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Abstract

The exact values of eleven Ramsey numbers r(Kji, ,, Kiz,n,) Where
3 < U1 +m,la 4+ na < 7 are determined, almost completing the table
of all 66 such numbers.
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1 Introduction

Considering the Ramsey number (K, n,, Kiy n,) Where 3 < I +ny,l2 +
nz < 7, the exact values for 51 of these numbers may be gathered from
various papers, while the exact results for 15 numbers have been unknown,
so far. General formulas yield the exact value of (K, 5, , Ki;,n,) for certain
cases as investigated in [2, 3, 6, 7, 9, 12, 14, 15, 17], and additional single
results are to be found in [5, 7, 8, 11]. Here, we almost complete the table
of r(Kiy 0y, Kian,) Where 3 < lj +ny,l3 + ng < 7, presenting eleven new
exact results and giving upper bounds for the four still open cases.

Throughout this paper the following specialized notation will be used. A
2-coloring of a graph always means a 2-coloring of its edges with colors red
and green. A (G}, G2)p-coloring is a 2-coloring of the complete graph K,
containing neither a red copy of G nor a green copy of G3. Considering two
disjoint subsets U; and Uy of the vertex set of a 2-colored Ky, ¢-(U1,U3)
denotes the number of red edges between U; and U,. If U; consists of a
single vertex v, then we write gr(v, U2) instead. In a similar way the case
v € Uy is handled, using the short term g, (v, U3) meaning ¢, (v, Uz \ {v}).
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Moreover, r2(U) refers to the overall number of common red neighbors to
any pair of vertices in the vertex set U, that is

n@= Y IN) NN (w)l.
{v1.v2)€(3)

For the red subgraph of a 2-coloring the degree of a vertex v is denoted by
dr(v), and we write A, to indicate its maximum degree. Finally, [U], is the
red-edge subgraph induced by U, and E,.(G) refers to the set of red edges
for any graph G. Regarding the given colorings, note that they are specified
as (1,2)-matrices where the entry “1” indicates a red edge and the entry
“2" denotes a green edge joining the two vertices in question.

2 Results

From the above-mentioned papers and from the lemmas below we derive
Table 1.

Kip | K13 | K14 | K15 | Kas II K2 | Kog | K2,a | K25 || K33 | K3,4
Kiz|| 3 5 5 7 7T || 4 5 6 7 7 7
(3,.6) | (2,0 | {2,6) | (26] | (26) [2) [2) (2) {2} [2) [2)
K3 6 7 8 9 ] 7 8 9 8 9
67 |7 067|687 [7) {7) 1) {7} {7) ]
K4 7 9 9 7 9 9 11 11 11
16} {6) C] ns) | nm | am | an L.2 | L.2
K15 10 11 8 10 11 13 12 13
| [6} (8) {8) [5) (8) (17) L.3 L. 4
K]_.e 11 9 11 13 14 13 14
) {s] CHEENEXE BT B
Koz 6 [ 8] O 11 11 [ 11
: [3, 8] | (3, 12) L] [8) (11) [11]
Kz 10 | 12 | 13 || 13 | 14
® lw] pae (7 L.5

K2,4 14 16 16 | <19

) I3} 12) L. 6
Kas 18 || 18 | <21
) L7

Kaga 18 | <25
m_| n3

Kag <30
||

Table 1: T(Kh,nuK!e,nz) where 3 <!i +n1,lo+n2 <7
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" To approach some of the exact results of this paper a combined strategy,
based on both various counting arguments and the assistance of a computer,
is required. In a first step the counting arguments are to offer a significant
reduction of the number of potential (Ki, n, , Ki, n, )p-colorings. This is es-
sential because any computer would easily be overstrained by considering
even some major share of all 27 possible 2-colorings of the g = () edges of
Kp. In the final step only the still remaining colorings are checked — and
eliminated — by a computer (PA-RISC PA 8200 processor with 286 MHz)
running some enhanced backtracking algorithm. Here, the decisive improve-
ment compared to plain backtracking is that the algorithm does not need to
count common red or green neighbors whenever checking for the forbidden
subgraphs. The required information is automatically updated and kept in
an appropriately defined array when coloring or discoloring any edge.

3 Proofs

Since all the respective lower bounds are to be established by appropriate
(Kiy ;ny s Kig na)r—1-colorings, the subsequent lemmas focus on the corre-
sponding upper bounds only. Qur arguments are completed by the specific
colorings listed at the end of this section. Furthermore, some of the proofs
are just sketched in this paper. Their full versions can be found in [10], for
example. For additional information on the general approach to our proofs,
[11] or [14] may be consulted, too.

Lemma 1
T(KL,G, K2o4) = 13!
(K16, K25) = 14.

