HYPERHAMILTONICITY OF THE CARTESIAN
PRODUCT OF TWO DIRECTED CYCLES

MICAH MILLER

ABSTRACT. Let be the product of two directed cycles, let Z: be a
subgroup of Z., and let Zy be a subgroup of Zy. Also, let A = 2
and B = 3 We say that is (Z, X Zg4)-hyperhamiltonian if there
is a spanning connected subgraph of that has degree (2,2) at the
vertices of Z. X Z4 and degree (1, 1) everywhere else. We show that
the graph is (Z. X Z4)-hyperhamiltonian if and only if there exist
positive integers m and n such that Am+Bn = AB+1, ged(m,n) = 1
or 2, and when ged(m,n) = 2, then ged(dm,cn) = 2.

1. INTRODUCTION

Curran and Witte [3] proved using the theory of torus knots that the
Cartesian product Z, x Z;, of two directed cycles is hamiltonian if and
only if there exists a pair of relatively prime positive integers m and n
such that am + bn = ab. Gallian and Witte [4] defined a digraph to be
hyperhamiltonian if there is a spanning connected subgraph of which passes
through one vertex exactly twice and all others exactly once. They showed
that the digraph is hyperhamiltonian if and only if there exist positive
integers m and n such that am + bn = ab+ 1 and ged(m,n) =1 or 2.

Note that passing through one vertex from Z, x Z; twice as in [4] is
equivalent to passing through the vertices of the subgroup Z; x Z, twice.
In this paper, we define the graph to be (Z. x Z4)-hyperhamiltonian if
there is a spanning connected subgraph in which the vertices of Z; x Zg4
have two in-edges and two out-edges and all other vertices have one in-edge
and one out-edge. Here, Z, is a subgroup of Z, and Z,is a subgroup of Z.
Hence, our result is a natural generalization of Gallian and Witte’s result.

The methods used in this paper are similar to the ones used in [1]. That
paper generalized results for hamiltonicity of vertex-deleted digraphs [5] to
subgroup-deleted digraphs.
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2. BACKGROUND

We recall some definitions and results that will be useful. We refer to [2]
for the basic language of digraphs, but we remind the reader of two useful
definitions. First, a vertex of a digraph has degree (r, s) if it has r in-edges
and s out-edges. Second, a digraph is connected if there is a directed path
from any vertex to any other vertex.

Definition 2.1. Let G be a digraph, and let V be a set of vertices of G.
Then G is V-hyperhamiltonian if there is a connected spanning subgraph
that has degree (2,2) at the vertices of V' and degree (1,1) at all other
vertices. Such a subgraph is called a V-hyperhamiltonian circuit of G.

The idea is that a digraph G is V-hyperhamiltonian if there exists a
closed directed walk that passes through each vertex of V' exactly twice
and passes through the other vertices exactly once. See Figure 1 for a
picture of the digraph Zg x Z4 with a (Zg x Zg)-hyperhamiltonian circuit.

In this paper, we only consider the case when G is the digraph and V'
consists of the vertices belonging to the subgroup Z, x Z,.

Definition 2.2. Let H be a (Z, x Zy)-hyperhamiltonian circuit on . Then
a vertex (z,y) travels by (1,0) if H contains the directed edge from (z,y)
to (z +1,y). Similarly, a vertex (z,y) travels by (0,1) if H contains the
directed edge from (z,y) to (z,y + 1).

Note that in a (Z. x Zg4)-hyperhamiltonian circuit, a vertex (z,y) that
does not belong to Z, x Z4 travels by either (1 0) or by (0,1). A vertex of
Z. x Zq travels by both (1,0) and (0,1).

Definition 2.8. Let g = ged(e, b). For any integer p, let (p) be the subset
of Z, x Z, consisting of pairs (z,y) such that z + y = p modulo g.

The subset (0) is the subgroup of Z, x Z, generated by (1, —-1), and (p)
is the coset (p,0) + (0). The subgroup (0) has index g, so there are exactly
g distinct cosets.

The following lemma shows why such cosets are useful.

