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We use actions by finite cyclic groups together with Burnside’s theorem to
derive generalizations of three classical divisibility theorems.

1. INTRODUCTION

In [1] and [4], the authors derive Fermat’s (little), Lucas’s and Wilson'’s
theorems, among other results, all from a single combinatorial lemma. This
lemma can be derived by applying Burnside’s theorem to an action by a
cyclic group of prime order. In this note, we generalize this lemma by
applying Burnside’s theorem to the corresponding action by an arbitrary
finite cyclic group. Although this idea is not new, by revisiting the con-
structions in (1] and [4] we derive three divisibility theorems for which the
aforementioned classical theorems are, respectively, the cases of a prime
divisor, and two of these generalizations are new. Throughout, n and p
denote positive integers with p prime and Z denotes the cyclic group of
integers under addition modulo 7.

2. GROUP ACTIONS AND BURNSIDE'S THEOREM

By an action of a group G on a set X, we mean a homomorphism
G — Aut(X) where Aut(X) denotes the group of permutations of X. We
write gz for the image of z € X under the permutation X — X induced
by g € G. For each z € X, let Gz = {gz | g € G} denote the orbit of z in
X and for each g € G, let X9 = {x € X | gz = z} denote the set of points
fixed by g. If both G and X are finite, Burnside’s theorem states that the
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number of distinct orbits is given by

1
— z |X9).
Il 9€G
In particular, 3° . |X?| is divisible by |G|. In the case that G = Z,, for

all g € Z,, X9 = X? where d = (g,n) is the greatest common divisor of
g and n. Each such g has order n/d and there are ¢(n/d) such elements,
where ¢ denotes Euler’s totient function. This observation, together with
Burnside’s theorem, gives us the following lemma from which we will derive
all of our results in the sequel.

LEMMA 1. If X is a finite set and Z, — Aut(X) is a group action,
then the number of orbits is (1/n) Xy, ¢ () IX 4| so that in particular,

> e(n/d)| X4 =0 (mod n).
din
(]
When n = p is prime, Lemma 1 reduces to |X| = |X}| (mod p), and

this is the combinatorial lemma in [1] and [4].

3. A GENERALIZATION OF FERMAT'S (LITTLE) THEOREM

If a is a positive integer and A = {1,...,a}, then Z, acts on the product
X = A" by cyclically permuting the coordinates of elements z € X. If
g € Zy, has order n/d then each of the coordinates of z € X has n/d
distinct images under all powers of g so that g fixes a? elements of X.
Applying Lemma 1 gives our first theorem.

THEOREM 1. For any two positive integers n and a,
Z:q) (P—) a®=0 (mod n).
d
din
a

COROLLARY 1 (Fermat’s theorem). For a prime p and any positive in-
teger a, a® = a (mod p). [

Theorem 1 has appeared numerous times in the literature [3, 5, 6}, and
a detailed history of it can be found in [2]. If a = 1, then obviously the
number of orbits is also equal to 1 and hence, as a bonus, we recover the
well known identity 3, , ¢(d) = n.

190



4. WILSON’S THEOREM

In this section, we revisit an action used in [1] (in the prime case) and
derive a generalization of Wilson’s theorem. Let X be the set of all cycles
of length n in the symmetric group Aut({1,...,n}). Then |X| = (n — 1)!
and the action of Z,, on X is defined by

glal,...,az)=(a1+g,...,an +9),

where the addition in each position is done modulo n. Let d be a divisor
of n, g € Z, be an element of order n/d, and let 0,as,...,a4 € Z, be a
complete set of representatives for the set of cosets Z, /(d). Define a cycle
7 =n(g,az,...,aq4) € X by

7 =(0,a,...,a4,9,a2+9,...,a4+9,...,((n/d)=1)g,...,aa+((n/d)—1)g)

(1)
where the multiplication is done modulo n. There are p(n/d) choices for
g, (n/d)?~! choices for the elements ay,...,aq and (d — 1)! ways to order
them. Hence, the number of cycles of the form (1) is given by

o(2) () -

EXAMPLE 1. Let n =12, d =4,9 =8,a2 =9, a3 = 6 and a4 = 3.
Then the cycle 7 defined above is :

r=(0,9,6,3,8,5,2,11,4,1,10,7).