Proof: Both upper bounds are a direct consequence of

1
T'(Kj,,m,Kg,n,) <ni+ -2- (nz + \/(nz - 2)2 + 4n1(n2 - 1)) +1

already given in [16). |

Lemma 2
r(Ki4,K33) = 11,

T(K1,4,K3,4) = 11.
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Proof: To establish (K4, K33) < 11 as well as (K4, K34) < 11 we
may apply

ng + (n; —2)la+2 if n; is odd or ng is odd,
T(Kl.ﬂx ’ Kl:,ﬂz) <
ng +(ny —2)la +1 otherwise,

originally proved in [1] for a strictly limited range of indices and re-proved
in [8] for an extended range. _ |

Lemma 3
T(Kl.s,K3,3) = 12,

Proof: For the upper bound r(Kigs, K33) < 12, we assume that there
exists a (K5, K33)i2-coloring x. Regarding r(K 5, K2,4) = 11 (cf. Ta-
ble 1), x produces a green subgraph K» 4. Hence, throughout the proof’s
case analysis we will consider a maximum-order green subgraph K3, in
x- According to its obvious partition this subgraph’s vertex set may be
divided into subsets V* = {v;,v2} and U = {u,...,us}. Moreover, let
W = {wy,...,wi0—s} denote the set of all remaining vertices.

If s > 5, then we pick an arbitrary green subgraph K35, and the absence
of a green subgraph Kss yields g-(w;,U) > 3 as well as q.(u;,U) > 2.
Therefore, we obtain ¢.(U, W) > 15, and at least one vertex from U meets
gr(ui, W) > 3, contradicting our initial assumption.

Thus, we are left with s = 4. Avoiding a green subgraph K33, we de-
rive ¢-(w;,U) 2 2, and as the green subgraph K34 is of maximum or-
der, we additionally have g¢.(w;,V*) > 1. Furthermore, A, < 4 yields
¢-(w;, W) < 1, and the absence of a green subgraph K33 in [W] forces
[W]r = 3Ka. Hence, the edges w;we, waws, wsws may be assumed red,
while all remaining edges in [W] may be supposed green. However, we
obtain another green subgraph K24 in [W], and by applying the above
arguments to it we may suppose vjve, uiug,ugus red and all remaining
edges in [U U V*] green, too. Then, for any pair of edges (z;z2, y1y2) where
z1x2 € E.([UUV*]) and 1132 € E-([W]), s =4 and A, < 4 demand both
ar(z, W) = ¢- (3, UV V*) = 3 and gr(zv, {y1,%2}) = ¢r(0, {z1,22}) =
1. Therefore, w.l.o.g. vyw;,v1ws, viws, vows, Vowy, Vowe may be assumed
red, while all remaining edges in V* x W may be supposed green. Now,
[Ng(u1, v1)], [Ng(u1,v2)| < s =4 ylelds uyw, ujws, uywg to be colored red,
u1we, U1 Wa, u1ws to be colored green, and an analogous coloring of the
edges in {u2} x W. Finally, d-(w;) = 4 assigns color red to uzw;,usws
and color green to ugws,usw), s = 4 forces ugw,,uqws € E.(K)2) and
uzws, ugwy € Ey(K12), and similarly we derive usws, usws € E-(K12) as
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well as ugwg, uqws € Ey(K2). Considering the vertex sets {u;,v;,ws} and
{4, w2, w4}, we find that they produce a green subgraph K3 3, contradict-
ing our initial assumption and completing the proof. ||

By a similar approach as presented in the proof of Lemma 3 we investigate
the properties of possible (K 5, K3,4)13-, (K1,6, K3,3)13-, and (K16, K3,4)14-
colorings. Thus, after an accurate case analysis and the application of ap-
propriate counting arguments have yielded the colors of half the edges in
any of the above cases, the aspired contradictions are achieved by running
an enhanced backtracking algorithm on a computer, proving the respective
upper bounds.

Lemma 4
r(Ki1s5,Ks4) = 13,

r(Ki6, K33) = 13,
T(K1,5,K3,4) = 14.

For the proof of Lemma 5 the assistance of a computer is required, too.
Although we have !; = 2 instead of {; = 1 now, the procedure to fix
the colors of as many edges as possible before applying our backtracking
algorithm does not differ much from the one presented above. Nevertheless,
about the specific differences you may confer the proof of Lemma 7 or the
proofs in [11].

Lemma 5
T(Kz's, K3,4) = 14.

The following result is attained by applying counting arguments only.

Lemma 6
' r(Ka24,K33) = 16.

Proof: While proving the upper bound r(Kj3 4, K33) < 16, we assume
that there exists a (K2,4, K3 3)16-coloring x. Regarding r(Kz 4, K3 5) = 16
(cf. Table 1), x contains a green subgraph Kz 5. According to its obvious
partition this subgraph’s vertex set may be divided into subsets V* =
{v1,v2} and U = {u,...,us}. Moreover, let W = {w;,...,wo} denote the
set of all remaining vertices. Then, the absence of a green subgraph K33
forces both ¢r(w;,U) > 3 and gr(ui,U) > 2. Accumulating these results
for all 2-element subsets of U, we obtain ro(U) > 9(2) + 5(3) On the other
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hand, any pair of vertices selected from U may have at most three common
red neighbors, yielding ro(U) < 3(3), and we derive a contradiction to our
initial assumption. : [ ]

We conclude with another complex proof dealing with the Ramsey number
(K25, K33).

