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Abstract
In this paper, it is shown that a partial edge-disjoint decompos-
tion of K, into kites (that is, into copies of K3 with a pendant edge
attached) can be embedded in a complete edge-disjoint decompos-
tion of K449 into kites for all even ¢t > 2n. The proof requires first
proving another interesting result, a generalization of an embeddding

result on symmetric latin squares by L. D. Andersen, following a re-
sult by A. Cruse.

1 Introduction

A (partial) G-design (V, B) of order n is a partition B of (a subset of) the
edges of K,, on the vertex set V into sets, each of which induces a graph
isomorphic to G. A partial G-design (V, B) is said to be embedded in a G-
design (W,C) if V. C W and B C C. There has been considerable interest
over the years in the embedding problem that asks for the smallest possible
order for which all (partial) G-designs (V, B) of order n can be embedded.
The particular case where G = K3 has been extensively studied. J. Doyen
and R. M. Wilson proved the best possible result in the restricted case
where the given Kjs-design is in fact comi)lete (that is, all edges of K,
occur in some copy of G). It is one of the outstanding problems in design
theory to prove that every partial Ks-design of order n can be embedded
in a complete K3-design of order ¢, for all ¢ > 2n+1 where ¢t =1 or 3 (mod
6). Recently D. Bryant (3] proved the best result to date, showing such an
embedding is possible if ¢ > 3n — 2 where ¢t = 1 or 3 (mod 6). Embedding
results have also been obtained in other cases, such as where G is a cycle
[4, 8, 9, 12], and when G = Ky, \ Kpm—2 [11].

A kite is a triangle with a tail consisting of a single edge. In this paper

we address the embedding problem for kite-designs, more usually known
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as kite systems. It is known that kite systems of order n exist precisely
when n = 0 or 1 (mod 8) [2]; one can even find such designs that are 2-
colorable [6]. Necessary and sufficient conditions have also been found for
the embedding of a complete kite systems of order n in a complete kite
system of order ¢ [7].

In what follows we will denote the graph

a c d

by (a,b,c) — dor (b,a,c) —d.

Given a partial kite system (X, B) of order n a natural question to ask
is whether or not it can be completed; i.e., can E(K,)\ E(B) be partitioned
into copies of kites. Clearly, this cannot be done in general, since no partial
kite system of order n = 2, 3,4, 5, 6, or 7 (mod 8) can be completed.

Example 1.1 (X, B) is a partial kite system of order 6, where X = {1, ..., 6}
and B = {(2,3,5)—1,(3,4,6) — 1}.

Given that a partial system cannot necessarily be completed, the next
question to ask is whether or not a partial kite system can be embedded.
The partial kite system (X, B) is said to be embedded in the (partial) kite
system (S, K) provided X C S and B C K. The partial kite system of order
6 in Example 1.1 is embedded in the kite system of order 8 in Example 1.2.

Example 1.2 (S, K) is a kite system of order 8, where S = {1,...,8} and
K = {(2,3,5)-1,(3,4,6)—1,(4,5,7-1,(5,6,8)-1,(6,7,2) —1,(7,8,3) -
1,(8,2,4)—1}.

Naturally, if an embedding is possible, we would like the size of the
containing kite system.to be as small as possible. The purpose of this
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paper is to show that a partial kite system of order n can be embedded in
a kite system of order at most 8n + 9. To do so, we use a proof technique
that requires a result that is of interest in its own right. Theorem 2.2
is a generalization of a result of L. D. Andersen [1] who generalized A.
Cruse’s classic result [5] that settled the embedding problem for incomplete
idempotent symmetric latin squares. It is also a companion to similar

generalizations of classic embedding theorems that appear in [10].

2 Preliminaries

A partial groupoid (G, o) is said to be idempotent provided 22 = zoz =z
for all z € G. The quantification “partial” is only for products z oy, where
z # y. A partial groupoid (G, o) on order 2n with G = {1,2,3,...,2n}
is said to be half-idempotent provided z? = (z + n)? = z, for all z €
{1,2,3,...,n}. Once again “partial” quantifies only products of the form
zoy, where z # y. A partial groupoid is said to be complete if all products
have been defined.

A partial groupoid (P, o) is called a partial embedding groupoid provided

1. (P, o) is idempotent,

2. if z # y either both z o y and y o z are defined or neither is defined,
3. (P, o) is row latin, and

4. each z € P occurs as a product an odd number of times.

We remark that in the case where both z oy and y o = are defined it is not
necessary that zoy =yoz.
In what follows, we will sometimes abbreviate the groupoid (@, o) to

simply Q. The context will make this approach clear.

