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Abstract

Given a simple graph G on n vertices, let 2(G) be the minimum
sum of the degrees of any two non adjacent vertices. The graph G
is said to be connected if any two distinct vertices may be joined
by a path. It is easy to see that if 02(G) > n — 1 then G is not
only connected, but we can choose the connecting path to be of size
at most two. Ore [4] proved that if 02(G) > n + 1 we may always
choose this path to cover all the vertices of G. In this paper we
extend these results to systems of vertex disjoint paths connecting
two vertex k-sets of G.

1 Preliminaries

Throughout this paper G will be a non-complete graph of order n. Defini-
tions and notation that are not found here may be found in [2]. We consider
a single vertex  to be a [u, u]-path of order one. The size of a path is the
number of edges on this path.

A graph G is said to be connected if for any two distinct vertices u,v €
V(G), there is a [u, v]-path in G. In extremal graph theory, one is interested
in determining how large (or small) a given graph parameter has to be to
imply a given graph property. Consider the following parameter:

73(G) = min{d(z) + d(y) : zy € E(G)}.

It is easy to see that if o9 (G) > n—1 then G is connected, in fact the distance
between any two vertices is at most 2, and since G is not complete the
diameter diam(G) of G is equal to 2. Note that the condition o2(G) > n—2
docs not cven cnsure conncctivity, as excmplified by a graph having two
complete components. This shows that the lower bound 02(G) > n —1 is
best. possible. '
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The graph G is said to be Hamilton-connected if for any pair (2.v) of
vertices of G. there exists a Hamilton path between u and v (that is, a
[u. o}-path covering all the vertices of G). Ore [1] proved:

Theorem 1 If 52(G) = n + 1 then G is Hamilton-connected.

The lower bound on 02(G) is the best possible, as demonstrated by a bal-
anced complete bipartite graph (a graph composed of two sets X and Y of
% vertices each, no edges inside X or Y, but all edges between X and V).

In this paper we wish to generalize these concepts of extremal size paths
between two vertices to the idea of extremal size path systems between two
k-sets of vertices.

A graph G is said to be k-connected if one must remove at least k vertices
to either disconncet the graph, or leave only one vertex. The connectivity
x(G) of a graph G is the maximum k such that G is k-connected.

Definition 1 A path-system P of G is a family of vertez-disjoint paths
P......P: of G. Let Si(G) be the family of all path-systems of G of order

As a consequence of Menger’s Theorem [3], we have the following:

Theorem 2 A graph G is k-connected if and only if for any pair (A, B) of
disjoint k-sets of V(G), there exists a P = {Py,..., Pi} € Sik(G) such that
for all i € [k], P; is a path joining joining some vertex of A to some vertex
of B.

In light of the equivalence pointed out by Theorem 2, graph theorists
were brought to the following strong connectivity condition:

Definition 2 A graph G is said to be k-linked if for every 2k distinct ver-
tices ai,...,Qk,01,...,b%, G has a path-system P = Py,..., P, such that,
for all i, P; is an [a;, b;)-path.

We will generalize the idea of distance by using the concepts of connec-
tivity described in Theorem 2 and Definition 2, since these both extend the
idea of a path between two vertices to the idea of a system of vertex-disjoint
paths between two disjoint k-sets of vertices. Let us mention right away
the discrepancies and problems we will encounter in this generalization.

First, note that each path of the path-systems of Definition 2 has spec-
ified end-vertices whereas those of Theorem 2 have only the global require-
ment of connecting each vertex of A to a vertex of B injectively. Both are
natural generalizations since they overlap when |A| = |B| = 1 on the con-
cept of a single path joining two specified vertices. We will thus generalize
the idea of distance using both these concepts.
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Second, where there is only one way of naturally measuring a path to
bring forth the idea of distance hetween the two vertices it joins, namely
by the size of this path {the nnmber of edges of this path), there may be
several ways of measuring the distance between two k-sets of vertices, using
the path system hetween them. For example, we conld simply take the total
size of this path-system. or take the size of the smallest path, or the size
of the largest one. Again, these three different choices are identical in the
case of one single path.

Finally, note that the path-systems found in Theorem 2 and Definition
2 join k-sets which are disjoint. Yet, we wish to define the distance between
any two k-sets, so some attention will have to be brought to the case where
the A-sets overlap.

Using Theoremn 2, one may casily see that k-connectivity may be defined
in terms of path-systems hetween any pair of vertex k-sets of G:

Corollary 3 A graph G is k-connected if and only if far'any two k-sets A
and B of verlices of G, there are k — |AN B| disjoint paths in G — (AN D)
injectively joining every vertex of A— B to a vertex of B— A

We make the following definition in order to adapt Definition 2 to the
situation where we want to link two k-sets that overlap.

