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Abstract

Working on the problem of finding the numbers of lattice points
inside convex lattice polygons Rabinowitz has made several conjec-
tures dealing with convex lattice nonagons and decagons. An inten-
sive computer search preceded a formulation of the conjectures. The
main purpose of this paper is to prove some of Rabinowitz’s conjec-
tures. Moreover, we obtain an improvement of a conjectured result
and give short proofs of two known results.

1 Introduction and Basic Facts

We start with some basic definitions. A lattice point in the plane is a
point with integer coordinates. A lattice segment is a line segment whose
endpoints are lattice points. Any line passing through two lattice points is
called a lattice line. A lattice polygon is a simple polygon whose vertices
are lattice points. The fine article by Scott [9] references many interesting
problems dealing with lattice polygons.

By v = v(P), b = b(P) and g = g(P) we denote the number of vertices,
the number of boundary lattice points, and the number of interior lattice
points, respectively, of a lattice polygon P. We will also deal with the
number G = G(P) = b(P) + g(P).

The problem of finding relationships between the numbers v, b, g and
G is of great interest and has been investigated by many authors and in
different settings (not only for the square lattice), see among others [1, 2,
3,4,6, 7,9, 10, 11].

Rabmothz [7] has obtained many relatlonshxps between the numbers
g and v. He has investigated such relationships also by computer. This
method of search has revealed some connections which Rabinowitz has
formulated as conjectures. The purpose of this paper is to prove several
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conjectures from (7] which are stated below (In parenthesis we include the
original names of the conjectures).

Conjecture 1.1 (The Nonagon Anomaly) A convez lattice nonagon
can have 7 interior lattice points or 10 interior lattice points, but it cannot
have either 8 or 9 interior lattice points.

The next three conjectures are closely related to the first one and simply
follow from it. A lattice polygon P is lean if all its boundary lattice points
are vertices. In other words, if b(P) = v(P).

Conjecture 1.2 (The Fat Nonagon Theorem) A non-lean convez lat-
lice nonagon contains at least 10 interior lattice points.

Conjecture 1.3 (Conjecture 7.10) If a convez lattice polygon K has 8
interior lattice points, then v(K) < 8.

Conjecture 1.4 (Conjecture 7.11) If a convez lattice polygon K has 9
interior lattice points, then v(K) < 8.

To understand the next conjecture we need a review of some definitions.
An affine transformation is a linear transformation followed by a transla-
tion. A unimodular transformation is one that preserves area. If the entries
of the matrix corresponding to a unimodular transformation are integers
then the transformation is known as an integral unimodular transformation.
Such a transformation has the property that it preserves convexity and the
number of lattice points in a set.

Two lattice polygons are said to be lattice equivalent if one can be
transformed into the other via an integral unimodular affine transforma-
tion. In particular, two lattice polygons are lattice equivalent if one can
be transformed into the other via a shear about line !, that is, an integral
unimodular transformation that leaves all the points on line ! fixed. For
example, a shear about the z-axis in the plane is given by the equations

' z+ky
v Y,

where k is an integer and is called its magnitude.

Conjecture 1.5 (Conjecture 6.4) If K is a convex lattice decagon with
10 interior lattice points, then K is lattice equivalent to the decagon shown

in Fig. 1.
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Figure 1: Conjectured unique convex lattice decagon with smallest g

By proving Conjecture 1.5 we are in a position to establish also the
following strictly related conjecture.

Conjecture 1.6 (The Fat Decagon Theorem) A non-lean convez lat-
tice decagon contains at least 11 interior lattice points.

It turns out that the result in the last conjecture can be improved.
Namely, we show that a non-lean convex lattice decagon contains at least
thirteen interior lattice points.

One of the key concepts used in this note is the interior hull of a lattice
polygon. Let K be a convex polygon in the plane. Denote by H(K) the
convex hull of the lattice points in the interior of K. The set H(K) is called
the interior hull of K. Note that H(K) might degenerate into a segment,
a point, or even the empty set.

