- Counting chains and antichains
in the complete binary tree

Grzegorz Kubicki*
Department of Mathematics
University of Louisville
Louisville, KY 40292
gmkubi01@louisville.edu

Jend Lehelf
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152
jlehel@memphis.edu

Michat Morayne!
Institute of Mathematics’
Wroclaw University of Technology
Wybrzeze Wyspianiskiego 27
50-370 Wroclaw, Poland

morayne@im.pwr.wroc.pl

September 22, 2004

*Research supported by a Research Initiation Grant, University of Louisville

1On leave from the Computer and Automation Research Institute of the Hungarian
Academy of Sciences

}Partially supported by KBN Grant 8T11 C032 15

§The paper was written while visiting the Department of Mathematics, University of
Louisville

ARS COMBINATORIA 79(2006), pp. 245-256



Abstract

Let Ty be the complete binary tree of height n considered as the
Hasse-diagram of a poset with its root 1, as the maximum element.
For a tree or forest T', we count the embeddings of T into T, as
posets by the functions A(n;T) = [{SC Ta:1s € S, S=T}|, and
B(n;T)=|{SCTa:1. ¢S, S=T}. Here we summarize what
we know about the ratio A(n; T)/B(n;T), in case of T being a chain
or an antichain.

Keywords: log-concave, tree poset, chains and antichains, enumera-
tion, ratio inequality (MSC 06A07, 05A20, 05C05)

1 Introduction

A forest is a poset F' = (X, <) such that every point of F' has at most one
immediate successor. A tree T is a forest with a unique maximal element
called the root of . Minimal elements of a forest are referred to as its
leaves. In this note we call a tree binary if every point has at most two
immediate predecessors. A binary tree is complete if every point different
from a leaf has exactly two immediate predecessors, and all maximal chains
have the same height. We use the symbol £ for the isomorphism between
posets.

Let T, be the complete binary tree of height n, and let 1, be its
root. For any T, define A(n;T) = {SC Ta: 5T, 1, € S}|, and
Bn;T) = |{SCTn:S=T, 1, ¢ S}|. These counting functions were
introduced in (2] and [3] when investigating a partial order analogue of the
celebrated secretary problem. In [2] we proved that A(n;T1)/B(n;T}) <
A(n; T3)/B(n; T2) holds for binary trees T1, T> such that T contains a sub-
poset isomorphic to T;. We also conjectured that the assumption that T}
and T are binary can be removed and we proved in [3] that the asymptotic
version of this conjecture is true.

In section 4 we shall verify the conjecture in the simplest non-binary
case where T3 and T3 are stars rooted at their center (Proposition 4.2).
To handle the ratios A/B for k-stars, we actually count embeddings of k-
antichains into Ty. This is done in Section 3 together with the analogous
problem for k-chain embeddings. In our discussions we use ordinary power
series generating functions and the concept of logarithmic concavity of se-
quences. Related tools and the proof of a technical lemma on log-concavity
(Proposition 2.1) are presented in Section 2.
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2 Logarithmic concavity

A real sequence a = {a,}3° is logarithmically concave, or log-concave for
short, if a? > a;_1ai41, for all i > 1. A log-concave sequence is strictly log-
concave, if a? > a;—1a:41, for every i such that a; # 0. Sequences of our
interest enumerate combinatorial objects, thus their terms are nonnegative.
Furthermore, these combinatorial sequences have no internal zeros, i.e., each
term is positive between any two positive terms. We shall frequently refer
to the following more general inequality a;a; > a;_rajii, for every k > 0
and i < j, that is actually equivalent to the definition of log-concavity in
the case of our combinatorial sequences. A formal series generating function
(or a polynomial) is log-concave or strictly log-concave if the sequence of its
coefficients has this property. If the definition of a sequence is not otherwise
restricted, we can include leading or trailing zero terms to it. For example,
a linear polynomial with positive coefficients is always strictly log-concave.

