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ABSTRACT. Let k > 1 be an integer and let G = (V, E) be a graph. A set
S of vertices of G is k-independent if the distance between any two vertices
of S is at least k+1. We denote by pi(G) the maximum cardinality among
all k-independent sets of G. Number pi(G) is called the k-packing number
of G. Furthermore, S is defined to be k-dominating set in G if every vertex
in V(@) — S is at distance at most k¥ from some vertex in S. A set S is
k-independent dominating if it is both k-independent and k-dominating.
The k-independent dominating number, ix(G), is the minimum cardinality
among all k-independent dominating sets of G. We find the values ix(G)
and pi (G) for iterated line graphs.

1. INTRODUCTION AND RESULTS

Let G be a graph. Its line graph L(G) is defined as the graph whose
vertices are the edges of G, with two vertices adjacent if and only if the
corresponding edges are adjacent in G. Although the line graph operator is
one of the most natural ones, only in recent years there is recorded a larger
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interest in studying iterated line graphs. Iterated line graphs are defined
inductively as follows:
G if =0,

e = { L(LF-Y(G)) ifj>0.

In iterated line graphs the greatest attention was devoted to Hamiltonicity.
The most recent results in this area can be found in a paper by Xiong and
Liu [16]. The diameter and radius of iterated line graphs are examined
in [15], and [11] is devoted to the centers of these graphs. In [7] and [6],
Hartke and Higgins study the growth of the minimum and the maximum
degree of iterated line graphs, respectively. The connectivity of iterated
line graphs is discussed in [10].

We shall use the notation of domination and independency parame-
ters as in [4). The closed k-neighborhood of a vertex v in a graph G =
(V(G), E(G)) is Ng[v) = {w € V;distg(v,w) < k}, where diste(v,w) de-
notes the distance between v and w in G. A vertex set S is said to be
k-dominating if Ni[v) NS # 0 for every v € V(G). The set S of vertices
is called a k-packing [14] or k-independent (9] if distg(v,w) > k + 1 for
each pair of distinct vertices u and v in S. By pi(G) we denote the k-
packing number of G, that is, the maximum cardinality of a k-packing.
Note that B(G) = p1(G), where B(G) is the independence number of G;
and p(G) = pa(G), where p(G) is the packing number of G.

In general, a set S is a maximal k-packing if and only if it is k-dominat-
ing. A vertex set S is k-independent dominating set, if it is both k-packing
and k-dominating set. The k-independent domination number i4(G) is the
minimum cardinality of a k-independent dominating set. In particular,
#(G) = #1(G) where i(GQ) is the independent domination number. Thus,
ix(G) and pi(G) are the minimum and maximum cardinalities, respectively,
of any maximal k-packing. In [4] there are presented bounds for values
of ix(G) and pr(G) and it is proved that the decision problem “ix(G) <
pr(G)?” is NP-complete in general. For a survey of results concerning
distance domination and independency we refer to [9] and [8].

In [2] and [3], Dutton and Brigham study the domination properties of
line graphs and relationships between different parameters of domination
and independence for line graphs. They proved that the domination num-
ber v(L(G)) and independent domination number ¢(L(G)) have the same
value. (Recall that (G) is the minimum cardinality of a dominating set
in G.) In this paper we give exact values for px(L/(G)) and ix(L/(G)),
providing that j is “big enough”. (The proofs of our results are postponed
to section 2.)

In one of the pioneering papers in graph theory [12], Kotzig proved:

Theorem A. Let G be a connected graph with even number of edges.
Then E(G) can be decomposed into %|E(G)| paths of length 2.

162



As an immediate consequence of this result (and Lemmas B and C below)
we have:

Proposition 1. Let G be a graph and j > 2. If Li~%(G) is connected

then .
. _ -
BLI(G) = m(TA(G)) = lw J

Using Proposition 1, for independent domination number we prove:

Theorem 2. Let G be a graph and j > 3. If Li=3(G) is a connected graph
with §(L3=3(G)) > 3, then

; ] i—2 -1 j—2
3(LJ(G)) = il(LJ(G)) = [IE(U (G))I 2l'2|V(LJ (G))l_l.|.