Definition 3 A graph G is said to be (k,t)-linked (0 < t < k— 1) if for
any set T of t vertices of G, G = T is (k — t)-linked.

Note that this definition unifies the notions of k-connected and k-linked
in the sense that (k. & — 1)-linked is equivalent to k-commected and (k,0)-
linked is equivalent to k-linked.

A graph G is said to be k-Hamilton-connected if removing any £ — 1
vertices of G leaves a Hamilton-connected graph.  Bondy and Chvital [1]
extended Theorem 1 as follows:

Theorem 4 If 6(G) > n + k then G is k-Hamilton-connected.

Saying that a graph is k-Hamiltonian-connected is equivalent to saying that
for any vertex k-sets A and B of G such that |ANB| = k— 1, there is a
system of paths as described in Corollary 3, covering all the vertices of
G — (AN B). We will extend this idea further, allowing arbitrary orders for
|AN Bj.

2 Distance between k-sets and Extendibility
of Path Systems

Lot Vi(G) be the family of all k-scts of vertices of a graph G. Lot A =
{a1....,ar} and B = {by,...,b;} be two elements of Vi.(G). T = AN B,
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and [T]=t.

An (A. B)-system P is the union of T and a set of k — ¢ vertex-disjoint
paths I, ..., -, where each P; joins a vertex of 4 — T to a verticex of
B-T. Let S(A. B) denote the family of all (A, B)-systems of G. Note that
by Corollary 3, G is k-connected if, and only if. for all (A, B) € Vi(G)?, G
has an (A, B)-system.

Let TI(A4, B) be the family of bijective maps

T A— D
such that foralla € A and b e B,
if a=b.then w(a) =b. (1)

Let w € II(A, B). An (A, B, )-linkageis an (A, B)-system P = {I,..., [%}
where for all i € [k}, P; is an {a;, w(a;)]-path. Note that condition (1) shows
that P is the union of ANB and an (A-T', B—T)-system whose end-vertices
are imposed by . .

Let £(A4, B, ) denote the family of all (A, B, 7)-linkages of G. We sce
that

S(A. B) = Uren(a,B)L(A. B. 7).

Note that G is (k, t)-linked if, and only if, for all (4, B) € Vi(G)? such that
|T|=|ANB|=t, and all 7 € I1(A, B), L(A4,B,n) #0.

For a given 7 € I1(A, B) we make the following definitions:

dist"(A’B) = ‘PG.C(AB-A-) IB(P)],

Jist (4, B)

min _max|E(P)|, and
PCL(A.B,w) PEP

dist (4,B) = e C!g‘ns 5 win |E(P)].
If L(A, B,m) = @, we let dist,(A, B) = dist,(A, B) = dist,(A,B) =
Using this, we define the following distance and diameter measures:

dist(A,B) — min _ dist, (A, B),
=ell(A,B)

dist(4,B) = well'?(lfxill? dist, (A, B),

dist(A.B) = min dlst,,(A B),
well(A.B

diamg(G) = (A.B)czvk(c.')'-‘ dist(A, B),

diamg(G) = . BI)%%/):(GF dist(A, B), and

diam; (G) = dist(A4, B).

(A, B)EVL (G2
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Figure 1: Different types of distances

A B A B A B

dist(A,B)=9 dist(A,B)=4 dist(A,B)=0

We see that S(A, B) is empty if, and only if,
dist(A. B) = dist(A, B) = dist(A, B) = oo,

so saying that G is k-connected is equivalent to saying that any of the
k-diameters are fnile.

The linked-distances between two k-sets and the corresponding (k, t)-
linked diameters are defined as follows:

Idist(A,B) = rrcllrll(a"le) dist, (A4, B),

idist(4,B) = ﬁexg&xs)m,u, B),

ist(4,B) = mmc dist,(4,B),

Mdiamg ¢ (G) = “ Bx)réa‘g:(c)___ldist(A,B),
14nB|=t

ldiamy ,(G) = “ Br)léa“/):(G)’ Mdist(4, B), and
JANB|=t

Miam, ,(G) = max _ldist(A, B).

diam, ,(G) (A’B)evk(a)g_w( )
|ANB]=t

We see that L(A, B,7) = {} for some 7 € 1I( 4, B) if, and only if, Idist(4, B) =
Idist(4, B) = Mist(A, B) = o0, so saying that any one of these (k,t)-
diameters are finite is equivalent to saying that G is (k,t)-linked.