Lemma 2.4. Let H be a (Z, % Zgz)-hyperhamiltonian circuit of .
(1) If (x+1,y—1) does not belong to Z. x Zg and (z+1,y —1) travels
by (1,0), then (z,y) also travels by (1,0).
(2) If (z+1,y) does not belong to Z. x Zg and (x+ 1,y — 1) travels by
(0,1), then (z,y) also travels by (0,1).

Proof. In part (1), the vertex (z + 1,%) must have at least one in-edge. By
assumption, this in-edge does not come from (z+ 1,y —1), so it must come
from (z, ).
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In part (2), the vertex (z + 1,y) can have at most one in-edge. By
assumption, it has an in-edge from (z + 1,y — 1), so it cannot have an
in-edge from (z,y). Thus (z,y) does not travel by (1,0), so it must travel
by (0,1). (]

We recall the following result from [4].

Theorem 2.5 (Gallian-Witte). The digraph Z, x Z, i3 hyperhamiltonian if
and only if there exist positive integers m and n such that am+bn =ab+1
and ged(m,n) =1 or 2.

In Theorem 2.5, the numbers m and n have useful geometric interpreta-
tions. If we embed Z, X Zj; in the torus in the obvious way, then a hyper-
hamiltonian circuit consists of two embedded directed loops that meet at a
single vertex, and the total knot class of these two loops is equal to (m,n).
See [6] for more details on knot classes.

Using intersection numbers, Gallian and Witte [4] showed that when
ged(m,n) = 1, these two directed loops have knot classes (mj,n1) and
(m2,n2), where ming — man, equals 1 or —1. When ged(m,n) = 2, the
two directed loops both have knot class (%, 3).

3. THE MAIN THEOREM
We now come to our main result.

Theorem 3.1. Let A= £ and B = 4. Then is (Z.x Za)-hyperhamiltonian
if and only if there exist positive integers m and n such that

(1) Am+Bn=AB+1,

(2) ged(m,n) =1 or2, and

(3) when ged(m,n) = 2, then ged(dm,cn) = 2.

When A = a, B = b, then ¢ = d = 1. In this case, the conditions in
Theorem 3.1 reduce to the conditions in Theorem 2.5.

Example 3.2. We give two examples illustrating the theorem. First, con-
sider the digraph Zg x Z,, as shown in Figure 1. This digraph has a
(Zs x Zy)-hyperhamiltonian circuit. The values m = 1 and n = 2 sat-
isfy the three conditions of the theorem.

However, the digraph Z ;9 xZg does not have a (Zo x Z;)-hyperhamiltonian
circuit. When m = n = 2, the first two conditions are satisfied, but the
third condition is not.

In order to prove this theorem, we need the followmg facts about (Z, x
Zg3)-hyperhamiltonian graphs.

Lemma 8.8. If is (Z. x Z4)-hyperhamiltonian, then ged(A, B) =1 and
every cosel contains at least one vertex of Z; X Zq.
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Proof. Suppose for contradiction that (—1) contains no vertex of Z. x Zg.
Since (0,0) belongs to Z. x Zg, the vertex (—1,0) travels by (1,0). A
repeated application of part (1) of Lemma 2.4 implies that every vertex
of (—1) also travels by (1,0). This is a contradiction because the vertex
(0, —1) travels by (0,1). This means that (—1) contains at least one vertex
of Z; x Zg. Let (aa, BB) be such a vertex, where a and 8 are integers.
From the definition of a coset we find that A+ 8B = —1 mod g. There
exists an integer y such that aA + 8B = —1 + gv. Now ged(A, B) divides
g, a4, and BB so it must also divide —1. This shows that ged(A, B) = 1.
Now consider an arbitrary coset {p). Multiplying the equation of the
previous paragraph by —p, we get (—op)A+ (—Fp)B = p mod g. From the
definition of a coset, we know ((—ap)A, (—Bp)B) is in (p). O

Corollary 3.4. If has a (Z. x Zg)-hyperhamiltonian circuit, then it is
unique.

Proof. Let (z,y) be an arbitrary vertex. Since every coset contains a vertex
of Z; X Zg by Lemma 3.3, (x,y) can be written (uniquely) in the form
(zo — k,yo + k), where (zo,%0) belongs to Z. x Zg4, k is a non-negative
integer, and (xo — j, %0 + j) does not belongto Z. x Z4 for 0 < j < k. By
induction on k, we show that there is no choice in the directions in which
(z, ) must travel.