Let u be an edge of H(K) which is a non-degenerated polygon. By
h(u) we denote the open halfplane bounded by the line containing u that
is exterior to H(K). Similarly as in [7], one can show two very useful facts.
The first one says that for any edge » of H(K) the open halfplane h(u)
contains at most two vertices of K. The other shows that if A(u) contains
two vertices of K, then the lattice segment joining the vertices is parallel to
u. By combining the two facts we are able to find a localization of vertices of
a lattice polygon K when its interior hull H(K) is a given lattice polygon.
Namely, the vertices of K are restricted to lie on lattice lines that are
parallel to, and closest to the edges of H(K). This observation leads to the
following definition. If K is a convex lattice polygon, then the closed convex
region bounded by lattice lines parallel to the edges of K, exterior to K,
and closest to K will be called the outer hull of K, and is denoted by O(K).
Let us notice that the outer hull of a lattice v-gon is a k-gon, with k < v
(Figure 6 below shows that the inequality k¥ < v is possible). Moreover,
the outer hull not always is a lattice polygon (see Figure 10). One can
immediately see the following fact: When the interior hull H of a lattice
polygon K is given, then the vertices of K are located on the boundary
of O(H(K)). Therefore we need a procedure of ”trimming” the outer hull
to a polygon with desired parameters. This justifies an introduction of the
following notation.
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Let P be a convex polygon with edges on lattice lines and let H(P) be
its interior hull. By cutting away a vertex A (not necessarily a lattice point)
of P we understand an operation that assigns to P the polygon cl (P\ A4),
where A4 is the triangle with vertices at A and its closest lattice points
lying on the edges adjacent to A.

We say that P admits e trimming at its vertex A if Ay N H(P) =
0, and admits a proper trimming at its vertex A if in addition we have
v(cl(P\ A4)) =v(P)+1.

We notice two useful observations about trimming. First, polygon P
admits a proper trimming at A only when the vertices of A 4, different from
A, lie in the relative interiors of the edges adjacent to A. Second, if A; is
a vertex of cl(P\ A,4) but not of P, then cl(P\ A,) does not admit a
proper trimming at A;, though it still may admit a trimming at A,.

The following lemma will be very helpful.

Lemma 1.7 Suppose that H is a convez lattice polygon with interior lattice
points. Let u be an edge of H having lattice length 1 and let v be an edge
of O(H) parallel to u and lying in h(u). Then v cannot contain two lattice
points in its relative interior.

Proof. Suppose to the contrary that v contains two lattice points B;
and Bj in its relative interior. Denote the endpoints of u by A; and A,. Let
lo be the line containing . Draw lines: I; containing v, I passing through
points Az and By, I3 passing through B; and Aq, and !4 containing B; and
A; (see Fig. 2.). Denote by u;, i = 1,2, the edge of H which is adjacent
to u at A;. If us lied between lines Iy and Iy, then the closest lattice line
parallel to uz would cut off at least the segment B; B;. The placement of
uz between Iy and I3 is impossible for a similar reason. Indeed, if it were
placed there, then the closest lattice line parallel to us would go through
B» cutting off a part of v on one side of B2 and contradicting the fact that
By was a lattice point in the relative interior of v. A similar reasoning
reveals that ) cannot lie between lines { and I,.

Figure 2: Illustration of Lemma 1.7

The above observations in conjunction with convexity of H would imply
that H would lie in the strip, S, bounded by I3 and l;. Now we shall show
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that there is no lattice point in the interior of S. To this end consider
lines p;, ¢ > 1, passing through consecutive lattice points on lg (we denote
the points by C;) and parallel to lp. If there were a lattice point C in the
interior of S then it would lie between lines p,. and pi1 for some integer k.
Obviously, the lattice point Bz + (C — Ci) would lie between lines lp and
!y contradicting the fact that [; was the closest parallel lattice line to lp.
Of course, interior lattice points of H would have to lie in the interior
of S which is impossible. This establishes the lemma. O

The assumption that H contains interior lattice points is essential in
Lemma 1.7. The reader can easily check that the outer hull of the triangle
with vertices at (0, 0), (1,0) and (0,1) does not satisfy the lemma.