Finally we make the following definitions which extend in two differ-
ent directions the notion of k-Hamilton-connectedness due to Bondy and

215



Chvatal.

We say that G is Hamilton k-connected if for any (A.B) € Vi(G)2,
there is a path-gystem P in S{A4, B) such that P covers all the vertices of
G. We say that G is Hamilton (k, t)-linked if for any (4, B) € Vi(G)? with
|[ANn B| =t and any = € TI(A. B3), there is a P in L(A, B.7) such that P
covers all the vertices of G. Note that k-Hamilton-connected is equivalent to
Hamilton-(k, k—1)-linked (which is also equivalent to Hamilton k-connected
restricted to k-sets that intersect on a (k — 1)-set).

3 Results

In this section we present our results, holding the proofs until Section 4.
One may easily see that o2(G) > n+ &k — 2 implics that k(G) > k and that
this is best possible.

Proposition 1 Let G be a graph on n vertices and k € [n] be such that
09(G) 2 n+ k—2. Then for any k-sets A and B of vertices of G, we have

dist(A, B) < 2(k - |A N BJ).

This implies that diam(G) < 2k. Consider the graph G on n vertices
composed of two complete graphs on ‘_#J and [&:*2'—"] vertices respec-
tively, overlapping on &k verlices. We see that 0o(G1) 2 n+ &k — 2, yet il
n 2> 3k then diamy(G;) = 2k.

This diameter is essentially the lowest possible in the sense that, in order
to reduce it further, one must have a graph that is nearly complete. But
the actual lowest possible k-diameter of a graph is k, so for completeness,
we include the bounds on 0,(G) implying diameters lower than 2k. The
following Theorem shows the effect of 62(G) on the k-diameters of G.

Theorem 5 Let G be a graph of order n > 2k and | € [k]. The following
table relates the value of 02(G) to the lowest upper bound on the k-diameter
of G.

diamy (G) < | diamy (G) < | diamy (G) <
oz2<n+k-3 00 20 00
n+k—-2<09<2n-2k-2 2k 2 2
o2 =2n-2k—-2+1 2k —1 2 1
m-k-2<o0, k 1 1

The following Theorem shows the effect of o2(G) on the linked-diameters
of G. Since even 02(G) = 2n — 4 is not sufficient to force ldiamg(G) < 2k,
we include the linked-diameters of the K,, — A1, graphs.
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Theorem 6 Let G be a gruph of order n > 4k and 0 <t <k -1< k-~ 1.
Let Moy be a set of k —t —1 independent edges of a complete graph K,,.
The following table relates the value of 32(G) to the lowest upper bound on
the linked-diameters of G.

ldiamy+(G) < | ldiamuo(G) < | Idiamy o(G) <
o2<n+2k-t-4 oc oc oc
gp=n+2k—-t+1-4| 3(k—-t)-1 3 2
n+3k-t-4<oa 2(k—t) 2 2
G=K,—M;_,, 2(k-t)-1 2 1
G=K, k-t 1 1

In order to extend Theoren 4 we prove the following Theorem:

Theorem 7 If n > 4k and 02(G) 2> n + k then any (A, B)-system P can
be ertended to an (A, B)-systern P’ covering all the vertices of G such that
the puths of P and P’ have the same end-vertices. On the other hand, there
are graphs G satisfying 02(G) < n+k~1 and sets A, B € Vi(G)? such that
there is no (A, B)-system covering all the vertices of G.

The last statement of this Theorem shows that lower bound on a7 is not
only the best possible to allow path systems to be extended while conserving
the end-vertices of each individual path, but is also the best possible if we
allow these paths to swap end-vertices. Using this Theorem, we see that
Theorems 5 and 6 have the following corollaries:

Corollary 8 Ifn > 3k and 02(G) > n+k then G is Hamilton-k-connected.

Corollary 9 Ifn > 4k, 0<t < k-3, and 02(G) > n+2k —t — 3, then
G is Hamilton-(k,t)-linked.

Further the lower bounds on o3 are best possible as well.

4 Proofs

We define d(x,Y) to be the number of edges from the vertex 2 to the set
Y CV(G).

