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Abstract

In this paper the concept of clique number of uniform hy-
pergraph is defined and its relationship with circular chromatic
number and clique number is studied. For every positive in-
teger k,p and ¢, 2¢q < p we construct a k-uniform hypergraph
with small clique number whose circular chromatic number is
equal to 2. We define the concept and study the properties of
c-perfect %-uniform hypergraphs .

Keywords : Hypergraph, Circular Coloring, C-Perfect Hyper-
graph

1 Introduction

For the necessary definitions and notations, we refer the reader to
standard texts of graph theory such as [6]. In this paper p, q, 7, k, m,n,
and [ are positive integers such that (2¢ < p) and k& > 2. Also, we
consider only finite hyperhgraphs. The hypergraph H = (V, E) is
called k-uniform whenever every edge e of H is of size k. The hy-
pergraph H' = (V' E') is a subhypergraph of H = (V, E) whenever
V' C V,and E' C E and it is an induced subhypergraph of H if for
every edge e of H, e C V'’ implies that e € E’. The complement of a
k-uniform hypergraph H denoted by H, is a k-uniform hypergraph
with vertex set V(H) and a k-subset of V(H) is an edge of H if and
only if it is not an edge of H. A subset of the vertices of H is inde-
pendent if it does not contain any edges of H and the independent
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number of H, denoted by «(H), is the largest size of independent
sets of H. Now for the sake of references, we state some definition
and result from [2].

A k-uniform hypergraph H is called complete if every k-subset of
the vertices is an edge of H. A mapping f : V(H) — V(K) is
a homomorphism from hypergraph H to hypergraph K if for every
edge e of H, there exists an edge €’ of K such that ¢’ C f(e). The
hypergraph H is called vertex transitive if for every vertices  and y
in H there is an bijection homomorphism f : V(H) — V(H) such
that f(z) =y.

A (p,q)-coloring of H is a mapping ¢ : V — {0,1,..,p — 1} such
that for every edge e € E, there exist vertices = and y in e satisfying
g<le(z) —c)l <p-g.

The circular chromatic number of H, x.(H), is defined as

X(H) = inf{%l there exists a (p,q) — coloring of H}

We have shown that [2] the infimum in the definition of circular chro-
matic number can be replaced by minimum.

It is obvious that if H' is an induced subhypergraph of H then
Xe(H') < X(H).

Let HY (k) denote the k-uniform hypergraph with vertex set {0, 1, ..,p—
1} and a k-subset {z1, 2, .., Zx} of V(H) is an edge of Hj (k) if and
only if there exist 1 <4,j < k such that ¢ <|z; —z;| <p—gq.

If k = 2 then Hj(k) is the graph Gj defined by Zhu [7] . It was
shown in [2] that x.(HY(k)) = Z, and it is vertex transitive.

let S be the collection of independent sets of a hypergraph H. The
mapping ¢ from S to the interval [0, 1] is a fractional-coloring of H
if for every vertex x of H we have Ysesz¢s¢(s) = 1. The value
of fractional-coloring ¢ is Xsesc(s). The fractional coloring number
of H, denoted by xs(H), is the infimum values of the fractional-
colorings of H. The authors [2] have shown that a(H}(k)) = g,
H{ (k) is vertex transitive, and xs(Hg(k)) = E.

Theorem 1 Let H and K be two hypergraphs then

1) x.(H) = min{gl there exists a homomorphism f : H —
G%}.
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2) Let there exists a homomorphism from H to K then,
e) x(H) < x(K),
b) Xe(H) < Xe(K)-

8) Let H be a k-uniform hypergraph and x.(H) =% then,
a) x(H) — 1 < xc(H) < x(H).

b) Ife: V(H) — {0,1,..,p — 1} be a (p, q)-coloring of H, then c
is onto, and |V (H)| 2 p.

c) f2< %’- then H has a (9, q')-coloring.

d) LR < xp(H) < xe(H),

e) If H is vertex transitive then xs(H) = l%g;l

2 Circular Coloring And Clique Number

In this section we only consider k-uniform hypergraphs.

Definition 1 Let H be a k-uniform hypergraph. A subset A of V(H)
is called a clique of H if every k-subset of A is an edge of H. The
clique number of H, denoted by w(H), is defined as

maz{|A|| A is a clique}

w(H) = k-1

The above definition is a generalization of the concept of clique num-
ber of graphs.

Theorem 2 For every k-uniform hypergraph H, we have w(H) <
Xc(H ) .

237



Proof : Let w(H) = ¢£&5 and A = {0,1,..,,p — 1} be a clique of
H. Let V(H,_,(k)) = A. Define mapping f : Hi_,(k) — H by
f(z) = z. It is obvious that f is a homomorphism; therefore, by
Theorem 1, x(Hy_,(k)) = w(H) < x(H) . O

Theorem 3 For every % >2and k > 4 thené ezists a k-uniform
hypergraph H with x(H) =2 and w(H) < .