A fundamental operation on sequences maintaining log-concavity is con-
volution. We state this well known result in terms of generating functions
(as the convolution of two sequences corresponds to the multiplication of
their ordinary power series generating functions). For a standard proof
using the Binet-Cauchy formula for convolution matrices see Karlin [1].
The same proof also shows that the convolution of a strictly log-concave
combinatorial sequence and a nonzero log-concave sequence is strictly log-
concave.

Convolution Lemma. If F(z) and G(z) are log-concave formal power
series with nonnegative coefficients, then F(2)-G(z) is log-concave as well.
Moreover, if F(z) is strictly log-concave, then F(z) - G(z) is also strictly
log-concave.

The values of a combinatorial function f(n,k), n,k > 0, can be con-
sidered as entries of an infinite matrix we call here an array. The ath row
of an array f(n,k) is the ‘horizontal’ sequence {f(a, k)}52,, and the bth
column is the ‘vertical’ sequence {f(n,b)}32.,. We always assume that the
entries of an array are nonnegative and any horizontal or vertical sequence
contains no internal zeros. Given a recurrence relation defining f(n, k), for
n,k > 0, we are interested in sufficient “boundary conditions” implying
the horizontal (or vertical) logarithmic concavity of the array f(n, k). The
proposition below investigates an array derived as an extension of the func-
tion in Section 3 counting k-antichains in the complete binary tree poset
Th.

Proposition 2.1 Let f(n,k) be defined by the recurrence relation
f(n,0)=1,f(n,1)=t, for n2>0, J(0,k) =0 for k2>2,
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k
f,k) =) fln-1,i)-f(n-1L,k—i) for n>1,k>2
i=0
If {t,}§° is a log-concave sequence with tog =0, t; > 0 and t, > 2t,_, for
all n > 2, then the array f(n, k) is horizontally strictly log-concave.

Proof. For fixed n > 0, let Gp(y) = X f(n, k)y* be the ordinary power
£30

series generating function of f(n,k), k =0,1,2,.... Using the recurrence,
we get Go(y) = 1, and Gu(y) = [Gu-1(®)]® + (tn — 2tn-1)y, forn > 1.
Notice that G, is strictly log-concave for n = 0,1. Furthermore, if Gy,
is strictly log-concave, then [G,-1]? is also strictly log-concave, by the
Convolution Lemma. Because [Gn-1(y)]? and G (y) = [Gn-1(¥)]® + (tn —
2t,-1)y differ only by a linear term with nonnegative coefficient, f(n, k)% >
f(n,k—1)f(n, k+1) holds true for every k # 2. We shall verify the missing

inequality:
(*) tn f(n: 3) < f(nh 2)2 .

Because f(2,3) = 0 and f(2,2) = t2 > 0, (*) is true for n = 2. Assume
that n > 3. Based on the recurrences

f(n,2)
f(n,3)

we obtain, by iteration, the following forms:

2.f(n - 113) + 2tn—1f(n -1, 2) )

n—-1
f(n,2) = ,§1 ¥,

n—-2 n—-2 2
f(n: 3) = wzl tn—; JEm 2“(”_1)__1

The left hand side of (*) becomes

n-2 n-2

taf(n, 3)=t, Z tn—i E 2jt%n—l)—j
i=1 =i
n-2 . n—-2 .
= | D tatac1 Pty + Y tata22ty gy | +
j=1 j=2

n-2 n—-2
+ ( Y tatn-@r-n ity + Ztntn_zkznfn_l,_j) +..
j=2k—1 j=2k
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We compare the sums above in parentheses with the corresponding subsums
on the right hand side of (*) in the expansion

[f(n,2))?