In this note we will intensively apply the notions of the interior and the
outer hulls. We will also use the following results from [7] concerning the
interior hull.

Theorem 1.8 Let K be a convez lattice polygon with interior hull H(K).
Ifv(K) > 7, then

WH ) 2 [0
Theorem 1.9 Let K be a convez lattice polygon. with interior hull H(K).
Ifv(K) > 9, then

() 2 S0tk

2 Proof of Conjecture 1.1

Fig. 3 illustrates that there are convex lattice nonagons with 7 and 10
interior lattice points.

Figure 3: Nonagons with 7 and 10 interior lattice points

In order to prove the other statement of Conjecture 1.1 we first find nec-
essary conditions for existence of convex lattice nonagons containing 8 or
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9 interior lattice points. We formulate the conditions in terms of interior
hulls. Next we show that the necessary conditions are not sufficient.

2.1 Convex lattice nonagon cannot have 8 interior lattice points

Let K be a convex lattice nonagon with 8 interior lattice points. Interior
lattice points of K consist of all lattice points in H(K). Thus b(H) +
g(H) = G(H) = g(K) = 8. (Here and further on H = H(K).) Obviously,
v(H) < b(H) < 8. By Theorems 1.8 and 1.9 we also have v(H) > 5 and
b(H) > 6. From the above conditions we get nine possible realizations of
the values which could be assumed by the numbers »(H), b(H) and g(H).
We collect them in the table below.

[[Case || v(H) | b(H) | g(H) | G(H) = g(K)

11 5 6 2 8
1.2 5 7 1 8
1.3 5 8 0 8
1.4 6 6 2 8
1.5 6 7 1 8
1.6 6 8 0 8
1.7 7 7 1 8
138 7 8 0 8
1.9 8 8 0 8

Table 1

Since any convex lattice pentagon (hence also hexagon and so on) contains
an interior lattice point we can immediately eliminate Cases 1.3, 1.6, 1.8
and 1.9. The fact that any non-lean convex lattice hexagon contains at least
two interior lattice points, see [7, The Fat Hexagon Theorem], eliminates
Case 1.5. Elimination of Case 1.7 follows from [7, Proposition 2.7} since
any convex lattice heptagon contains at least four interior lattice points.
Now we will show that in the remaining three cases it is impossible to con-
struct any convex lattice nonagon with the interior hull having the desired
parameters.

Case 1.1. In this case the interior hull H is a convex lattice pentagon
with two interior lattice points and six boundary lattice points. Thus, H
has four edges of lattice length 1 and one edge, call it e, of lattice length
2. We try to retrieve K from O(H(K)). It is clear that only by cutting
away vertices of O(H(K)) we can get a convex lattice polygon having more
vertices than in H. In order to get a convex lattice nonagon we would have
to cut away four vertices of O(H(K)). Since H has four edges of lattice
length 1, Lemma 1.7 implies that there are four edges in O(H(K)) with
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at most one lattice point in their relative interiors. Label the vertices of
O(H(K)) in such a way that B; and B; are endpoints of e. Cutting away
one of the vertices By or Bj results in a possibility to cut away additionally
only the other one. Clearly, this way of trimming might produce at most a
heptagon. If we start with cutting away any of the remaining three vertices,
then it might be possible to cut away only all three of them. In this case
we might obtain at most an octagon. In either case it is impossible here to
trim O(H(K)) to a nonagon.

Case 1.2. In this case the interior hull H is a convex lattice pentagon
with one interior lattice point and seven boundary lattice points. From [6,
Theorem 5] it follows that there exists only one (up to lattice equivalence)
lattice pentagon H satisfying the required conditions. The unique lattice
pentagon and its outer hull are provided in Figure 4.

Figure 4: Unique pentagon and its outer hull

Although the outer hull admits a proper trimming at every vertex, nev-
ertheless after cutting away any three vertices we no longer are able to
increase the number of vertices. As a result we can obtain (at most) an
octagon.