Proof : Let 7 be an integer such that gr > [2](2k — 4). Consider
the graph Gir and construct a k-uniform hypergraph H as follows:

V(H) = V(G%r) and a k-subset e of V(H) is an edge if either e is a
l-edge or e is a (k — 1)-edge ( when a set e is called an l-edge if the
induced subgraph of G%; generated by V' (e) has exactly ! edges).
First we establish that w(H) < )':—1_% Assume to the contrary that
w(H) > kﬁ and A = {ag,a1,..,0k+1} is a clique of H.

Now we show that every k-subset of A is (k — 1)-edge. Suppose it
does not hold and a k-subset of A is an 1-edge. Without loss of
generality assume that {ao, a1, as, .., ak—1} is 1-edge and aga; is the
only edge of G}, in this set. If {ap, a2, .., ax_1,ax} is a (k — 1)-edge,
then ax is adjacent to all vertices {ao, @, ..,ak—1} in %. Now since
k > 3 the set {a1,a2,a3,..,ax} is a (k — 1)-edge too. Therefore a;ax
is also an edge of Gir and {ao, a1, as, .., @k—1,ax} is a k-edge, which
is a contradiction. Therefore {ao, a2, a3, .., ak—1, ax} is an 1-edge. By
the same way we can show that {a;, az,as,..,ak_1, ax} is an 1-edge.
Hence there exists j € {2,3,..,k — 1} such that ajax is not an edge
of Gr. Now {ag,a1,.,ax} — {a;} is 2-edge which is a contradiction
(k > 4).

Then every k-subsets of A are (k—1)-edge. Let T = Gh7|A]. First of
all we show that A(T') < 2. Let degr(aog) = 3 and a3, a2, and a3 are
adjacent to ag. Since {a1,az,as,..,ax} is a (k — 1)-edge, there exists
i, 1 < i < k such that a; is of degree 0 or 1 in the induced subgraph
of G generated by {a1,..,ar}. Now the set {ag,a1,..,ax} — {a;}
is a l-edge with [ > k, a contradiction. Thus we have A(T) < 2
and so every component of T is a path or cycle . Let a; and a; be
two nonadjacent vertices of degree 2 in T (it is obvious that there
exist such vertices). Now the induced subgraph of Gy generated by
A —{ai,a;} has at most (k — 2) edges, a contradiction. Then A is
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not a clique of H and w(H) < §.
It is remain to show that a(H) = gr, because if it holds then by
Theorem 1 we have Z ‘—((g}l < xf(H) < x(H). On the other
hand since the map f V(H) — G7r define by f(z) = z is a ho-
momorphism then Theorem 1 implies that xc(H) < x(Ggr) = E,
therefore x.(H) = £ and theorem is proved.
Suppose B is an 1n&ependent set and 0 € B. Let Cp = {0,1,..,qr —
1}, Co = {pr—gr+1,pr—gr+2,.,0}, C = {gr,gr+1,..,pr—gr} , and
= {t,t+1,...,t+qr}, gr <t < pr—2¢r. Forallt, qr <t < pr—2gr,
B has at most k — 2 vertices of C}. Otherwise (B[N C}) |J{0} is not
independent. Therefore |[B()C| < I'Lzﬁ'—] (k—2). Let BNCo =
{e1 < @2 <. <aq,} and BNCj = {bl < by < .. < b,}. Hence
a = b1 0.

Case 1) Let there exists vertex ¢ in B[ C. Let a; be the last ele-
ment of Co and b; be the first element of C} such that ca; and cb; are
edges in G4r. In this case each of the sets {@it1, -2z }, {Dj+1) - bin}
{a1,..,0i-1}, and {b1,..,b;—1} has at most k—3 elements. Otherwise,
if for example |{@i41,..,a1, }| > k — 3, then the set {c,a;, .., Gi+k—2}
which is an edge of H is a subset of B, a contradiction. Therefore
|CoB| <2k -5, |CyN B| <2k —5, and hence |B| < gr.

Case 2) Let B(C is an empty set. If there is no edge a;b; in
G- then {ai,as,...a;,} and {b1,bs,...,b,} are subset of an inde-
pendent set of Gir, and since independence number of Gy is qr
we have |B| < gr. Assume that a;b; is an edge of Ghr such that
bj — a; = max{b; —as | bias is an edge of Ghr}. Therefore each
of the sets {ai+1,.., a1, }and {a1, .., i1} has at most k — 3 elements.
Therefore, |Co N B| < 2k — 5. By the same way |CjNB| <2k -5
and therefore, |B| < gr. But since the set {0,1,..,¢r — 1} is an in-
dependent set, then a(H) = gr. O

By a similar proof one can show that Theorem 3 follows for k = 3
and w(H) < 3.