Here §(G) denotes the minimum degree of a graph G, while A(G) denotes
its maximum degree.

It is well-known that for a general graph G the problem of finding its
independence number is NP-hard, see [5]. If we consider line graphs, max-
imum independent sets in L(G) correspond to maximum matchings in G.
Hence, the problem of finding the independence number of L(G) is polyno-
mial, see [13]. By Proposition 1, the problem of finding the independence
number of L%(G) is trivial, and by Theorem 2, if G has minimum degree at
least 3, then the problem of finding the mdependent domination number
of L3(G) is trivial as well.

It is interesting that analogous straightforward formulae can be given
also for px(L7(G)) and ix(L#(G)), k > 2, providing that j is “big enough”.
We prove here:

Theorem 3. Let G be a graph, k > 2 and j > k+2. If L’"*"%(G) is a
connected graph with §(L7—*~%(G)) > 5, then

: E(L7-k1(G
pezi(e) = | EEEN).
For the k-independent domination number we have:

Theorem 4. Let G be a graph, k > 2 and j > k+3. If L'"*"%(G) is a
connected graph with §(L—%-%(G)) > 9k -7 and 6(L=*=3(G)) > 3, then

—k-1 _ ke
ikuﬁ(a»=['E(’~’ @) klﬁlvw ‘(G))IJ]
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For the number of vertices of iterated line graphs we have, see [15):

j-1
V@) I] [6@)-2+1] < v@i©e) <
k=0

-1 ,
vl I [2'°-1-(A(G)-2) +1]-

k=0

We remark that if G is distinct from a path, a cycle and a claw K 3,
then there exists jg such that §(L7¢(G)) > 3. Then §(L7(G)) > 2996 .
(6(L79 (G))-2) + 2, so that if j is “big enough”, all the assumptions of
Theorems 2, 3 and 4 are fulfilled. Hence, these theorems can be applied for
any graph (distinct from a path, a cycle and a claw K] 3), providing that
Jj is “big enough”.

Observe that |[E(LY(G))| = |V(I*'(G))|- Hence, if G is d-regular
graph, § > 3, then we can immediately write the numbers p;(L7(G)) and
ix(L(G)) for j “big enough”, although |V (L7(G))| grows doubly exponen-
tially as a function of j.

2. PROOFS

Let G be a graph and let v be a vertex of L¥(@), j > 1. Then v
corresponds to an edge of Li~1(G), and this edge will be called the 1-
history of v. For t > 2 we define t-histories recursively. The ¢-history of
v is a subgraph of LY~*(G), edges of which are induced by the vertices of
Li—*+1(G) which are in (t—1)-history of v.

Observe that the 1-history is always an edge and the 2-history is a path
of length 2. The situation is more complicated for ¢-histories when ¢ > 3.
In [15) we have the following lemma:

Lemma B. Let G be a graph and let L’ (G) be its j-iterated line graph.
Further, let 0 < t < j and let H be a subgraph of L’~%(G). Then H is
a t-history of some vertex of L(G) if and only if H is a connected graph
with at most t edges, distinct from any path with less than t edges.

Also the next lemma, which is useful for calculating the distances in
iterated line graphs, can be found in [15].

Lemma C. Let G be a connected graph, L(G) be its iterated liné graph,
and let u and v be distinct vertices of L(G). Then for any t,0<t < j,
if the t-histories of u and v are edge-disjoint, then the distance between u
and v in L¥(G) equals the minimum distance between the two vertex sets
of the t-histories in L7~*(G), increased by t. If the t-histories of u and v are

164



not edge-disjoint, then the distance in L’(G) between u and v is strictly
less than t.