n-1 142 2
221 tn—g

=1

n-—1
th_ +22_, Y 23‘1t?,__,,) +
i=2

n-1
+ (22'=-2t3,_k +282_, 21‘1t§_,) +...
J=k+1
The log-concavity of {t,}3° implies 42y < ta—clotc, for all positive integers
a, b, c with @ > band b+c¢ < a. From this and from the condition tn > 21,
we obtain

n-2 n—2

Y tata1 298, ), S X WML =t U, 2 27142 s,
=1 =1 i=2

n-2

n-2 n—-1
2 t"t""22 t(n—l)—g S t?&-—l E ,2“%1;-1)—1' < t?&—l Z zj-lti—j )
3—2 J=2 ]=2

where the last inequality follows since n > 3 is assumed. Therefore

n~2 -1
3 tatn12? t(n_,)_,+2t,.t,._22 B 1)y <th_ +22_, 221'11;?,_,
j=1 i=2 j=2

Similarly, for every 1 < k < (n — 2)/2, we obtain

n—2 n-2

J
J_zzk lt" n—(2k— 1)2 t(n_l)_J + J_E”: tntn—2 k2 t(n 1)-j
<td ,+t2_, 2 g o+ 2, Z 20142 .
J—2k i=2k
<th_+2t2_ 2; 2912 .
J—2k

This bound is less than the sum of all terms in the expansion of [f(n, 2)]?
containing the factor ¢,,—xt; with j < n—k—1. This settles (*), provided n
is even. Assuming that n > 3 is odd, we have ¢,4,2" 212 < tfn +1) /22"'3t§
for the remaining term unpaired in ¢, f(n,3), thus it is bounded by an
unused term of the expansion of [f(n,2)]?. This proves (*) and concludes
the proof of the proposition. m|

Given sequences ¢ = {a,}3° and b = {b,}3°, we will say that a ratio
inequality a;/b; < aj/b; holds true if a;b; < a;b;, for all i, > 0.
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Using ratio inequality notation, a sequence is log-concave if and only if
a;if/a;i—y > aiy1/a;. We say that a/b is nonincreasing if the ratio inequality
a;/b; > a;41/biy1  holds true.

3 Antichains and chains

The array of antichains. For n,k > 0, let a(n, k) be the number of all
k-antichains in the complete binary tree poset T,. Then

a(n,0) =1 for >0,
a(n,1)=2"-1 for n >0,
a(0,k)=0 for k>2,

and for every n > 1, k > 2, we have the following recurrence

k
a(n,k) = a(n—1,i)-a(n -1,k - ).

i=0
Consider n as a free variable, and let G,(y) = Y a(n, k)y* be the ordinary
E30

power series generating function of a(n, k). From the recurrence definition
we obtain that the sequence {Gn(y)}° satisfies Go(y) = 1 and Gyn(y) =
[Gnar@))? +yforn>1. '

In Table 1 we computed initial entries of the array a(n,k) (using the
software MATHEMATICATM Kernel version 2.2 for Windows). Note that
a(n,k) =0, for k > 2771,

a(n,k) | 0 1 2 s a 5 ] 7 s
o 1
1 1 1
2 1 3 1
s 1 7 1 ] 1
q 1 18 71 166 207 146 58 12 1
5 1 31 367 2462 10438 30074 61446 91220 99919
e 1 63 1695 27678 308203 2154226 15708214 77448348 307930443
7 1 127 7359 268026 6076869 137690450 2150089758 27718243068 207701781850

TABLE 1. Fragment of the array a(n, k) of antichains

An immediate corollary of Proposition 2.1 is that the array a(n, k) is hori-
zontally strictly log-concave.

Proposition 3.1 The sequence {a(n,k)}s2, is horizontally strictly log-
concave for anyn > 0. @]
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Although we were unable to prove the vertical log-concavity of a(n, k),
we believe that this is true even for the general array in Proposition 2.1.

Problem 1 Let f(n,k) be defined by the recurrence relation

f(n,0)=1,f(n1)=t, for n=>0, f(0,k)=0 for k22,

k
f k)= fn-1,4) - fn-1,k-i) for n21, k22
=0
We know that {t,}3° is a log-concave sequence with tg = 0, t; > 0 and
tp > 2t,—y for alln > 2. Is it irue then that the sequence {f(n,k)}3%, is
strictly log-concave for every fixed k?