Definition 2 A k-uniform hypergraph H is called c-perfect if for
every induced subhypergraph Hy of H provided x.(Hy) > 2, we have
Xc(H1) = w(Hy).
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In the above definition the condition x.(H) > 2 is necessary, because
if Hy has only one edge then xc(H1) = x(H1) = 2 but w(H)) = &1
and therefore we never have a c-perfect hypergraph.

An example of a c-perfect hypergraph is the complete k-uniform
hypergraph H because, w(H) = x(H) = ﬂ’é_’illl and since every in-
duced subhypergraph of H is complete, H is c-perfect.

Now from every perfect graph we construct a k-uniform c-perfect
hypergraph. '

Theorem 4 Let G be a perfect graph, and H = (V(H), E(H)) be a
hypergraph such that V(H) = V(G) and e C V(H) is an edge of H
if and only if |e| = k and e is contained in a clique of G. Then H is
c-perfect.

Proof: Let H; be an induced subhypergraph of H, and G; be the
induced subgraph of G generated by V(H;). It is easy to see that
w(H) = %f—}z and since G is perfect, x(G1) = w(G1). Let c be a
w(G1)-coloring of G;.

Case 1) Let w(G)) = 2(k —1). Consider the coloring ¢/ of H; define
by ¢(z) = ¢(z) . Since every edge e of H, is a subset of a clique of
G, there exists two vertices 2,y € e such that k—1 < |e(z) —c(y)| <
w(G1) —k + 1 thus ¢ is an (w(G1), k — 1)-coloring of H;. Therefore
Xc(Hy) < ‘%&%—2 Now by Theorem 2 we have x.(H1) = w(H)).

Case 2) w(G1) < 2(k —1). We will show that x.(H;) = 2. Consider
the mapping ¢’ : V(H;) — {0,1} by d(z) = [ﬁkﬂj and let e be
an edge of H;. Since e is a k-subset of a clique of G; then there
exist at least two vertices z,y € e such that ¢(z) < k and ¢(y) = k.
Therefore ¢/(z) =0 and ¢/(y) =1, and ¢ is a 2-coloring of H;. O

We know that the complement of every perfect graph is perfect but
it is not true for c-perfect hypergraphs. In the following we construct
a hypergraph H which is c-perfect, but H is not c-perfect.

Let V(H) ={0,1,2,..,3m — 1}, m > 2k, and e € E(H) if e is a k-
subset of one of the sets {0, 1,2,..,m—1}, {m,m+1,m+2,..,,2m—1}
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or {2m,2m +1,2m + 2,..,3m — 1}. Since H is union of three copy
of disjoint complete hypergraphs then H is c-perfect. Let H' be
the induced subhypergraph of H generated by the set {0,m,m +
1,..m+k—2,2m,2m+1,..,3m —1}. By definition of H, the union
of {0,m,..,m + k — 2} and every (k — 1)-subset of D = {2m,2m +
1,..,3m — 1} is a clique of H. Therefore w(H') = 2= 2-1 implies from
this fact that every clique of H' has at most 2k — 1 vertlces Now
we show that H’ has no any (2k — 1,k — 1)-coloring. Let ¢ be a
(2k — 1,k — 1)-coloring of H’. Since the vertices of a clique of H’
of size at least k have different colors then, |¢=}({0,m,m +1,..,m+
k—2})| = k. On the other hand since every (k — 1)-subset of D with
{0,m, ..,m + k — 2} make a clique then |c~!(D)| = k — 1. Therefore
there exist vertices z,y € D such that ¢(z) = ¢(y). But z and y
appear in a clique of size 2k — 1 and they must have different colors,
a contradiction. Thus x.(H') > w(H’). Now since x.(H') > 2, then
H is not c-perfect.

By the above discussion it is natural to look for k-uniform c-perfect
hypergraph H such that H is also c-perfect. Also we look for k-
uniform c-perfect hypergraph H, such that H is c-perfect, and w(H)
and w(H) are arbitrary large. First we prove that for every m and
n there exists a 3-umform c-perfect hypergraph H such that H is
c-perfect, and w(H) = Bt w(H) =

Let V(H) ={1,2,..,m +n} and e € E(H) either e C {1,2,..,m} or
len{m+1,..,m+n}| = 1. By the construction of H we have, w(H) =
2t and w(H) = 2H and {1,2,..,m,m + 1} is a maximum clique,
and {m,m+1,..,m+n} is a maximum independent set of H. On the
other hand every induced subhypergraph of H and H has the same
structure and therefore it is enough to prove that x.(H) = w(H).
Assume w(H) < 2. Let P ={1,...,m}. Clearly |P| < 3. Color one
vertex of P by 1 and the others vertices of P by 2, and color vertices
of V(H) — P by 1. It is a 2-coloring for H. Let w(H) > 2. Define
the map ¢ by:
¢: V(H) — {0,1,..,m}
c(z)—{ i—-1 1<i<m

otherwise
Reader can check that ¢ is a (m + 1, 2)-coloring. Therefore w(H) =
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Xc(H), and proof is complete.