As can be deduced from the lemmas above, we prove our theorems for
L7(G) using histories in smaller iterations. However, first we introduce two
lemmas. It is worth mentioning, that their proofs (via orientations) are
similar to the proof of Theorem A in [12].

Lemma 5. Let G be a connected graph. If §(G) > 5, then L(G) contains
llﬂ%@&lj edge-disjoint copies of a claw K 3.

Proof. Denote H = L(G). If abis an edge of H, then its vertices correspond
to pair of adjacent edges, say uv and vw, in G. In G the degree of v is at
least 5, so that the edge ab lies in a copy of a complete graph K in H.
Hence, every edge of H lies in a copy of Kj.

To every edge of H we assign one of the two possible orientations. In
such a way we obtain from H its orientation O(H). Let v be a vertex of
H. Denote by o(v) the number of arcs in O(H) terminating at v, taken
modulo 3. Further, denote by o(H) the number of vertices v with o(v) > 0,
and assume that O(H) is chosen so that o(H) is the minimum possible. In
the following we prove o(H) < 1.

Denote by Zf an arc of O(H) starting at z and terminating at y. We
prove that for any edge wv € E(H), such that o(u) > 0, there exists an
orientation O'(H) such that o'(u) = 0 and o'(w) = o(w) whenever w is
distinct from u and v. There are four cases to distinguish:

Case 1: o(u) = 2 and @ is an arc in O(H). Then reversing @ we receive
the required orientation O’(H).

Case 2: o(u) = 2 and ¥ is an arc in O(H). If there is a directed path
from u to v in O(H), then reversing its arcs we obtain the required
orientation O'(H). Analogously, if there is a directed path from v
to u in O(H), then reversing the arcs of this path and reversing 9%
we receive the required orientation O'(H).. Hence, we can assume
that there are no directed paths of these types. Since v and v lie
in a copy of a complete graph Kj, there are two vertices  and y
with the arc 73, such that either Z¢, 0, ¥%, #0 are in O(H) or ut,
vZ, ul), Uy are in O(H). In the first case reversing Zt, Z0, 77, i
we receive the required orientation O'(H), while in the second one
reversing J, v{}, Z, % we get the required orientation O’ (H).

Case 3: o(u) = 1 and #% is an arc in O(H). Then reversing 7% we receive
the required orientation O'(H).

Case 4: o(u) = 1 and @b is an arc in O(H). Analogously as in Case 2 we
can assume that there are neither directed u — v paths nor directed
v — u paths in O(H). But then there are two vertices z and y with
the arc zj, such that either Zd, zb, 7i, yo are in O(H) or ut,
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o, g, vy are in O(H). In the first case reversing I, 0, 3, J0
we receive the required orientation O'(H), while in the second one
reversing uf, U3, T, ¥t we obtain the required orientation O'(H).

Suppose that o(H) > 2. Then there are two vertices, say u and v,
such that o(u) > 0 and o{v) > 0. Since G is a connected graph, H is
connected as well, so that there is a path u=zg,2;,...,2:=v. Consider
a sequence of orientations Og(H)=O(H), O1(H), ... ,0:(H), such that
0i(zi—1) = 0 and 0;(z) = 0;_; () whenever z is distinct from z;_; and z;.
Then o04(zo) = o(z1) = - - = oy(x4—1) =0, and for all z ¢ {zp,21,...,2:}
we have o;(z) = o(z). Hence, o;(H) < o(H), a contradiction.

