=2l-|A|-1<1< aigf)
2
Since
Q04| =21E(G"|= ) dg(v)
vEV(G*)
Thus, if #,(G) = 2, we have 2|4| > 2{. by Lemma 2.3,
€G) =2 A -1<1-1< 28 _
14)
If k1(G) = 3, we have 2|A| > 3l. by Lemma 2.3,
l o1(G)
= - - -1.
EG)=2-|Al-1< 3 1< 28] 1

By the (2) of characterization theorem, we have £(G) = B(G) —
2vm(G). Thus the upper bounds of £(G) gives the lower bounds of yp (G).
It’s a routine task to check that the theorem is true.

It’s routine to check that the maximum genus of the graphs Gy, - - -, Gg
(Fig.1-Fig.5) are attain the lower bounds of Theorem 4.1. So the bounds
given in Theorem 4.1 are best possible.

Remark 4: We see that the graphs in Theorem 3.3 are permitted
to have multiple edges and self-loops, while the graphs in [3-4,6,7,12] are
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simple. If a graph have multiple edges, we can’t obtain a lower bound on it’s
maximum genus by using the results [3-4,6,7,12]. For example: the dipole
Dy, the bouquet of n-cycles By, and the bouquet of n p — dipoles By p, etc.
Let K n be a complete bipartite graph. i.e., K15 is a tree of vertices with
one vertex u of K n being adjacent to all the other vertices v, vz, -+, ¥n.
Now we obtain a new graph from K, by replacing each vertex v; with a
dipole D,, for i = 1,2, .-, n, and putting the edge formerly incident with
v; to be incident with one of two vertices in Dp. Denote the resulting graph
by Ly p. For example, the following figure helps us to understand the graph

n,p:

ST

Fig. 6. The graph L5

It’s a routine task to check that
Ln
cr(Lnp) = Bne) (15 9).
p—1
Since the graph Ly, is not simple, we can’t obtain a lower bound on

the maximum genus of Ly , by using the results [3-4,6,7,12]. Note that the
graph L, , may not upper embeddable when p is even. By theorem 3.3, we

have
(p— z)ﬁ(Ln.P)
2(p—-1)
This bound is tight. If we using the methods of [1], we have yp(Ln p) >
0. Thus, we can obtain good lower bounds on the maximum genus of some
non-simple graphs.

™ (Ln,p) 2
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Let G be a connected graph and u,v € V(G). Now we obtain a new
graph G from G by adding n self- loops to u or adding n multlple edges to
u and v. It’s easy to see that B(G’) = B(G) +n and e1(G') € ey (G) + 1.
Without loss of generality, we suppose x;(G’) = 3. Since

N [2—;7) . m min{ [48(0") —[ ;;‘:;{JH] =)}

That is to say, when n — oo, G'is upper embeddable. In other words,
The lower bound of the maximum genus of G’ is very close to -yM(G'),
when n is large.

Remark 5: Let G be a simple graph with minimal degree at least

3.
Since
Z d(v) 23v and a;(G) < E,
veV(G)
we have
BCG)=e-v+12 3 Z+1 =a(G)+1.

To conclude, we present a table to give a picture of the lower bounds
of $8(G) - ﬂéﬁl 18(C) - 2!5([%‘-‘- and 18(G) - “—‘4@;—’ via girth. The

rows are correspond to the values of girth g(G).

16 -5 60 - 180 - T
g=3 3 1 G)+3
9=4,5 G)t1 8(G)+2 38(G)+3
] a r 3
=6,7 28(G)+1 28(G)+2 58(G)+3
g=28,9 38(G)+1 38(G)+2 78(G)+3
’ 8 8 T8

By the table, we can see that the lower bounds Theorem 4.1 is more
better if the values of the girth is more larger. In general, the lower bound
of Theorem 4.1 is better than the results of [1,3,4] (where it is proved that

E(—l (or ﬂ—l , respectively) is a tight lower bound on the maximum genus
of a s1mple graph G with the minimal degree at least 3 and with the edge-
connectivity 1 (or, the edge-connectivity 2 or 3, respectively)) when the
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girth g(G) is large. In other words, the results in (1,3,4] can be improved,

if the number 3[‘-%’—) is small.
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