Proof of Proposition 1: Suppose G satisfies the conditions of
Proposition 1 and take any (A, B) € Vi(G)? where A = (a;....,a;) and
B =(b1,...,bx). Let T = AN B, t = |T| and k; be the maximum num-
ber of independent edges in E(A — T, B — T). Without loss of generality
we may assume that T = {ay,...,0} = {by,... b} and that the k in-
dependent edges are eq1besry ... Gepkybesi,. Lot Ay = {azqyy.. . 000, }
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By = {b+1..... bier}. Ao = A—-1 - A and By = B -1 - By, Let
l;'-z = |A2| = |Bg| =k- k] -t
If ko = 0, we are done. so assuwe ky # 0. Now for all L4k +1 < i <k,

d(a;. A-T)+d(bi. B-T)<|A|-1+|B]-1=2(k— 1).and (2)

d(a;, B-T)+d(b;; A-T) < ky. (3)

since the maximality of k) shows that £(A4;. B2) = ¥ and if d(a;. ;) +
d(bi, A;) > ky, there would be a j with £ +1 < j <k + f such that
aibj, biv; € E(G), thus replacing «jb; with these two edges. we would
contradict the maximality of ky.

Since a;b; ¢ E(G). we have d(a;) +d(b;) > n+k— 2. 50 (2) and (3)
show that

da;{,G-A-B)+d(b;,G-A-DB) > n+k-2-2k+2-k
(n=2k+8)+(k—t-k)

|G — A - B|+ ks. (4)
‘This shows that [N(w;,G— A - B)NN{1.G — A — B)| > ko. ensuring
that there are ke distinct vertices zy,..., 21, of G — A — B such that z; is

adjacent to both g; and b; for 1 < j < ka. Using these zj vertices, one may
easily construct the required (A4, B)-systemn.,

The (A, B)-system constructed verifies dist(A. B) < 2, thus dist(A4, B) <
2(k-t)y=2(k—-|ANBj). v

Proof of Theorem 5: We use the same definitions as the above
proof. By Proposition 1, dist(A. B) < 2, diam(G) < 2 and diamn(G) < 2k.
Since the pair (A, B) constructed above was arbitrary, and Proposition
1 verified dist(A4, B) < 2, diam(G) < 2 and diam(G) < 2k.
foa(G)22n-2k—2+1, wherel € [k]. then forall t+ by +1 < i < k.
d(as, B) + d(b, A) >

(@n—2k—-2+1) = (d(a;, G — A~ B) +d(b;. G~ A~ B) +d(as, A) +d(b:, B)).
(5

Since
d{ai,G—A—-B)+d(0;,G—A—-DB)<2iG- A— B|=2n- 4k,
using (2), we get

d(a;, B) + d(b., A) Cn—-2k-2+0—-(2n-4ak+2(k-1))

l

v
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By (3) then, we get ki < {, which shows that diam(G) = 1 and diam(G) <
2k — 1.

We have already seen, in Section 3 that 02(G) < n+ 4k — 2 is the
lowest. bound implying k-connectivity, or equivalently a finite diameter. To
see that o2(G) = 2n — 2k — 2+ is the smallest value of 02(G) implying
diamg(G) < 2k - !, consider the complete graph K, and two disjoint k-
sets A and B and a subset Bix_1+1 C B of order k — ! + 1. Then the
graph G = K,, — Eg, (A, By_y41) verifies 02(G) = 2n — 2k - 3 + 1, yet
dist(A, B) = 2k—!+1. By letting ! = 1 we also see that 02(G) = 2n—2k~2
is not enough to yield diam, (G) = 1 and diamy(G) < 2k. O

Proof of Theorem 6: First we take care of the case t =0 andl = 1:

Claim 1 If G is a graph on n > 4k vertices and 02(G) > n + 2k — 3 then
Idiam;, o(G) < 3.

Let G be a graph such that
02(G)2n+2k-3 (6)

where k is an integer such that n > 4k. Let A and B be two disjoint k-scts
of V(G), S = AUB, and = € II(A,B). Let A = {a1,...,ax} and B =
{b1,...,bx} be such that for every i € [k}, w(a;) = b;. Let P = {P\,..., P}
be a family of paths linking k¥’ vertices of A to the corresponding vertices of
B, where all paths have order no more than 4. Without loss of generality, we
may assume that for some non-negative integers k;, ko, k3, and k4 such that

k=ky+ko+ks+kqand & =k +k+ ks, we have [Py =... =P, | =2,
|Pk1+l| == lPk|+l‘2I =3, and lPk1+ka+l| e = lPk1+ka+ks| =4. We
choose P so that

k' = |P| is maximal, )
and under this condition,

=¥ |P:| is minimal, (8)

and under this condition,

{gag‘,cmin{d(a‘-, G-8-V(P)),db;,G-S - V(’P))} is maximal.  (9)

Let R=V(G)—S. By (8), for every i (k1 +1 < i < k), a;b; ¢ E(G) s0
that

d(a;. S),d(b;, S) < |S| - 2 = 2k — 2, thus (10)
d(as, S) +d(b;, S) < 4k — 4. (11)
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Note that if k' = k then we have our result, so assume &' < k (i.e.
ks 2 1) and let §) = SNULV(P), Sy = SNUiLER V(R), S5 =8N
ULtk tks V(P), and Sy = S8, — S2— S3. Let Ry = RNUELLF2 V(P),
Ry =RnuUittketks v(P), and Ry= R- Ry - Rs.