Case 1.4. Now the interior hull H is a convex lattice hexagon with
two interior lattice points and six boundary lattice points. Clearly, every
edge of H has lattice length 1.

We start with the obvious observation that the lattice segment joining
the two interior lattice points of H has lattice length 1. Using similar ar-
gument to that in [6, The z-axis Lemma)] we can transform H by means of
an integral unimodular affine transformation in such a way that its interior
lattice points are mapped into points with coordinates (1,0) and (2,0). As
the two points form the interior hull of H, it is clear that such a transfor-
mation carries H into a lattice hexagon lying in the strip bounded by the
lines y = —1 and y = 1. Further, applying a shear about the z-axis (if
necessary), we can obtain H to be a hexagon entirely lying in the halfplane
z > 0 and having A = (0,1) as its vertex. Any lattice hexagon whose all
interior lattice points colline and is placed in the way described here will be
referred to be in a basic position. It will be convenient to have the following
lemma restricting possible placements of hexagons in a basic position to the
rectangle Ry , k > 2, with vertices at (0,1),(0,-1), (k+1,1), (k+1, -1).
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Lemma 2.1 If H, is a lean hexagon in a basic position having k collinear
interior lattice points, then there exists a hezagon Hj also in a basic position
which is lattice equivalent to H; and entirely lies in Ry.

Proof of Lemma 2.1. If H, entirely lies in R; we put H = H;. Consider
the case when H; ¢ Rj. Clearly, the right endpoint of the edge of H;
contained in the line y = —1, denote it by B, lies outside R;. Since every
edge of H; has lattice length 1 we see that H; must have vertices at the
points (0,0), A, (1,1) and (k + 1,0). From convexity of H, it follows that
B = (t,-1), where k + 2 < t < 2k. Take the shear about the z-axis

z/

yl
It transforms B into the point (k+1, —1) and the point (1, 1) into the point
(t — k,1). Since t — k < k, the image of H; by the shear is contained in
Ry. Now take two reflections: the first one about the line z = 0 and the
other about the line y = 0. Next follow them by an integral translation by
@ = (k+1,0). In this way we obtain a lattice hexagon in a basic position
entirely lying in R, which plays the role of Hs. It is not difficult to check
that the corresponding integral unimodular affine transformation carrying
H; into Hs can be expressed by the 3 x 3 matrix in the equation

-1 k+1-t k41 T z’
0 -1 0 vl =|v1.
0 0 1 1 1

From the above it is immediately seen that Hj is lattice equivalent to H;.
This ends the proof of Lemma 2.1. a

z+(t-k-1)y
Y.

Now we return to settle Case 1.4. So, H is in a basic position. Such
a placement of H forces the two edges of H adjacent to Atolieony=1
and z = 0. Since every edge of H has lattice length 1 we immediately see
that H must have vertices at the points (0,0), (1,1) and (3,0). By Lemma
2.1 the remaining two vertices of H are either at (1,-1) and (2, —1), or at
(2,—1) and (3, —1). In this way we obtain two (up to lattice equivalence)
lattice hexagons that can play the role of H. Both hexagons together with
their outer hulls are provided in Figure 5.

Figure 5: Lean hexagons with two interior lattice points and their outer hulls
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Lemma 1.7, in connection with the fact that H is lean, implies that
in order to get here a nonagon O(H(K)) would have to admit a proper
trimming at every other vertex. Clearly, the first hexagon admits a proper
trimming only at one vertex but the other one does not admit a proper
trimming at any vertex.

Summarizing the above three cases we can see that no convex lattice
nonagon K with g(K)=8 exists. a

2.2 A convex lattice nonagon cannot have 9 interior lattice
points

Assume that K is a convex lattice nonagon with the interior hull H con-
taining 9 interior lattice points. By Theorems 1.8 and 1.9 we again have
v(H) > 5 and b(H) > 6. The facts mentioned during elimination of some
cases from Table 1 allow us to impose the following additional constrains:
v(H) < 6 and b(H) < 7. The reader can easily check that the only possible
values achieved by the numbers v(H), b(H) and g(H) are given in Table 2.