The reader can verify that = is a fixed point only for the elements in the
subgroup (4) of Z;5. The cycle 7 is 1 of 324 = 2. 33 . 3! 12-cycles fixed by
the elements in the subgroup (4). a

Let 7 = 7(g, ag,...,aq). Since g has order n/d, we have d = kg for some
1 <k < (n/d)-1. It is then easy to see that dr is obtained from = by
cyclically permuting the entries in each position kd spaces to the left, hence
7 € X9%. On the other hand, if 7 = (a1,...,an) € X¢ where a; = 0 and
ax4+1 = d, then dn is obtained from 7 by cyclically permuting the entries
k spaces to the left. It follows that k € Z, has order n/d so that d = uk
for some u € Z,,. Therefore subtracting d from each entry in = a total of u
times is equivalent to moving each entry right d spaces. Since a; = 0, this
implies @441 = jud for all j =0, ...(n/d) — 1. Therefore the order of ud
is n/d so that az ¢ (ud) and, by similar reasoning, aja+2 = a2 + jud for all
Jj=0,...(n/d) — 1 exhausting the coset az + (ud). Continuing, we see that
az,...,aq represent distinct cosets in Z,/(d) and 7 = n(ud, az,...,aq) has
the form (1). We have shown |X9| = ¢(n/d)(n/d)?~}(d — 1)! so that an
application of Lemma 1 gives our second divisibility theorem.
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THEOREM 2. For any positive integer n,

¥ [cp (%)]2 (-3-)"[_l @d=1)!=0 (mod n).
din

COROLLARY 2 (Wilson’s theorem). For a prime p,

(p-1=p—-1 (mod p).

5. LUCAS’S THEOREM

In this final section, we reanalyze an action used in [4] (in the prime
case) to derive a generalization of Lucas’s theorem (see Corollary 3 below).
Let m,r > 0 and use the division algorithm to write m = Mn + mg and
r = Rn+ 719 with 0 < mg,79 <n. For 1 <k < n,let

A = {(k’ 1), (k,2),...,(k, M)} and let B = {(0’ 1),(0,2),..., (07m0)}

Let A = AjUAU- - -UAL,UB so that |[A] = Mn+mo =m. GivenC C A, let
C; =CnAjfor1 < j < nandCp = CNB sothat C = C,UCU- - -UC,UCy.
If X is the collection of all C C A with |C| = r, then |X| = (T). (Note:
() =0if m < r.) Define f: A —» A by

flk,z) = (k+Lx)ifl1<k<n-1;
fn,x) = (L,z);
f(01m) = (01 x)a

and note easily that f € Aut(A). Clearly f" is the identity map so that
the map 1 — f gives an action Z, — Aut(X). Moreover, an element
C € X is fixed by g € Z, of order n/d if and only if for all 1 < k < d,
ma(Cx) = m2(Cig4x) for 1 =0,...,(n/d) — 1 where 7 is projection onto the
second coordinate. Therefore

d
Rn+ro=r=|C|= me +]Col.
k=1

But, 0 < r9,|Co| < n so that there exists j € {—(d — 1),...,d — 1} such

that
d

) )
R=- E |Ck| + % and |Co| — 1o = (n/d)j. (2)

k=1
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Conversely, for all j € {—(d—1),...,d — 1} and all choices of o = |Cj|
(1 £ k < d) that satisfy (2), we can independently choose subsets Ci, C Ax
and Cy C B with [Cp| = r¢ + (n/d)j, and a unique fixed point of X is
determined. If we define the length ||a|| of an element & = (a,...,aq) €

N¢ by
d
1
lledla = 53 e,
i=1

then we have shown if g € Z,, has order n/d, then

oie 55 () () =0

=—(d-1 |l°l|4-
== ) R-(j/d)

Applying Lemma 1, we have our third divisibility theorem.

THEOREM 3. Forn>1, m=Mn+mgy, r=Rn+19, 0 <mg,rg <n

206 5, 3 () () a) = e

j==(d-1) flella=

COROLLARY 3 (Lucas’s theorem). Let p be prime and suppose

m = mep*+ +mp+mg;
r o= mpb+drptro

with 0 < mj,7; <p. Then

()= () (2)(3) ot

Proof. We will show that if m = Mp+mg, r = Rp+19, 0 < mo, 70 < p,

T () e

leaving the induction for the reader. Taking n = p, Theorem 3 gives

o=9(n) ()

Z 2 ( ) ' (M) (ro+7?fz/p)j)§0 (mod 2).

=—(p~-1 "°||p-
i==r-1) R-(i/P)
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Selecting subsets Cx C Ag with |[Cx| = o (1 < k < p)and Cp C B

with |Co| = 79 + (n/p)j uniquely determines a subset C € X provided
llell, = R — (j/p) for some j € {—(p—1),...,p — 1}. Therefore

S = (G0 - ()

j==(p=1) llallp=
J s )R—(J'/P)

and the proof is complete. .
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