Let u = a; and v = b; where &’ +1 < j < k is such that

min{d(w. R4).d(v, R4)} = lgt}:),cmjn{d(a;,lh), d(h;. R4)}.

Let e = d(u. R4) and 3 = d(v, R4) and assume, without loss of generality,
that o < 3. Note that

d({u, v}, Ry) < 2ky (12)
since otherwise there would be an k) 4+ ks + 1 < i < k) + ko + k3 such that
d({u,v}, P.NR) > 3, implying that one of the two vertices w of P; —a; —b; is
adjacent to both u and v. Yet then the path I; of order 4 may be replaced
with the path uwv of order 3, contradicting the minimality (8).

Case 1: Assume « > 1. Then let  and y be any vertices of N(u, Ry)
and N (v, Ry) respectively.

We prove a few upper bounds on the nunber of cdges between vertices
u, v,z and y, and different. parts of the graph. First of all,

d({x,y}, S2 U Re) + d({u, v}, Rz) < Gks. (13)

Indeed, if this isn’t the case, then for some k; + 1 < i < k) + ko, we must
have d({z,y}, P;) + d({u, v}, P, 0 R) > 7. Note that

[{e, wH - 1Pl + H{u, 0} - [PiNR| =8,

so there is at most one missing edge. Let P; = a;wb;. If edge uw is missing
then

P’ = (P — P;) Uvwzu U aiyb;

contradicts the maximality (7). One may verify that every other case of a
missing edge leads to a similar situation where one may find two disjoint
paths; a [u, v]-path of order 3 and an [a;, bi}-path of order 3, contradicting
()-
Further,
d({z,y}, S3 U Sy) < 2(ks + k4) (14)

as if this were not true, there would be an ky + k2 +1 < i < k such that
d({z,y}, {ai,bi}) = 3, cusuring the existence of the path a;zb; (or a;yb;)
of order 3. If ky + k2 + 1 < i € k; + ko + k3, this contradicts (8), and if
ky + ky + k3 + 1 < i < k, this contradicts (7).

Since |S)| = 2k and |Rs| = 2k; we have

d({z, y}. 51 U Rs) < 4(ky + ks). (15)
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Finally. il d(.e. N(2) N LRy) # O or d(y. N () N Ry) # 0. then (7) would
he contradicted. so
dia. Ry) < |G —r| =S| = |Ro] — [£24] — |N(e. 12y)]
— n=1=2—ky =253 (16)

al

ARy < |G = y] = IS] = [Ba = |Ra| = [N (. Ry)|
= n—L1=2k—ky—2ks— . (17)

One may verify that

d(Y +d(y) + d(u) +d(v) < d({u.r}.S)
+d({u. v} By) + d({u. e} 1Y)
+d({r.y}. S2 U Ry) + d{{w.v}. Ry)
+d({r. y}. 53U S1) + d({£.y}. 51 U Ry)
+d(r. Ry) + d(y. Ry).

Using (11). (12). (13). (14). (15). (16) and (17). we sce that

d(x) + d(y) + d(u) + d(v) < 4k -4
+2h +a+ 3
+6k2
+2(k3 + ky) + (k1 + k3)
2n—-1-2%-ky—-2k)-3-a

Simplifying this expression, and using the fact that &y +keo+ k3 +ky = &,
we see that

d(x) + d(y) + d(1) + d(v) < 2n — 6 + 4k — 2ky.

Since uy, ve ¢ E(G), onr degree sum condition (6) shows on the other hand
that.
d() + d(y) + d(x) + d(v) > 20 + 4k — 6.

This shows that we must have ky = 0, a contradiction.