[ Case || v(H) | b(H) | 9(H) | G(H) = g(K)
6 | 3

2.1 " 5 9

22 || 5 7 2 9

23 || 6 6 3 9

24 || 6 7 2 9
Table 2

Case 2.1. The interior hull H is a non-lean pentagon (b(H) = 6) with
four edges of lattice length 1. Of course we can repeat here the argument
from Case 1.1 to show that no convex lattice nonagon with vertices on the
boundary of O(H(K)) exists.

Case 2.2. The interior hull is a pentagon having two interior lattice
points and seven boundary lattice points. Apparently, such a pentagon has
three or four edges of lattice length 1. This and Lemma 1.7 imply that
its outer hull contains three or four edges with at most one lattice point
in their relative interiors. Similarly as in Case 1.1 one can check that no
convex lattice nonagon can be retrieved from O(H(K)) in this case.

Case 2.3. The interior hull is a lean lattice hexagon with three interior
lattice points which can be collinear or not.

Interior lattice points are collinear. We place H in a basic position.
Argumentation similar to that in Case 1.4, together with Lemma 2.1, es-
tablishes the following three (up to lattice equivalence) possible interior
hulls H of K with their outer hulls.
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Figure 6: Lean hexagons with two interior lattice points and their outer hulls

Since all three outer hulls here are quadrilaterals, it is obviously impossible
to trim O(H(K)) to a convex lattice nonagon with the interior hull H.

Interior lattice points are not collinear. We first observe that the three
interior lattice points of H, say B, C, D, can be assumed to be placed at
(1,0), (2,0) and (1,1). Indeed, by [6, The z-axis Lemma] we can always
apply an integral unimodular affine transformation which transforms B and
C into (1,0) and (2,0) and D above the z-axis. Obviously, the image of
triangle BCD, denoted by T, cannot contain other lattice points than its
vertices. So, by Pick’s Formula the area of T' is 1/2. Since the base of T
has length 1, its altitude must also have length 1. Thus, D must lie on the
line ¥ = 1. Applying a shear about the z-axis we can map D into the point
(1,1).

Triangle having vertices at (1,0), (2,0) and (1,1) forms H(H(K)), that
is, the interior hull of the interior hull of K. The interior hull H(K) has six
vertices on the boundary of O(H(H(K))) which is triangle A with vertices
at (0,—-1), (4,-1) and (0,3). Clearly, to get a hexagon we have to cut
away all three vertices of A. It is easy to check - keeping in mind that
the hexagon must be lean - that the y-coordinate of exactly one vertex of
it, call it B, must be 2. If E = (0,2), then next vertices of H(K) (going
counterclockwise) must be at (0,1), (1, -1), (2,-1), (3,0) and (2,1). If E
lies on the hypotenuse of A, then F = (1,2) and the remaining vertices
of H(K) (this time going clockwise) are at (2,1), (3, -1), (2,-1), (0,0)
and (0,1). One can see that a reflection about the line y = z — 1 carries
one hexagon into the other one. Clearly, the two hexagons are lattice
equivalent. The one (up to lattice equivalence) hexagon and its outer hull
is shown below.

Figure 7: Unique hexagon with three non-collinear interior lattice points
and its outer hull
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Here every vertex of O(H(K)) is an endpoint of an edge of lattice length 1
and therefore O(H(K)) does not admit a proper trimming at any vertex.

Case 2.4. v(H) =6, b(H) =7, g(H) = 2. So, the interior hull H is a
convex lattice hexagon with two interior lattice points and seven boundary
lattice points. Place H in a basic position. We can assume that the edge
of H which has lattice length 2 is adjacent to A. Besides A and (2,1), such
a placement forces H to have vertices at (0,0) and (3,0). The remaining
two vertices are either at (1,—1) and (2, -1), or at (2,-1) and (3,-1). A
reflection about the line z = 3/2 followed by a shear about the z-axis maps
the second hexagon into the first one. Hence, in this case it is enough to
examine only one outer hull shown in Figure 8.