Example 2.1 A partial embedding groupoid of order 7.
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Theorem 2.2 A partial embedding groupoid P of order n can be embedded
in a half-idempotent groupoid R of order 2n which satisfies

(1) R is row latin, and

(2) if all off-diagonal products in P are deleted from R then the re-
sulting partial groupoid is in fact a partial quasigroup that is both

commutative and half-idempotent.

Proof Let (P,o) be a partial embedding groupoid of order n based on
1,2,...,n and let (L, ®) be a commutative quasigroup of order n based on
n+1,n+2,...,2n. For each i,j for which i o j is undefined in P, let
itoj=joi=(n+1)®(n+j). Call the resulting partial groupoid (P’, o).
We now use a proof by induction to show that P’ can be embedded in a
half-idempotent groupoid of order 2n which satisfies conditions (1) and (2).

For any (partial) groupoid Q, let Ng(i) denote the number of times
symbol ¢ occurs in Q. For 0 < 2z < n, we will embed P’ in a groupoid P,

of order n 4 z in which:

(@) if all off-diagonal entries in the partial embedding groupoid P are
deleted then the result is a partial commutative quasigroup of order

n+ z in which cell (n + %, n + %) contains the symbol i for 1 < ¢ < 2,
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(b) each row is latin,
(c) each symbol 1 satisfies Np, (i) > 2z, and
(d) Np,(i)is odd if 2+ 1 < i < n, and is even otherwise.

Clearly we can let P, = P’ if z = 0. So suppose for some y satisfying
0 < y < n—1 that P, satisfying (a),(b),(c), and (d) exists for 0 < z < ».
We will now show that P, exists. Let B be the bipartite graph with
bipartition {p1, p2, ..., Pn+y, D} and {31, 82, ..., 52}, where {pp, j} € E(B)
forall j € {y+1,y+2, ...,n}and {p;, 5;} € E(B) if and only if the symbol j
is missing from row ¢ of P,,. Then by (b), since each row of P, contains n+y
distinct symbols, dg(p;) = 2n — (n +y) =n —y. Clearly dg(pp) =n —yv.
Also, by (c) and (d),

ds(f)=n+y—Np,(j) Sn+y—-2y=n—-y
forl1<j<yandn+1<j<2n,and
dp() =n+y—Np, () +1Sn+y—(y+1)+1=n—y

fory+1<j<n.

Notice that for y+1 < j <n, Np,(§) 2 2y + 1 since by (d) Np, () is
odd and by (¢) Np,(j) > 2y. Now give B a proper (n — y)-edge-coloring
with the colors 1,2, ...,n— y, with edge {pp,y + 1} being colored 1. Form
the groupoid @ by placing the symbol +1 into the cell (n+y+1, n+y+1),
and placing the symbol j in both row % of column n+y +1 and in column
iof row n+y+1 if and only if {p;, j} is colored by 1. We now show that
Q satisfies conditions (a), (b), (c) and (d), where z=y+1.

Clearly (a) is satisfied. Q is latin in rows 1 to n+y by the definition of
the edges in B, and row n+y+1 is latin both because the edge-coloring of
B is proper and because the edge {pp,y + 1} being colored 1 means that
symbol y+1 only occurs in the diagonal cell. So (b) is satisfied. To see that
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(c) is satisfied, we consider two cases. If Np,(5) = 2y, then dp(j) =n -y,
so 7 occurs in the added row and column and so Ng(j) = 2y+2 = 2(y+1).
Secondly, if Np,(j) = 2y + 1, then again dp(j) = n —y. In this case, if
j = y+1 then j is placed in the added diagonal cell of Q, so Ng(j) = 2y+2.
Otherwise, ¥ + 2 < 7 < n and so j occurs in the added row and column,
so Ng(j) = 2y + 3. Therefore Ng(j) > 2(y + 1) for all symbols j, so (c)
is satisfied. Since all symbols other than y + 1 are placed an even number
of times in the added row and column, it is clear that (d) is satisfied. The

result follows. a

3 The 8n + 9 embedding

Let (N, B) be a partial kite system of order n, where N = {1,2,...,n},
and let O be the set of vertices of odd degree. Define a binary operation
"o” on N'=NU{n+1} by

(1) zoz =z forall z € N'.

(2)Ifz#y, zoyand yox are defined and zoy =y and yoz =z if
and only if the edge {z,y} belongs to a kite in B.

B)yo(n+1)=n+land (n+1)oy=yforally € O.

It is straightforward to see that (N’ o) is a partial embedding groupoid.
(Example 2.1 is the partial embedding groupoid constructed from the par-
tial kite system in Example 1.1.) By Theorem 2.2 we can embed N’ =
(N, o) into a half-idempotent groupoid @ = (Q, o) of order 2n+ 2 which is
(1) row latin and (2) deleting all off-diagonal products defined in the embed-
ding groupoid results in a partial half-idempotent commutative quasigroup.