As far as the asymptotic behavior of the sequence {a(n,k)}32q is con-
cerned, for k fixed, it is enough to observe that asymptotxca.lly almost all
k-element sets of T, are antichains. Indeed, among all ( ) possible
k-element sets of Ty, there are not more than (2™ — l)n(zk_':) containing
some pair of related points. Thus we obtain easily that, for any fixed k > 1,

nli_x)rgo[a(n, k)27 =1/k! .

The array of chains. Most of the results here concerning chains (totally
ordered subsets) of complete binary trees are proved in [4] using different
techniques. Here we shall use generating functions in order to derive log-
concavity results parallel to the case of antichains.

For n,k > 1, let po(n, k) be the number of all k—chains of the complete
binary tree poset T, containing its maximal element 1,,. Then pp(n,1) =1
for n > 1, and py(n, k) = 0 for n < k. Furthermore, for every n,k 2 2, we
have the recurrence

po(n, k) =2pg(n— 1,k —1) + 2pe(n — 1,k).

The initial values are obvious. The first term 2pg(n — 1,k — 1) of the
recurrence counts all k—chains of T, that include one of the two immediate
predecessors of 1, and the second term 2pg(n — 1, k) counts the sets in Tp,
that contain neither immediate predecessor of 1,. Indeed, an injection of
the k—chains of T3 rooted at an immediate predecessor of 1,, into the
k—chains of Ty, can be obtained by replacing the maximal element of each
k—chain of Tp—3 with 1.
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Po(n, k)

-

10

8190

81924

376824

1048692

1957886

2572352

2724704

1 1

3 1 2

3 1 (] 4

4 1 14 20 8

L] 1 30 68 56 16

(] 1 62 106 248 144 32

7 1 126 516 888 784 352 64

8 1 254 1284 2808 3344 2272 832 128

;] 1 510 3076 8184 12304 11232 6208 1920 256

10 1 1022 n2 22520 40976 47072 34880 16256 4352

11 1 2046 16388 59384 126992 176096 163904 102272 41216

12 1 4094 36868 151644 372752 606176 680000 532352 286976
1

1638656

512
9728
101888
777728

TABLE 2. Fragment of the array po(n, k) of chains
Consider n as a free variable, and let Gp(y) = 3. po(n,k)y* be the
k>1

ordinary power series generating function of pg(n, k). From the recur-
rence, we obtain that the sequence {G,(y)}§° satisfies G;i(y) =y, and
Gn(y) = (24 2y)Gn-1(y) ~y for n > 2. We computed some entries of
the array po(n, k) in Table 2 using MATHEMATICATM,

For k > 1, define the formal power series generating function Fi(z) =
3" po(n, k)z™. From the recurrence, for po(n, k) we obtain easily that
n>1

z

l-2

R = , and  Fi(z) = Fy_1(z)F1(2z) fork > 2,

and thus

_ 1
Fule) =27t s g

To compute the coefficient po(n, k), divide both sides of the identity
1= [-(1-2z)]F 1 +(2-22)[1-(1-22)+(1-22) 2 —- - -+ (=1)* "2 (1-22)* 2]
by (1 — z)(1 — 2z)*~1. Then we have Fi(z) =

k-1 (=1)+! 2 _ 2 k2 2
2 [1 z TU2p (Gompr v TN T

Using the power series m = § 2:(***"1)z*, we obtain po(n, k') =
'—-

_ovk-1 L on|(P—2) _(n-3 n—4y o ufn-k

e [(025)- (o) + (28 - e ()
Using the identity (""2 (r=3) = (323), the formula yields the approxi-
mation po(n, k) ~ 2"n*~2/(k—2)! for any fixed k > 2. Next we discuss the

log-concavity of the array po(n, k).
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Proposition 3.2 The array po(n,k) is horizontally strictly log-concave.
Also every column different from the first one is strictly log-concave.

