On a Prime Labeling Conjecture

M. Sundaram*, R. Ponraj* and S. Somasundaram**

*Department of Mathematics, Sri Paramakalyani College, Alwarkurichi – 627412, India ** Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli – 627 012, India

Abstract: A graph with vertex set V is said to have a prime labeling if its vertices are labelled with distinct integers from {1,2....., |V|} such that for each edge xy, the labels assigned to x and y are relatively prime. A graph that admits a prime labeling is called a prime graph. It has been conjectured [1] that when n is a prime integer and m < n, the planar grid $P_m \times P_n$ is prime. We prove the conjecture and also that P_nxP_n is prime when n is a prime integer.

1. Introduction

A simple graph G = (V, E) is said to have a prime labeling if its vertices are labelled with distinct integers from {1,2..... |V|} such that for each edge xy, the labels assigned to x and y are relatively prime. A graph with a prime labeling defined on it is called a prime graph (or) simply prime.

For two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, their product G₁xG₂ is defined as the graph whose vertex set is V₁ x V₂ and two vertices (u_1, v_1) and (u_2, v_2) in $G_1 \times G_2$ are adjacent if $u_1 =$ u_2 and v_1 is adjacent to v_2 or u_1 is adjacent to u_2 and $v_1 = v_2$.

A path of order n is denoted by P_n . For paths P_m and P_n .

their product is known as a planar grid.

If n is prime and $m \le 3$, Vilfred et al [3] proved that the planar grid P_m x P_n is prime and they conjectured that P_m x P_n is prime for prime n and m < n. We prove the conjecture. We also prove that $P_n \times P_n$ is prime if n is a prime integer.

Graph theoretic terms and notions used here are in the sense of Harary [2].

2. Planar grids

Theorem 2.1: If n is prime and $3 < m \le n$, the planar grid $P_m \times P_n$ is prime.

Proof: Let V
$$(P_m \times P_n) = \{u_{ij} : 1 \le i \le n, 1 \le j \le m\}$$
 and
E $(P_m \times P_n) = \{u_{ij} u_{i(j+1)} : 1 \le i \le n, 1 \le j \le m-1\} \cup \{u_{ij} u_{(i+1)i} : 1 \le i \le n-1, \le j \le m\}.$

Case (1) m < n.

We define f by $f(u_{ij}) = (j-1) n+i (1 \le i \le n-1, 2 \le j \le m)$.

For
$$1 \le i < n$$
, $f(u_{ii}) =$
$$\begin{cases} & \text{ni if } i = 1, 3...... \text{ m or } m \text{-1 according as} \\ & \text{m is odd or even} \\ & \text{i otherwise.} \end{cases}$$

 $f(u_{nj}) = j$ or nj according as j is odd or even $(1 \le j \le m)$ Since $f(u_{ij}) \equiv i \pmod (1 \le i \le n-1, 2 \le j \le m)$, it is enough if we verify the 'primeness' of the labels in the first column and in the last row.

First column:

The elements at 'even junctions' and u_{11} do not pose any problem. Thus, we must establish that gcd (kn, k-1)= gcd (kn, k+1)= gcd (kn, n+k) = 1 where k=3, 5.......... m or (m-1) according as m is odd or even.

Now d/kn, $d/k-1 \Rightarrow d/n$,

If d=n, n/k-1 which cannot happen, since k-1<n.

Also d/kn, d/k+1 \Rightarrow d/n.

If d=n, n/k+1 which again is not possible.

 $d/kn, d/n+k \Rightarrow d/n^2$

If d=n, $n/n+k \Rightarrow n/k$, not possible.

If $d=n^2$, n^2/kn , again an impossibility (since k< n).

Thus in all the cases, d=1.

nth row:

Here elements in the 'odd junctions' alone require 'primeness' verification. Thus we have to verify that

$$gcd(k, (k-1)n) = gcd(k, (k+1)n) = gcd(k, (kn-1)) = 1$$
 where

k = 3, 5....m or (m-1) according as m is odd or even. In the first two cases, if d be a common factor, then d/n. But d=n yields n/k which should not happen.

Also d/k, $d/kn-1 \Rightarrow d/1 \Rightarrow d=1$.

Case (2) m = n.

Assign labels to the vertices in all columns except the last one as in case (1).

For the last column, define $f(u_{in})=(n-1)$ n+i $(1 \le i \le n, i \ne n-2, i \ne n)$ $f(u_{nn})=n^2-2$ and $f(u_{(n-2)n})=n^2$.

We need to verity that

 $gcd [f(u_{nn}), f(u_{n(n-1)})] = gcd [f(u_{(n-2)n}), f(u_{(n-2)(n-1)})] = 1$ $gcd [f(u_{(n-2)n}), f(u_{(n-3)n})] = 1$

That is to verify that (i) $gcd(n^2-2, n^2-n) = 1$

(ii) $gcd(n^2, n^2-n-2) = 1$ (iii) $gcd(n^2, n^2-3) = 1$.

(i) d/n^2-2 , $d/n^2-n \Rightarrow d/n-2 \Rightarrow d/n(n-2) \Rightarrow d/n^2-2n$.

But $d/n^2-n \Rightarrow d/n$ so that d=n or 1.

If d=n, then n/(n-2) which is not possible.

Thus d = 1.

(ii) Let d/n^2 and d/n^2 -n-2.

Now d/n^2 and n is prime $\Rightarrow d = 1$ or n or n^2 .

If d=n, $n/n^2-n-2 \Rightarrow n/2$ which is not possible.

If $d=n^2$, $n^2/n^2-n-2 \Rightarrow n^2/n+2$ which happens only when n=0 or n=0 or n=0 or n=0

Thus d=1.

(iii) d/n^2 , d/n^2 -3 \Rightarrow d/3.

If d=3, $3/n^2 \Rightarrow 3/n$, an impossibility since $n \neq 3$.

Hence the proof.

Example 2.2: For n=7, the prime labeling for $P_m \times P_n$ (as in theorem 3.1) are:

Conjecture: The planar grid $P_m \times P_n$ $(m \le n)$ is prime.

Acknowledgement:

The authors are grateful to the anonymous referee for his valuable comments and suggestions.

References:

- 1. J.A. Gallian (2005): 'A dynamic survey of graph labeling
 The electronic journal of Combinatorics DS6
- 2. F. Harary (1969): 'Graph Theory' Addison Wesley.
- 3. V. Vilfred, S. Somasundaram and T. Nicholas (2002): 'Classes of prime labelled graphs' – International Journal of Management and Systems – Vol 18 No2 – P 217 – 226.