Theorem 5 For every k > 3 there exists a k-uniform hypergraphs
H, such that H and H are c-perfect, w(H) is arbitrary large and
w(H) > 2.

At first we prove the following lemma:

Lemma 6 Suppose G' be a graph with vertez set V(G') = {m,m +
1,...,m+ 2k — 1}, and ij is an edge of G' if one of the following
occurs :

D1<li—jl<k-2.
2)m+2<i,j<m+2k—-2andl|i-j|>k.

Then G’ is perfect.

Proof: We prove that G is perfect. By the construction of G/, the
sets {(m+1,.,m+k—1} and {m+k+1,..,m+ 2k — 1} are in-
dependent in G’, the vertices of the set {m + 1,m + k,m + 2k — 1}
are adjacent in G, and degs (m + k) = 2. On the other hand every
odd cycle of G’ has vertices m + 1,m + k,m + 2k — 1. Consider the
mapping ¢ : V(G') — {1,2,3} defined by:

2 m4+k+1<z<m+2k-1

1 m+1<z<m+k-1
c(z) =
3 z=m+k

c is a 3-coloring of G’ and since w(G') = 3 we have w(G’) = x(G").
Let G be an induced subgraph of G’. If one of the vertices m +
1,m + k and m + 2k — 1 is not in V(G;) then G, is bipartite graph

and w(G1) = x(G1), otherwise w(G1) = x(G1) = 3. Therefore G’ is
perfect. 0

Now since join of a complete graph to a perfect graph is perfect we
have the following lemma.
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Lemma 7 Suppose G' is the graph in Lemma 6 and G = Ky x G’
then G is perfect.

Proof of Theorem 5 Let G = K, ¥ G’ be the perfect graph con-
structed in Lemma 6 and Lemma 7, with vertex set {1,...,m+2k—
1}, where 1,...,m are the vertices of K,,. Let H be the k-uniform
c-perfect hypergraph constructed from the graph G by using The-
orem 4. We show that H is c-perfect too. First we prove that
A={m+1,m+2,.,m+2k—1} is a clique of H and therefore
wH) > 2L, Let e = {m+iy,m+ig,...,m+ix}, 1 <4 S 2% -1,
is a subset of A. If i, = 1 then since m + 1 is adjacent to only k — 2
vertices in G’ then e is not subset of a clique in G’ and therefore it is
an edge of H. Similarly if i, = 2k — 1 since m + 2k — 1 adjacent to
k—2 vertices then e is an edge of H. So suppose for every 2 < j < k,
we have 2 < i; < 2k — 2. Since k > 2 there exist at least two integer
i;, and i;, such that |ij, — ij,| = k therefore e is not a subset of a
clique of G’ and e is an edge of H. Now consider the mapping

c:V(H) — {0,1,...,2k -1}

(z) = k-1 z<m
=1 z-m—-1 z>m

If we show that ¢ is a (2k— 1,k — 1)- coloring of H then x(H) < %=1
and since xc(H) > w(H) we have x.(H) = w(H) = 3L, Let e be
an edge of H.

Case 1) Let e be a subset of A. Since A has 2k — 1 elements then e
has at least two vertices z and y such that |z — y| = k and therefore

le(z) —e(y)| = &-

Case 2) Let en{1,2,...,m} #0andz € en{L,2,...,m}. If m+1or
m+2k—1is in e then ¢(z)—e(m+1) = k—1or e(m+2k—1)—c(z) =
k—1. Let m+1 and m+2k—1 are not in e. Since e is not an edge of
H, there exist at least two vertices a and b, m+2 < a,b < m+2k—1
such that £ —1 < |a — b| < k and therefore k — 1 < |c(a) — ¢(b)| < k.
Thus for every edge of H we find at least two vertices that satisfy
the (2k — 1,k — 1)- coloring conditions. Hence c is a (2k — 1,k — 1)-
coloring of H.
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Now suppose H' be an induced subhypergraph of H. If A C V(H')
there is nothing to prove. Let there exists i, 0 < i < k — 1 such that
m+k+1i ¢ V(H'). Define mapping

c:V(H) — {0,1}

o(i) = 0 1<i<m+k-1
T 11 otherwise

One can check that ¢ is a 2- coloring of H' and hence H is c-perfect.
. Now since w(H) > 2; and w(H) = 3=, proof is complete. O

Conjecture 1 For every k,n and m there exists a k-uniforz&_ c-
perfect hypergraph H such that w(H) > m, w(H) > n and H is
c-perfect.
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