First, if k = 0, then (z,y) belongs to Z. x Z4. Thus, it must travel both
by (1,0) and by (0,1). Now assume that k > 0, so (z,y) travels either by
(1,0) or by (0,1) but not by both. If (z + 1,y) belongs to Z. x Zg4, then
(z,y) must travel by (1,0). Hence we may assume that (z + 1,y) does not
belong to Z, x Zg4; this allows us to apply Lemma 2.4.

If k = 1, then part (2) of Lemma 2.4 tells us that (z,y) must travel
by (0,1). Now suppose for sake of induction k > 2 and that we know the
direction in which (zo — (k — 1), 50 + (k — 1)) travels. Parts (1) and (2) of
Lemma 2.4 tell us that (zo — k, yo + k) must travel in the same direction as
(o~ (k—1), 50+ (k—1)).

(]

The following corollary tells us that (Z, x Zg)-hyperhamiltonian circuits
on Z, x Zj are suitably periodic.

Corollary 3.5. Suppose has a (Z; x Zg)-hyperhamiltonian circuit. Let o
and B be integers. Then (z,y) and (z + aA,y + BB) travel in the same
direction.

Proof. Let H be a (Z. x Zg)-hyperhamiltonian circuit of . Then ¢(z,y) =
(z + A,y + BB) is an automorphism of that preserves Z. x Z4. So ¢(H)
is & (Zc x Zg)-hyperhamiltonian circuit of as well. But the (Z. x Zg)-
hyperhamiltonian circuit is unique (by Corollary 3.4), so ¢(H) = H. Thus,
any vertex (z,y) travels in the same direction as the vertex ¢(z,y). O
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Note that the proofs of Lemma 3.3, Corollary 3.4, and Corollary 3.5 are
similar to the proofs found in [1].

Lemma 8.6. Suppose that H is a spanning subgraph of such that the
vertices of Ze X Zq have degree (2,2) in H and all other vertices have
degree (1,1) in H and such that every directed loop in H contains a vertez
of Ze x Zg. Then H is connected if and only if for any two vertices v and
w in Ly X Zg, there is a directed path in H from v to w.

Proof. One direction follows from the definition of connectedness. For the
other direction, suppose that for any two vertices v; and vz in Z; x Zg4, there
is a directed path in H from v; to vo. We need to show is that there is a
directed path from w; to wy for any two vertices w; and ws of . Under our
assumptions, there is a directed path from any vertex w; to some vertex
vy in Ze X Zq. Similarly, there is a directed path from some vertex vs in
Zc % Zg to the vertex wo. Finally, there is a directed path from v; to v by

assumption. Therefore, there is a path from w; to w,.
a

Now we are ready to prove Theorem 3.1.

Proof. First suppose that H is a (Z, x Zg)-hyperhamiltonian circuit of . We
define a function f from to Za x Zp by f(x,y) = (z mod A,y mod B).
Define a subgraph H’ of Z4 x Zg by requiring the vertex (z,y) in Z4 xZp
to travel in the same direction as the vertices (z + aA,y+ 8B) in where o
and f are integers. We can define a subgraph in this way because Corollary
3.4 states that all vertices of the form (z + aA, y + 8B) travel in the same
direction. Note that H’ is just f(H).

Let (z1,%) and (z2,32) be any two vertices in . There is a directed
path in H from (z1,¥1) to (z2,%2), so there is a directed path in f(H) from
f(z1,71) to f(z2,%2). This means that H’ is connected, so Z4 x Zp is
(Z, x Z,)-hyperhamiltonian. By Theorem 2.5, conditions (1) and (2) are
satisfied.