Proof. (Horizontal log-concavity.) For n = 1, the result is trivial, so we
assume n > 2. If G,—1(y) is strictly log-concave, then the product (2 +
2y)Gr—1(y) is strictly log-concave, by the Convolution Lemma and because
(2 + 2y) is trivially strictly log-concave. In the recurrence G,(y) = (2 +
2y)Gn—-1(y) — y, the very first nonzero coefficient is to be decreased by 1,
therefore the log-concave property holds true for G, (y) as well.

(Vertical log-concavity.) Observe that pg(n,2) = 2" — 2 is strictly
log-concave. We have seen before that the generating function Fi(x) =
Y. po(n,k)z" satisfies the recurrence relation F; = 1%z, and Fi(z) =
n>1

Fi_1(z)F1(2z) for k > 2. Because Fi(z) and F,(2z) are trivially log-
concave, and Fy(z) is strictly log-concave, the claim follows by the Convo-
lution Lemma. ]

It is straightforward to verify that po(n + 1,k + 1) = 2p(n, k), where p(n, k)
is defined as the number of all k-chains in Ty. Therefore, the log-concavity
of the array p(n,k) and the asymptotics p(n, k) =~ 2"n*~1/(k — 1)! follows
readily from the corresponding result for po(n, k).

4 Ratio inequalities

For k > 0, let S be the star with k leaves rooted at its center. Subposets
of T,, isomorphic to Si consist of a k~antichain with a point greater than
each point of the antichain. Define
A(Sk) = {SCTnh:85=25,1,€ 85},

and set A(n,k) = |A(Sk)| and B(n,k) = |B(Sk)| . Clearly, A(n,0) =
1,A(n,1) = 2" - 2 = a(n,1) — 1 for n > 1, A(1,k) = 0 for k > 1, and
A(n,k) = a(n,k) for n,k > 2. Furthermore, B(n,0) = 2" -2 forn > 1,
and B(n,k) = 2(B(n — 1,k) + A(n — 1,k)) for every n > 2, k > 0. Note
that B(n,k) = 0 for k > 22

Proposition 4.1 For everyn >3 and 0 < k < 272,
A(n, k)/B(n, k) < A(n, k +1)/B(n, k +1).

Proof. The proof is by induction on n. For n = 3 we have

AGO) |1 _ABY) _6_ABG2) _6_ AB3) _4
B3,0) 6 -B(3,1) 4°B@3,2 2B3,3 0"
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The claim is also true for k = 2°~2 with any n > 3, because B(n, 2" 2+1) =
0 and B(n, 2"-2) £ 0.
Let n > 4, k < 2"~2, and assume that

A(n—1,k)B(n-1,k+1) < A(n—1,k+1)B(n - 1,k). (1)

Notice that in (1) we have equality for 2”3 < k < 2"~2 in which case both
sides are equal to 0. In the induction step, we will use the fact that the
sequence {A(n — 1,k)}§2, is strictly log-concave. To see this recall that,
by Proposition 3.1, the generating function Gn_2(y) of {a(n — 2,k)}2, is
strictly log-concave. The generating function of {A(n — 1, k)}2, is equal
t0 Gn-1(y) —y = [Gn-2(y))?, hence the strict log-concavity of the sequence
follows by the Convolution Lemma. In particular, for every i = 1,2,...,k,
we obtain that

An-1,k—-i)A(n-1,k+1) < A(n-1,k+1-3i)A(n - 1,k). (2)
Combining the induction hypothesis (1) with inequality (2), we get
An—-1,k-9)B(n—-1,k+1) < A(rn-1,k+1-4)B(n—1,k) (3)

for every i, 0 < i < k, with equality for 2" 3 < k < 2"~2 in which case
both sides of (3) are equal to 0.