Set § = {00} U (Q x {1,2,3,4}). Define a set of kites K as follows:

(1) Let ({1, 2,3,4},®) be the idempotent quasigroup below (any idem-
potent quasigroup will suffice). N
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For each (a,b,c)—d € B and for each i, j € {1, 2, 3,4}, place ((a, ), (b, i®
i) (e,4)) — (d,5) in K.

)

o o o 2
L ) 3
e o o 4
c a b d

Figure 1 Type 1 kites.

(2) For each {a,b} C {1,2,...,2n+ 2} that is neither in a kite in B nor
satisfies a € O and b = n/, place in K the four kites ((b, 1), (a0b,2), (a,1))—
(5,38), ((5,2),(a0b,3),(a,2)) — (b,4), ((5,3),(aob,4),(a,3)) — (b,1), and
((6,4), (a0 b,1),(a,4)) — (b,2).

(8) For each a € O place in K the 9 kites ((a,2), 00, (7’ + a,1)) —
(n' + a,3), ((a,3),00,(n’ + a,2)) — (' + a,4), ((n’ + a,3),(a,4),00) —
(7' +4,4), (',1), (2, 2), (&, 1)) - (v’ +a,4), ((a,4), (n',1),(a,3)) - (n',4),
((a,3), (n',3), (3, 2))—(n",4), ((a,4), (", 3), (2, 1))~ (", 4), (', 2), (a, 3),
(a,1))~ oo, ((n',2), (a,2), (a,4)) — (n',4), in K, where n’ =n + 1.
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Figure 2 Type 2 kites.

Figure 3 Type 3 kites.

(4) For each a € N with even degree and for a = n/, place in K the
5 kites ((a,2), 00, (7' + a,1)) — (n’ + a,3), ((a,3),00, (' + a,2)) — (n’ +
a,4), ((n’ + a,3),,(a,4)) — (a,1), ((»’ + a,4),00,(a,1),) — (a,2), and
((a,2), (a,4), (a,3)) — (a, 1)

It is straightforward to show that each edge of Kgn4+9 With vertex set S
belongs to a kite of type (1), (2), (3), or (4). Next, we will show that the
number of kites in X is indeed (*";°)/4.

Let E be the set of vertices of even degree in the partial kite system
(N, B); so |E| + 0| =n. )
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a

Figure 4 Type 4 Kkites.

Since (1) (3) Z d(v;) is the number of kites in (N, B), the number of
weEN
type (1) kites is

16(3) (3) X dw=23 do,

To count the number of type (2) kites, we first count the number of
pairs {a,b} that are used, then we can simply multiply this by 4 to get
the desired number. To do this, we actually count the number of ordered
pairs (a,b) and then halve this number. Counting the number of ordered
pairs is a natural procedure, because each such ordered pair corresponds to
a non-diagonal cell in @ that is not filled in A”. For 1 <i < n, row i of Q
contains 2n + 2 — d(v;) — 1 such cells if d(v;) is even, and one more than
this if d(v;) is odd (because cell (3,7 4+ 1) is filled in N”). Clearly row n+1
contains 2n + 2 — (|O] + 1) such cells, and for n+ 2 < i < 2n+ 2, row ¢ of
Q contains 2n 4+ 2 — 1 such cells. So altogether, the number of type 2 kites

is:

40" @nt+1-dw))+ Y (2n—d(v:))+2n+2—(|0|+1)+(n+1)(2n+1))/2
DR v, €0
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=2[(n+1)2n+1)+2n(n+1)+|E+1- ) d(w) - 0|
wEeN

=2(n+1)(2n+1) +4n(n+1) +2|E|+2-2[0| -2 Y d(w).
wEN

The number of type (3) kites is clearly 9]O]|, and the number of type
(4) kites is 5(|B| + 1). ‘

Adding the number of kites of types (1), (2), (3), and (4) gives a total
of (5%%) /4 kites as expected.

This proves that (3, K) is a kite system of order 8n + 9. (]

We can now obtain the following result.

Theorem 3.1 A partial kite system of order n can be embedded in a kite
system of order at most 8n + 9.

Proof Since the quasigroup ({1, 2, 3,4}, ®)in (1) is idempotent, and since(a, b, ¢)—
d € B, K contains the 4 kites ((a, 1), (b, %), (¢, %))—(d, 1), for all i € {1, 2, 3,4},
and hence 4 disjoint copies of the partial kite system (N, B) occur in K. O

4 Concluding remarks

The 8n+9 embedding given in this paper is probably not the best possible
embedding. The problem of finding the best possible embedding remains

open.
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