Case 2: Assume a = (). First we show that 3 > 3. Indeed, wv € E(G),
so wsing (12) we get

du.Ry) +d(v. ;) > n+2k-3—d({u.v}.5)
- IN({w,v}, Re)| — d({u. v}, R3)
1l+2k—3—(4k—4)—2k2—2k3

I w

n—2k+1- 2(]\?2 + k:;).
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and since ky 2 1 ko + by € k — L hence using the nct that 7 > 4k and
d(u. Ry) = 0. we have

p=dv.Ry) >n—-4Ak+3> 3.
Let y be a vertex of N(r. Ry). Note that
d(u. Ra) + d(y. S2) < 2k, (18)

since otherwise, for some ky +1 < i < ky + k2 we would have d(u. P,NR) +
d(y. P; € §) 2 3, implying that ya;, yb;. ww € E(G) where w is the middle
vertex of P;. But then replacing P; with the path a; yb;. we obtain a system
of paths satisfying conditions (7) and (8). but contradicting (9) since u is
adjacent to w and v is still adjacent to at least 2 vertices of G — 8§ — V(P).
Further,

d(u, Ry) + d(y, Ry U Sy3) > 4ky. (19)

Indeed. if this were not the case, for some ky + ko + 1 <7 < ky + ko + Ky,
we would have d(u. P, N R) + d(y, P;) 2 5. Since we cannot have both
ya; € E(G) and yb; € E(G) (or (8) wonld be contradicted), this shows that
letting P; = a;wzb;, we have yw, yz,uw,uz € E(G), and without loss of
generality, yb; € E(G). Replacing P; by the path a;wyb; one may verify
that we again contradict (9). Finally,

d(y,S1) < ky (20)
or there would be a k) + ko + k3 + 1 < i < k with xa;.zh; € E(G), hence a

path a;xb; contradicting (7).
Now

d(u) +d(y) =d(u,S) + d(u.R2)+d(y.S2) +d(u.Ry)
+ d(n. R3) +d(y.S3 U R3)
+  d(y,R2 U Ry) +d(y.S1) +d(y, S4)

Using (10), (18), (19), (17), we find that

du) +d(v) < (2k—2)+0+2ky +4ks+ (n — 1 — 2k — 2k3) + 2k; + Ky
= n—3+2k +ka+ ks +ky)— k4
= n+2k-3-k
< n+2k-3,

since ky + ko +ks+kq = k and &y > 1. Yet since wy ¢ £(G) this contradicts

(6)-
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Hence by = 0. s0 G is (k. 0)-linked and since we required all paths of P
to be of order at most four. we sce that. in fact. ldiamg o(G) < 3. O

The following claim takes care of the case t =0 and 1 <1< ke

Claim 2 Let G be a graph of order n., k and l be positive integers such that
n >4k andl € [k]. If 62(G) > 0 + 2k + 1 — 4 then ldiam.(G) < 3k - 1.

Proof: Lot G be a graph satisfying the conditions of the Claim. Let S,
R. A. B, P, ky, ky, k3 and k; be defined as in the proof of Claim 1. The
said Claimn shows that kg = 0, so that k= k) + ko + k3. If by 4+ ko > I, then

[P} = 2ky + 3k +4ky
4(ky + k2 + k3) — (k1 + k2) — k2
< Ak -1,

il

which implies ldiamg (G) = [P| — & < 3k - I, which is to be proven. Hence
we assune

ko+ky<l-1. (21)
Now for every k) + ko +1 <7 < k we have a;b; ¢ E(G), so

> 02(G)-2(2k-2)
> n-2k+1
= |G-8|+1,

d(a,-, bi"P - S)

implying that there are at least [ vertices in G which are adjacent to both a;
and b;. The minimality of |P| implies that none of these vertices may be in
P; or in G —P since otherwise a (a;, b;)-path of order four could be replaced
by a path of order three. Also, by (21), at least one of these vertices must
be in P; — {aj,b;}, where by + ke + 1< j<kand j #i.

Let D be a digraph of order k3 obtained by taking Py, pxpt1y- .-+ Pi to
correspond to the vertices, and where there is an edge from P; to P; (i # j)
if and only if there is a vertex w in Pj — {a;, b;} such that a;w, b;w € E(G).
Onc may casily verify that if D hiad a dirceted cycle then one could replace
every path P; of order 4 corresponding to the vertices of this directed cycle
with an (a;. b;)-path of order 3, hence contradicting the minimality of |P|.
Yet the previous paragraph implies that every vertex of D has at least one
edge coming out of it, and this can be seen to imply the existence of a
directed cycle in D (note that we allow this cycle to be of order two).