Multiplying both sides of the inequalities (2) and (3) by A(n—1,1) and
summing up for ¢ =0,1,...,k, we obtain

k
(ZA(n ~1L,i)A(n -1,k — i)) (B(n—1,k+1) + A(n -1,k + 1))

i=0

k
< (Z An—1,)A(n—-1,k+1- i)) (B(n - 1,k) + A(n — 1,k))
=0

k+1
< (ZA(n— 1,i)A(n-1,k+1 —i)) (B(n —1,k) + A(n - 1,k)) .
=0

Using the recurrence relation, the inequality above simplifies to
A(n,k)B(n,k +1)/2 < A(n,k +1)B(n,k)/2,
and the proposition follows. ' a

An immediate corollary of the ratio inequality above is

Proposition 4.2 Given n > 3, the ratio | A(Sk)|/|B(Sk)| is strictly in-
creasing for k =0,1,...,2"2, (m]
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A similar result is also true for k-paths. For k > 1, let P, be the path
with k vertices rooted at an end vertex. Set

A(Px)
B(FPx)

{SCTa:1,€5S2 R},
{Sng:1n¢SaSng}'

Proposition 4.3 ([4]) Given n > 3, the ratio |A(Pi)|/|B(Pr)| is strictly
increasing for k=0,1,...,n.

Proof. Clearly, |A(Px)| = po(n, k) and |B(Px)| = po(n, k + 1), and the
ratio inequality [A(Pe)|/IB(Pi)] < |A(Pr+1)l/|1B(Pr+1)| is equivalent to
po(n, k) /po(n, k+1) < po(n,k+1)/po(n,k+2). Thus the claim follows
from the horizontal strict log-concavity of py(n, k) proved in Proposition
3.2. (]

The section is concluded by proving two ratio inequalities for arbitrary
trees. Denote by L, the set of leaves of the tree T;. Observe that Tpyq \
L,+1 is isomorphic to Ty, and |Lp41| = 2™ > 2" — 1 = |Ty,|. We will use
this observation together with its consequence as stated in the following
lemma.

Lemma 4.4 There exists a proper injection ¢ : (Tpya1 \ Lat1) P Ln
such that p(z) < z for every £ € Tn41 \ Lnya.

Proof. Because |Li| > |T|/2 for every k > 2, we have

U{yeL,,+1 :y <z} > |X|
z€X

holds for every X C Tpn41 \ Lnt1- Then, by Konig-Hall's theorem (see e.g.
in [5]), the required proper injection ¢ exists. o

Proposition 4.5 IfT is a tree with £ leaves, then
B(n+1;T)/B(n;T) > 2¢.

Proof. The leaves of any S C Ty, S = T, form an ¢-antichain of T,,. For
any given S, we apply the injection ¢ obtained in Lemma 4.4 to map any
subset of these £ leaves into L,y1 (by keeping all the other points of S
unchanged). Repeating this for every subset of leaves we obtain 2¢ distinct
sets in Tp41 each isomorphic to T. Furthermore, because ¢ is proper, there
are sets in Tn41 isomorphic to T and including at least one leaf from Ln4q
not present in the image of ¢. Thus B(n + 1;T) > B(n; T)2¢ follows. O
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The following proposition was a basic result in [4] where it was used in
the poset version of the secretary problem. We state it here with a new
and shorter proof.

Proposition 4.6 ([4]). IfT is a tree different from a chain and A(n; T) >
0, then B(n;T) < A(n; T).

Proof. Obviously, B(n + 1;T) = 2(A(n; T') + B(n;T)), and thus
A(n;T)/B(n;T)=B(n+1;T)/2B(n; T) - 1 4)

provided B(n;T) # 0. Because T has k > 2 leaves different from its root,
inequality (4) and Proposition 4.5 imply

A(;T)/B(n;T)=B(n+1;T)/2B(n;T)-1>2F1—-1>1.
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