Figure 8: Non-lean hexagon with two interior lattice points and its outer hull

One can easily check that here O(H(K)) admits a proper trimming at three
vertices. However by cutting away the three vertices we obtain an octagon.

Summarizing the above four cases we can see that no convex lattice
nonagon with nine interior lattice points exists. This ends the proof of
Conjecture 1.1. a

As an immediate corollary from Conjecture 1.1 we obtain

Proof of Conjecture 1.2. Let K be a non-lean convex lattice nonagon.
By [7, Proposition 6.1} we have g(K) > 7. Since equality g(K) = 7 holds
only when K is the lean lattice nonagon on the left side in Figure 3 (or
nonagon which is lattice equivalent to it) we infer that g(K) > 8. In the
proof of Conjecture 1.1 we have just ruled out the cases g(K) = 8 and
9(K) = 9. Thus g(K) 2 10. Let us notice that the lattice polygon on the
right side in Figure 3 illustrates that there exist non-lean convex lattice
nonagons with 10 interior lattice points. a

Proof of Conjectures 1.8 and 1.4. Let K be a convex lattice polygon
with eight (nine) interior lattice points. Obviously, we cannot have v(K) >
9 which immediately follows from The Nonagon Anomaly and the fact (see,
(7, Proposition 6.3]) that any convex lattice decagon has at least ten interior
lattice points. Thus »(K) < 8. O
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3 Proof of Conjecture 1.5

We prove this conjecture using the same method as in the proof of
Conjecture 1.1. We first find possible interior hulls of convex lean lattice
decagons and next examine if it is possible to trim their outer hulls to a
convex lattice decagon. '

Let K be a convex lattice decagon. By Theorems 1.8 and 1.9 we have
the inequalities v(H) > 5 and b(H) 2> 7 for its interior hull H. The reader
can easily verify that Table 3 provides the possible values assumed by the
numbers v(H), b(H) and g(H).

Case || v(H) | b(H) | g(H) | G(H) = g(K)
3.1 5 7 3 10
3.2 5 8 2 10
3.3 6 7 3 10
34 6 8 2 10
Table 3

Cases 3.1 and 3.2. The interior hull H is a non-lean pentagon (b(H) =
7 or b(H) = 8) with interior lattice points. Obviously, in both cases H has
at least two edges of lattice length 1. If O(H) has less than five vertices,
then of course it is impossible to trim it to a convex lattice decagon with H
as its interior hull. Suppose O(H) is a pentagon. By Lemma 1.7 the outer
hull O(H) has at least one edge, say v, with at most one lattice point in its
relative interior. If we cut away one endpoint of v, then by cutting away
the other one we do not increase the number of vertices. This implies that
no convex lattice decagon can be obtained here because in order to get a
decagon we need every vertex of O(H) to give rise to two new vertices.

Case 3.3. H is a hexagon with one edge, say u, of lattice length 2. Let
v be the corresponding edge of O(H). All other edges of the outer hull have,
by Lemma 1.7, at most one lattice point in their relative interiors. Label
the vertices of O(H) (we may assume that it is a hexagon) counterclockwise
in such a way that B; and Bg are endpoints of v. If it is possible to cut
away both endpoints of v, then additionally we are able to cut away only
B3 or By. If only one endpoint of v is cut away, say Bj, then it may be
possible to cut away B3 and Bs. In either case we are not able to get more
than nine vertices.

Case 3.4. The interior hull H is a lattice hexagon with two interior
lattice points and eight boundary lattice points. If H has one edge of lattice
length 3 (and remaining of lattice length 1), then the case can be ruled out
in the same way as in Case 3.3.
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Assume that H has two edges, say u; and us, of lattice length 2. Place
H in a basic position with u; adjacent to A. Obviously, ) cannot lie on
the line z = 0. Thus u; lies on ¥ = 1 and us must lie on the line y = —1.
Clearly, such a placement determines H uniquely; it has vertices at A,
(0,0), (1,-1) (3,-1) (3,0) and (2,1). The required unique hexagon with
its outer hull is shown in Fig. 9.