Indeed, take the last vertex z of a directed path Z of D of maximal
order. Since z must be adjacent to a vertex 2z’ of D, and that 2’ cannot
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be in D — Z, or the maximality of Z would be contradicted, we see that
2 must be in Z. creating a directed cycle in D. and hence completing the
proof of our Claim. O

Nowsuppose 1 <t < k—-Il<k—-1,04(G) >n+2k—1+!-4 and that
A, B € Vi(G) intersect on ¢ vertices. Let T = AN B. 1t is casy to sce that
7(G-T) 2 0(G) - 21|
n+2k—t+l-A-2=m—=1)+2k-0)+1-1
IG-T|+2(k—t)+1-4.
Hence, by Claim 2, ldist)._; o(A-7", B-T) < 3(k—t)-L. Idists., o(A-T. B—
T) <3, and Miam; _, (A-T,B-T) <2, s0 ldlst;, 10(A, B) < 3(k=-t) -1,
and since A and B were arbitrary,
Idiamg,(G) < 3(k-t) -1,
Idiamg (G) < 3, and
ldiamy, ,(G) < 2.

v

If | = k —t, then all the linking paths have order at most three, so
Idiamg ¢ (G) < 2.

One may casily verify that the graph K, — M., where A, is asct of ¢
independent edges of K (n, ve verifies oo (K, — Mg —¢) = 2n—4, yot ldiamy, o (K, —
M;._,) = 2(k —t) and Idiamy (K, — M) = ldiam,, +(Kn— M) =2. On the
other hand, for any two disjoint t-sets A, D'V, (I&,, = Mje—y—y) there must
be at least ! independent edges in Ex, _as,_,_,(A’. B'). This shows that

Idiamy, ¢ (Ky — Mp—p—y) < 2(k—t) -1,
Idiamy o (K — M) < 2, and
ldiam,,v,(K,, —Mp_) = 1

To see that. if n. > 4k-3t+I1—4, the lower bound 52(G) > n+2k—-t+1-4
is the smallest possible ensuring that the (&, #)-linked-diameters are finite
(for I = 1) and that ldiam;.(G) < 3(k — &) — [, ldiamy(G) < 3 and
ldiam,. ,(G) < 2 consider the following construction. Take the complete
graph K,,_;, and let B, C and L be disjoint subgraphs of K, 1.4+ or orders
k, k—t—1 and ! — 1 respectively. The vertices of B will be labeled by, ..., b
and B’ will be the set {b;,...,bx-1}. Let A = {ai,...,ax} be a complete
graph on k vertices where A' = {ay,...,a—,} is disjoint from K, _j4, and
for all t + 1 < i < k, a; = b;. Consider the graph

G=(A"+Kn k) —E(.C)= E(A Ko rps—- 8B -C—1)
—{a1b1, ..., Ax_tbr_t}
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Fignre 2: Counter Example

Inside the boxes
all edges are present
except for those

AR \\\\\ indicated by dotted lines

A

I<n—k+t

of order n. A sketch of this graph may be found in figure 2.
Let # and v be any two non-adjacent vertices of G. If v € V(B’) and
v € V(C), then

du)+d@w) = du,G—-A -C)+d(u, A')+d(v,G - A" — B') +d(v. A")
= (n=k+t-1)—-(Gh-t-1)+(k-t-1)
+H(n-k+t-1)—(k—t-1))+k—t
= -2(k-t)-1
> n+2k—t+1-5

sincen >4k -3t +1 - 4. If ue V(A') and v € V(G) then first note that
whoether v e V(B')orve V(G -B-C—L), we have d(x) =n—k+t -1,
and so

d() + d(v) d(u, A’) + d(16, B') + d(u. C U L) + d(v)
E-D+k-1D)+@E-1+l-1)+n—-t-1

= n+2k—-t+1-5.
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These are up to symmetry. the only possibilities for « and v, with w ¢
E(G). thus 02(G) =n +2k -t +1-5.

Now suppose that © € TI(A. B) is defined to be such that for all i,
w(a;) = b;. Since we removed the edges ayhy..... ap_¢hi 4. the edges of
E(A’. B") cannot be used in a (A. B.w)-linkage P. The only edges left from
A’ to the rest of the graph G are those of E¢(A’,C U L), so the paths
linking A’ to B’ must go throngh C or L.

Hence, if I = 1, since |C] = k — 1 — 1. we see that there is no (A. B.w)-
linkage in G, hence

ldiamy. (G) = ldiamy +(G) = ldiam, ,(G) =

Since Eg(C, B') — @, paths going through € will have order at least
four, the only paths having order three being those going through L. Since
[C]=tand |L|=1-1.