In order to show condition (3), assume that ged(m, n) = 2. The two
directed loops of H’ both have knot class (%, %), so there is a directed path
from any vertex (aA, BB) of Z. x Z4 to the vertex (aA+(3)A, B+(5)B)
of Ze x Zgq. Since H is connected, there is a directed path in H from any
vertex in Z. x Z4 to any other vertex in Z. x Zy. This means that (3, 3
generates Z. X Zq. In particular, Z, X Zg must be cyclic, so ged(c,d) =
1. This allows us to define an isomorphism ¢ : Z; X Zg — Zq by the
formula ¢(z,y) = dz + cy. Since ¢(F, §) must be a generator of Zq,
ged(ed, d(%) + (%)) = 1. With this equation and because c divides ¢(3),
we see that gcd(d( ),¢) = 1. Similarly, ged(d,c(3)) = 1. By assumptlon
ged(Z, %) =1 Usmg these equations, we see that ged(d(%),¢c(3)) =1or
gcd(dm cn) = 2. This finishes one direction of the theorem
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Now suppose conditions (1), (2), and (3). The first two conditions imply
that Z4 x Zp has a (Z; x Z;)-hyperhamiltonian circuit H’ with total knot
class (m,n). We construct a spanning subgraph H of by requiring each
vertex (z,y) in to travel in the same direction as the vertex (zx mod 4,y
mod B) in Z4 x Zg. With this construction, the vertices of Z. x Z4 have
degree (2,2) in H, and all other vertices have degree (1,1). All that is left
to show is that H is connected. Since every directed loop in H’ contains
the vertex (0, 0), every directed loop in H contains a vertex of Z. x Z4. By
Corrolary 3.5, we need only show that H contains a directed path from any
vertex of Z. x Zg to any other vertex of Z, x Z.

When ged(m,n) = 1, let (m1,n;) and (ma,n2) be the knot classes of
the two directed loops in H’. There are directed paths from any vertex
(aA, BB) of Z. x Z3 to the vertices (@A + myA, BB + n;B) and (aA +
maA, BB + n3 B), so we want to show that (m;,n;) and (mg,n;) generate
the group Z x Zy. This is equivalent to showing that for any element (z, )
of Z. x Zg, we have two integers e and f satisfying the equation

(xny) = e(mlsnl) + f(m2»n2)-

We can write this as the matrix equation

(m =) ()=G)

The determinant of the matrix on the left is 1 or —1, because of the re-
marks after Theorem 2.5. The inverse of this matrix is again an integer
matrix, which gives us equations for e and f. This finishes the case when
ged(m,n) = 1.

When ged(m, n) = 2, we have condition (3) which states that ged(dm, en)
2. It follows that ged(d(%), (%)) = 1. The two directed loops of H’ both
have knot class (3, §), so we want to show that (%, 3) generates Z. x Z;.
Since ¢ and d are relatively prime, Z. x Z4 is cyclic; we again use the
isomorphism ¢ from above.

Now ¢(%,3) = d(%) + c(3). The element (3,3) is a generator of
Zc x Z4 if and only if ged(cd, d(F) + ¢(3)) = 1. This last equation follows
from the facts that ged(c,d) = 1, ged(e, 3) = 1, and ged(d, 3)=1 O

4. QUESTIONS

Most questions about hamiltonian circuits on digraphs have analogies
about hyperhamiltonian circuits. We end with a few specific examples.
The first question extends our problem to larger dimensions.

Question 4.1. When does the graph Za, X Zo, X -+ X Zq, have a (Zc, x
Zey X -+« X Le, )-hyperhamiltonian circuit?
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Not every subgroup of Z, x Z; is of the form Z; x Z4. This leads to our
next question.

Question 4.2. Let A be any subgroup of Zg x Zy. When does Z, x Zy have
an A-hyperhamiltonian circuit?

Instead of just considering the vertices of one subgroup, it is also possible
to consider the vertices belonging to more than one coset of a subgroup.

Question 4.3. Choose a positive number r. If V is a disjoint union of r
cosets of Ze X Zg in Zy X Zp, when 18 Z, X Zy V-hyperhamiltonian?

Gallian and Witte [4] determined when the digraph (Z, x Z) — (Z, x Z,)
is hyperhamiltonian.

Question 4.4. IfV is a coset of Ze X Zg in Zg X Zy,, when does the digraph
(Za % Zp) — (Z; x Zg) have a V-hyperhamiltonian circuit?
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