Lemma 7
’ r(K2,5,K3’3) = 18.

Proof: As usual the proof of the upper bound r(Kas5, K33) < 18 starts
with the assumption that there exists a (K2 5, K3 3)18-coloring x. Regarding
(K25, K2,5) = 18 (cf. Table 1), x produces a green subgraph Kz 5. Hence,
throughout the proof’s case analysis we will consider a maximum-order
green subgraph K ; in x. According to its obvious partition this subgraph’s
vertex set may be divided into subsets V* = {v1,v2} and U = {uy, ..., us}.
Moreover, let W = {wy, ..., wis—s} denote the set of all remaining vertices.

If s > 6, we choose an arbitrary green subgraph K¢ from x, and due
to the absence of a green subgraph K33 we obtain ¢,(w;,U) > 4 as well
as gr(u;, U) = 3. Thus, regarding these results for all 2-element subsets
of U, we have the lower bound r(U) > 10(3) + 6(3), contradicting the
corresponding upper bound ro(U) < 4(2) following from the fact that
any pair of vertices selected from U may have at most four common red

neighbors.

Now, the case s = 5 remains. Avoiding a green subgraph K33, we derive
both g,(w;, U) > 3 and g(us, U) > 2,implying 11()+5(3) < r2(U) < 4(3).
Thereof we obtain gr(w;j,U) = 3 as well as ¢,(u;, U) = 2, especially forc-
ing [U], = [U]y = Cs. Furthermore, due to ¢.(U, W) = 33 there are at
least three vertices from U, e.g. uy,uz, u3, matching g.(u;, W) > 7, where
the absence of a red subgraph Kps additionally demands g,(ui, W) +
gr(uz, W) + ¢-(ug, W) < 22. Hence, we have to face the situation that
gr(u1, W) € {7,8} and g,(u2, W) = g¢,(us, W) = 7. Considering the red
neighborhood of u;,u2,u3 in W and reminding ¢-(w;,U) = 3, we are
left with five different constellations. Then, a closer look at the possi-
ble positions of uy,us,us in [U]’s red subgraph Cs reveals that we can-
not have [N, (ui,,ui;) N W| = 4 for all three pairs of vertices (u1,u2),
(u1,us), (u2,us), which eliminates two of our originally five cases. More-
over, the constellation given by |Ny(u1,u2) N W| = [Np(u1,us) N W| = 4
and |Ny(u2, us) N W| < 3 may avoid the occurence of a red subgraph K 5
by E.([U]) = {u1u2, u1u3, upug, usus, ugus} only. Therefore, the three re-
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maining cases are specified by the following red edge subsets of U x W:

{w1} x {wy,..., ws} U {u} x {ws, ..., wn}

U{“S} X {w1|w2) 11)3,104,109,1010,‘!1}11} »
{u1} x {wy,..., w7} U {u} X {wy,..., w10}

U{U3} X {wlawszS:w4yw83w93 wll}:

{u1} x {w,..., wr} U {u2} x {ws,..., w0}
U{uS} X {wlsw2) 'wS)WSwa)wlO)wll} .

As the green subgraph K35 is of maximum order, that is gr(w;, V*) > 1,
we may assume v;w; and v wsp red, too. Now, we complete the proof by
running an enhanced backtracking algorithm on a computer, particularly
considering the above restrictions on . |

Since we already have r(Ka 5, K2,5) = 18 and (K33, Ka;3) = 18 (cf. [3, 7]),
Lemma 7 additionally proves the following result.

Corollary 8 The graphs G1 = Kas and G2 = K33 are another pair of
graphs matching

r(G1,G1) = r(G1,Ga) = r(G», G).

Furthermore, notice that the upper bounds not derived from [13], that is
r(Ka4,Ks4) < 19 and r(Kas, K34) < 21, have been verified by apply-
ing counting arguments quite similar to those presented in the proof of
Lemma 6.

As notified at the beginning of this section we conclude with the colorings
establishing the corresponding lower bounds for the Ramsey numbers con-
sidered in Lemmas 1 to 7: '

0111112223222
?31;;;3??:22 1012221112222
110222232111 1102222221112
122012112122 1230121121222
122102221211 1221022212121
122220112211 1322201212211
212121021212 2121210221122
2121212032121 2121222022211
2122132120121 2122112201212
2211222110123 2211221210221
221211123102 2212121222011
221211211220 2212212112102
223221132121120

(K1,6, K2,4)12-coloring (K1,6, K2,5)13-coloring

(K1,6, K3,3)12-coloring (K16, K3,4)13-coloring
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11-coloring
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(K1,4, K3,4)10-coloring
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(K15, K3,4)12-coloring
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