Figure 9: Lattice hexagon with g = 2, b = 8 and its outer hull

Denote by v; and vp the edges of O(H) that correspond to u; and uo.
Label the vertices of O(H) in such a way that B; and Bs are vertices of
v;. If we cut away B (or Bs) then, in connection with Lemma 1.7 and
its consequences, we can additionally cut away only B4 and Bs (or B3 and
B;). This way of trimming results in a nonagon.

However, in this case there exists a trimming of O(H) to a decagon.
Indeed, when we cut away the endpoints of both v; and vs we obtain a
decagon. A reflection about the line z = 3/2 carries it into the decagon
shown in Figure 1. In this way we have shown that any convex lattice
decagon with ten interior lattice points is lattice equivalent to the decagon
from Figure 1. This completes the proof of Conjecture 1.5. a

Proof of Conjecture 1.6. Let K be a non-lean convex lattice decagon.
By (7, Proposition 6.3] we have g(K') > 10. Since equality g(K) = 10 holds
only when K is the lean decagon in Figure 1 (or decagon which is lattice
equivalent to it) we infer that g(K) > 11. a

Conjecture 1.6 is an obvious consequence of Conjecture 1.5. It turns
out that further application of the method used in this paper allows us to
give an improvement of the result of Conjecture 1.6. Namely, we will show
that a convex non-lean lattice decagon contains at least 13 interior lattice
points. This will be obtained as an immediate consequence of the following
theorem.

Theorem 3.1 (The Decagon Anomaly) A convez lattice decagon can-
not have either 11 or 12 interior lattice points.

Proof. Let K be a convex lattice decagon with the interior hull H for
which G(H) = 11 or G(H) = 12. By Theorems 1.8 and 1.9 we have the
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inequalities v(H) > 5 and b(H) > 7. The reader can easily verify that
Table 4/5 provides the only possible values assumed by the numbers v(H),
b(H) and g(H) in both cases.

Case || v(H) | b(H) | g(H) | G(H) = g(K)
41/51 ] 5 71 4/5 11/12
42/52 | 5 8| 3/4 11/12
43/53 1 5 9| 2/3 11/12

/54 5 0] /2 /12
44/55 | 6 7| 4/5 11/12
45/56 || 6 8| 3/4 11/12
46/57 | 6 9| 2/3 11/12

/58 6 10 /21 /12
47/59 || 7 7| 4/5 11/12
/5.0 || 7 8 /4 /12
/511 || 8 8 /4 /12

Table 4/5

Cases 4.1 - 4.3. The interior hull H has at least one edge of lattice
length 1, say ». From Lemma 1.7 it follows that by cutting away both
vertices of v (the edge of O(H) which corresponds to u) we cannot increase
the number of vertices by 2. Hence no convex lattice decagon can be
obtained in this case.

Cases 4.4 - 4.6. Case 4.4 can be ruled out in the same way as Case
3.3. Considerations similar to those in Case 2.3 show that no convex lattice
decagon with the interior hull H described in Case 4.5 exists. We leave the
details to the reader. In order to rule out Case 4.6 it is enough to notice
that a convex lattice hexagon with two interior lattice points can have at
most eight boundary lattice points. To see this, place such a hexagon in a
basic position and the result follows immediately.

Case 4.7. By [7, Proposition 8.10] there are only two (up to lattice
equivalence) convex lean lattice heptagons with four interior lattice points.
We show both together with their outer hulls in Figure 10.

Figure 10: Two lean heptagons with g = 4 and their outer hulls
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Clearly, none of the outer hulls admits a proper trimming at any vertex.
From the above it follows that no convex lattice decagon with 11 interior
lattice points exists.

Now we will show that convex lattice decagons with 12 interior lattice
points do not exist either. To this end we will consider all eleven cases from
Table 5.

Cases 5.1 - 5.4. The reason for ruling out Cases 5.1-5.3 is the same as
in Cases 4.1-4.3. Similarly as in Case 4.6 we can show that a convex lattice
pentagon with two interior lattice points can have at most nine boundary
lattice points. This eliminates Case 5.4.