Thus, there is an orientation O(H) such that o(H) < 1. That means
that up to one exception, the number of arcs directed to each vertex v of
O(H) is a multiple of 3. Hence, these arcs can be arranged into triples to
form lJE.(;'_HJ claws as required. 0O

Lemma 6. Let G be a connected graph, k > 2 and §(G) > 9k - 7.
Moreover, let H be a graph obtained from L(G) by deleting edges of vertex-
disjoint paths, each of length at most k. If |[E(H)| = 0 (mod k+1), then
E(H) can be decomposed into Jiii_g).l stars Ky j41. '
Proof. Denote by O(H) an orientation of H. Analogously as in the proof
of Lemma 5, denote by @0 an arc of O(H) starting at u and terminating at
v. Further, denote by o(v) the number of arcs in O(H) terminating at v,
taken modulo k+1. Finally, denote by o(H) the number of vertices v with
o(v) > 0, and assume that O(H) is chosen so that o(H) is the minimum
possible.

In the next we prove o(H) = 0. To do this we prove that for any edge uv
of H, such that o(u) > 0, there is an orientation O'(H) such that o'(u) =0
and o'(w) = o(w) whenever w is distinct from u and v.

If there are o(u) edge-disjoint directed v —u paths in O(H), then revers-
ing all their arcs we receive the required orientation O'(H). Analogously,
if there are k+1 — o(u) edge-disjoint directed u — v paths in O(H), then
reversing all their arcs we receive the required orientation O'(H). Hence,
we can assume that the number of directed paths in between « and v does
not exceed (o(u)—1) + (k+1—o(u)—1) =k — 1.

Since §(G) > 9k — 7, in L(G) the edge uv lies in a copy of a complete
graph Kyp_7. Consider the 9%k — 9 vertices of this complete graph, distinct
from u and v. Since degy(g)(z)—degn(z) < 2 for every vertex z of H, there
are at most 4 vertices out of these 9k — 9, which are not adjacent to both u
and v in H. Since there are at most k—1 directed paths inbetween u and v,
one of them obtained from the edge uv, there are (9k—13)— (k—2) = 8k—11
vertices z in the complete graph, such that either i, T are arcs of O(H)
or ut,v# are arcs of O(H). Suppose that the number of vertices  with
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arcs tT:i, o2 does not exceed the number of vertices z with arcs T, 7. (The
other case can be solved analogously.) Then there are 4k — 5 vertices z in
the complete graph, such that T0, T are arcs of O(H). However, some
edges connecting these 2’s in L(G) may be missing in H. But since any
system of vertex-disjoint paths on n vertices contains a set of independent
vertices of size greater than or equal to [%], there are 2k — 2 vertices z in
H which are mutually adjacent and such t.hat. TU, T are arcs in O(H).

Denote by K the complete subgraph of H, consisting of the 2k—2 vertices
described above. Further, denote by O(K) the orientation of X induced by
O(H). Since (2k—2) - (k—2) < (*72), O(K) contains a vertex zo with the
out-degree at least k—1. Hence, there are vertices zg,z;,...,2k—1, such
that Zoz; is an arc of O(H) for 1 <i < k-1 and ﬂ ;0 are arcs of O(H)
for 0 < j <k-1. Observethat 1 < o(u) < k. Now reverse all the arcs Zoz>,
1< < k-1, Zot, To0, and one arc from each pair T34, 770, so that exactly
o(u) arcs from .'c_'& will be reversed. If we denote the resultmg orientation
by O'(H), then o'(u) = 0 and o'(w) = o(w) whenever w is distinct from u
and v.

Since k > 2, we have §(G) > 9k — 7 > 5, so that each edge of L(G) lies
in three distinct triangles. Hence, if uv is an edge of L(G) — H, then there
is a vertex z in H such that uz and 2v are edges of H. Thus, since G is
a connected graph, so is L(G) and consequently also H. Now proceeding
analogously as at the end of the proof of Lemma 5 it can be shown that
o(H) < 1. Since |E(H)| = 0 (mod k+1), the case o(H) = 1 is impossible,
so that o(H) = 0. And partitioning all the arcs terminating at v into
(k+1)-touples, we obtain the required decomposition of E(H) into stars
K. O

Now we can prove our main results. However, first we prove Theorems 3
and 4, since the proof of Theorem 2 is similar to that of Theorem 4.