TpeplPl 2301 - 1) +4(k—t —1+1)=A(k—t) -1 + 1.

implying that ldiamg ,(G) > 3(k—#) -1+ 1.
This concludes the proof of Theorem 6 O

Proof of Theorem 7: First, we show that the lemna is true for
t=0,ie. ANDB = 0. Let G satisfy the conditions of the Lemma and let
= {ay,...,ar} and B = {b1,.... b} be two disjoint k-sots of vertices of
V(G) such that there is an (A, B)-system P = {I}...., P} in G where for
1 <i <k, P is an [a;, b;]-path. Take P to be of maximal order and let
|Q| p=|P|, and for every 1 <i < k, lot p; =|B;]. Lot P = (P)g and
=G-P.
Notc that forany u € Qand P; € P.if z € N(w, P) . then z* ¢ N(u, ;)
or replacing P; with [a;, 2]p, UzuUuzt Uzt bi]p, we would contradict the
maximality of P. This implies that d(u, P;) < ‘.Eeil j, thus

pt+k
I(n. P) <
d(n.P) < l 5 J, (22)
which in turn yiclds that for any two vertices w and v of Q.
Aw, Q) +dw' . Q) >n+k—(p+k)=q.

showing that @ is connected.

The fact that 02(G) = n + (k + 2) — 2 shows by Theorem 5 that G is
(k+2)-connected. Thus |N(Q. P)| > k+2, so by the pigeon-hole principal.
some member of P, without loss of generality Ij, satisfies |[N(Q, )| > 2.
Let = and y be such that {z,y} € N(Q. P), y appears after x in P, and
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v yley| is minimal. Let w0 € V(@) be such that wr.vy € E(G) and
R=1[x".y ]p. We cannot have y = xt or the maximality of P would be
contradicted. so R # 0. Lot r = |R|. I{ = [ay.x]p, and P{ = [y.b(]p,.

By the minimality of [x. g}y |. d(S.R) = 0. so inequality (22). when
applied to P’. shows that for all w € V(Q).

—r+hk+1

d(w.P) = d(w.P') < Z - (23)

Since for all w € V(Q) and z € V(R). wz ¢ E(G). our degree cowdition
vields

d(z.P") > 02(G) - d(w.Q) — d(w.P') — d(z, R)
> ('H-}-l.')—-(fl—])—w_ (.r__, ])

2
p—r+k+3

5 (29)

HR| =1, since

p—r+k+3 > p—r+k+1
2 2 !
there is a path P € P’ and a vertex 2 € V(P) suich that 2% 2,272t € E(G),

30 we can insert. .t into P. and obtain a larger (A. B)-linkage than P.
If |R| = 2 then xt # y~, and (24) shows that

diz'.P') >

d@*. P)+dy~.P) 2 p-r+k+3.
This implies that for some Z € P',
da*.2) +d(y™,2) > 2] + 1.

Note that we can choose Z to be of order at least 2 since for 2 < i < k&,
{P;| 2 2, and if both P} and P}’ have order 1, we still Lhave

d(z*,P—-P)+d(y".P-P)>|P-P|+1.

This shows that for some vertex z € Z such that za' .2ty € E(G) or
ztat. 2y~ € E(G). Let us assume we are in the later case, since the other
case is similar. If Z = P; for some 2 < ¢ < k, replacing the path Py of P
with

ler, x]lp, Uzu U S Uwvy U [y, ).

and P; with
lai.z)p, Uuzy URUz 2t Uzt bi]p,.
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we contradiet the maximality of P. i Z = P, we can replace the path £
of P with

fay. :]p, URUa Yy U ly ol v SUeyly.hlp,.

we again have acontradiction. The case Z — Py is similar to the previons
one. Henee (e Lenmmna s trae for £ = 0.

If t = |T| = |AN B| # 0 now. notice that for all non-adjacent. vertices u
ad v of G-1T.

du.G-T)+d(0e.G-T)2n+k=2['|=mn—-t)+ k-1t

This shows that 09(G —T) > |G - T|+ k — . so that any (A ~T. B - T)-
systemn ol G — 1" may be extended 1o an (A = 10D — 1')-systemn covering
all the vertices of G — T while conserving the endpoints of the paths of the
original system.

To see that the condition a9(¢) > n+4A — 1 isn't even enough to extend
some (A. B)-systems to a Hamilton (A. B)-system. consider the graph G =
X +Y where n > 4k, X is an cmpty graph (no edges) on "“.ﬁ 2L vertices
and Y is a complete graph on L‘% vertices. Note that (7, 5 can be seen
to be obtained by taking the complete graph K, and removing all vertices
of a subgraph X on "—";—ﬂ vertices of V(K,).

One will verify that 02(G) = n + & — 1 yet il A and B are k-sets of
vertices of X intersecting on ¢ vertices, there can be no (4. B)-system in G
covering all the vertices of the graph. O
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