Cases 5.5 - 5.8. Cases 5.5 and 5.6 can be ruled out in a similar way
as Case 3.3. Considerations similar to those in Case 2.3 lead in Case 5.7 to
two (up to lattice equivalence) interior hulls with collinear interior lattice
points and one with non-collinear interior lattice points. All three outer
hulls can be trimmed to (at most) a nonagon. The fact that a convex lattice
hexagon with two interior lattice points can have at most eight boundary
lattice points rules out Case 5.8.

Case 5.9. The interior hull is a lean heptagon with 5 interior lattice
points. Such heptagons must have vertices on the boundary of the outer
hulls provided in Figure 14 below. It is easy to check that only the first
outer hull can be trimmed to a lean heptagon. The reader can find two
possible heptagons and check that its outer hulls (being hexagons) do not
admit a proper trimming at any vertex.

Case 5.10. It is easy to check that the unique interior hull in this case
is given in Figure 11.

Figure 11: Convex lattice heptagon with b = 8 and g = 4 and its outer hull

The outer hull admits a proper trimming only at one vertex and therefore
it is impossible to get a decagon in this case.

Case 5.11. The interior hull H is the octagon shown in Figure 13
below. One can see that O(H) does not admit a proper trimming at any
vertex. This and the above considerations end the proof of Theorem 3.1.

O
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An immediate consequence of Theorem 3.1 is the following, already
announced, improvement of the result conjectured as The Fat Decagon
Theorem.

Theorem 3.2 (Improved Fat Decagon Theorem) A non-lean convez
lattice decagon contains at least 13 interior lattice points.

Theorem 3.2 is sharp in this sense that there are non-lean convex lattice
decagons with 13 interior lattice points. Such a decagon is given in Figure
12. It is worth remarking that the decagon can be trimmed to a lean convex
decagon with 13 interior lattice points.

Figure 12: Non-lean convex lattice decagon with g =13

4 Short proofs of two known results

Applying the method used in this paper we can give short proofs of the
following two results from (7, 8] dealing with convex lattice octagons and
called there The Central Octagon Theorem and The Octagon Anomaly,
respectively.

Theorem 4.1 If K is a convez lattice polygon with v =8 and g =4, then

K is lattice equivalent to the centrally symmetric octagon shown in Figure
18. :

Figure 13: Unique convex lattice octagon with g =4

Theorem 4.2 A convez lattice octagon can have 4 interior lattice points
or 6 interior latlice points, but it cannot have 5 interior lattice points.

Proof of Theorem 4.1. Let K be a convex lattice octagon with four
interior lattice points. This and Theorem 1.8 imply that v(H(K)) = 4.
From [6, Theorem 1] it follows that H(K) must be lattice equivalent to a
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unit square. By cutting away all the vertices of its outer hull (which is a
square with edges of lattice length 3) we obtain the unique octagon. The
proof is complete. O

Proof of Theorem 4.2. Let K be a convex lattice octagon. We will only
prove the statement that K cannot have 5 interior lattice points. Suppose
that K has 5 interior lattice points. From Theorem 1.8 and the fact that a
convex lattice pentagon must contain an interior lattice point it follows that
the interior hull, H(K), must be a quadrilateral. The quadrilateral either
has one edge of lattice length 2 or is lean and has one interior lattice point.
It is easily verified that in the former case H must be lattice equivalent
to the quadrilateral with vertices at (0,0), (0,1), (2,1) and (1,0). In the
latter case, by [6, Theorem 5] (see also [5]), H is lattice equivalent to one of
two possible quadrilaterals. All three possible interior hulls and their outer
hulls are shown in Figure 14,

Figure 14: Possible interior hulls with their outer hulls

One can immediately see that the first outer hull can be trimmed to
a heptagon, the second does not admit any trimming, and the third one
admits a trimming to a pentagon. Thus, no convex lattice octagon K can
be retrieved from O(H) and the proof is complete. a
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