Proof of Theorem 3. Let u and v be two distinct vertices of LI(G). If
distpi(g)(u,v) > k, then the (k+1)-histories of u and v are edge-disjoint, by
Lemma C. Since every (k+1)-history contains at least 3 edges by Lemma B,
we have px(L7(G)) < | 3| E(LF~*1(@®))|]-

By Lemma 5, there are | $|E(L¥*~1(G))|| edge-disjoint copies of a claw
K13 in Li~*=1(@). These correspond to a k-independent set of the same
size in L(G), so that p(L¥(G)) > [3|E(L/~*-1(@))|). O

In the proof of Theorem 4 we use the following result of Chartrand and
Wall [1]:

Theorem D. If G is a connected graph such that §(G) > 3, then L*(G)
is Hamiltonian.

Proof of Theorem 4. Let S be a set of vertices of L(G) on which i (L (G))
is reached. Then the (k+1)-histories of vertices of S are edge-disjoint, by
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Lemma C. Remove the edges of these (k+1)-histories from Li~*~1(G) and
denote the resulting graph by F. Since the set S is maximal, F' does
not contain cycles and all vertices of F' have degree less than or equal
to 2 by Lemma B. Hence, F consists of vertex-disjoint paths, and by
Lemma B, all these paths have lengths less than k+1. Thus, |E(F)| <
|#25IV(ZI~¥-1(G))|]. As a (k+1)-history of a vertex contains at most
k+1 edges, we have

; |E(L-*1e)| - | IV *6))
: k] +1
i(L’(G)) 2 Tl .

On the other hand, L¥~*-1(G) contains a Hamiltonian cycle, by The-
orem D. Deleting [5d7|V(LF~*~1(G))|] edges from this cycle we obtain a
graph F* consisting of paths of lengths less than k+1. Obviously, |E(F*)| =
| 25IV(L7~%-1(G))|]. Let t be a number, 0 < ¢ < k+1, such that

ez Vo))l - 1B (G)) =t (mod k+1).

Delete from F* exactly t edges and denote the resulting graph by F. Then
|B(Li-*-1(G))|~|E(F)| =0 (mod k+1), so that Li—*~1(G)—E(F) can be
decomposed into gy (|E(L7~*~1(G))|-|E(F)|) stars K1 +1, by Lemma 6.
These correspond to a k-independent dominating set of the same size in
Li(G), so that

. j—k—1 _
(@) < EE— OB

[IE(L""‘(G))I-lmIV(L"" 1(G'))IJ'|
k+1

Combining the two inequalities for ix(L?(G)) we get the result. O
Finally, we prove the result concerning i(L?(G)).

Proof of Theorem 2. Substituting 1 for k, analogously as in the proof of
Theorem 4 we get

|BEL2@)] - BIVE2GNI]

WL (G)) 2 5

.. . j-3 j-2
By Proposn.;lon 1, AL I(G))=[IE(L22 (G))!l=[lV(L:2 (G)llJ. Choose
one set of B(L-"fl (®)) independent vertices of LY~1(G), and denote by F*
the edges of L’~2(G) which are 1-histories of vertices of the chosen set.
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Then F* is a collection of independent edges. Observe that |E(F*)| =
|3IV(Z7=2(G))|]. Now let ¢ be a number, 0 < ¢ < 2, such that

3V @) - |B(7-*(G)| =t (mod 2).

Delete from F* exactly ¢ edges and denote the resulting graph by F. Since
§(L73(G)) > 3, each edge of F lies in a triangle in LY~2(G). Hence,
Li-%(G) — E(F) is a connected graph with even number of edges. By
Theorem A its edges can be decomposed into paths of length 2, so that

|E(LA2(@G)| - |E(F)| _
2

W4 (@)) <

PE(LH(G))] - l%IV(L"‘z(G))IJ] 0
5 .
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