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Abstract

In this paper, we define the signed total domatic number of a
graph in an analogous way to that of the fractional domatic number
defined by Rall (A fractional version of domatic number. Congr.
Numer. 74 (1990), 100-106). A function f:V(G) — {—1,1} defined
on the vertices of a graph G is a signed total dominating function if
the sum of its function values over any open neighborhood is at least
one. A set {f1,...,fa} of signed total dominating functions on G
such that 3°%_ f:(v) < 1 for each vertex v € V/(G) is called a signed
total dominating family of functions on G. The signed total domatic
number of G is the maximum number of functions in a signed total
dominating femily of G. In this paper we investigate the signed total
domatic number for special classes of graphs
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1 Introduction

The domatic number of a graph and its variants is now well studied in
graph theory and the literature on this parameter has been surveyed and
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detailed in the two books by Haynes, Hedetniemi, and Slater [4, 5]. The
domatic number, introduced by Cockayne and Hedetniemi [1), is related to
its domination number in the same way as the chromatic number is to the
independence number: the domatic number of a graph G is the maximum
number of elements in a partition of V(G) into dominating sets, while the
chromatic number is the minimum number of elements in a partition of
V(G) into independent sets. An excellent survey on the domatic number
and its variants is given by Zelinka in Chapter 13 of [5).

Let G = (V, E) be a graph with vertex set V and edge set E. Since each
dominating set of G can be thought of in terms of its characteristic function,
Rall (7] viewed the domatic number as the maximum number of character-
istic functions {fi,..., fa} (defined on V) of subsets of V such that each
function f; is a dominating function of G (that is, the sum of its function
values over any closed neighborhood is at least one) and Z‘;l filv) =1
for each v € V. Rall [7] then extended this definition in a natural way to
fractional dominating functions by defining the fractional domatic number
ds(G) of G as the maximum number of fractional dominating functions
{f1,..., fa} of G satisfying the property that Ef___l fi(v) < 1 for each
v € V. In this paper, we define the signed total domatic number of G

in an analogous way to that of the fractional domatic. number defined by
Rall [7].

For notation and graph theory terminology we in general follow [4].
Specifically, let G = (V, E) be a graph and let v be a vertex in V. The open
neighborhood of v is N(v) = {u € V |uv € E} and the closed neighborhood
of v is N[v] = {v} U N(v). For disjoint subsets U and W of vertices, we
let (U, W] denote the set of edges between U and W. The subgraph of G
induced by a set S C V is denoted by G[S]. The minimum degree among
the vertices of G is denoted by §(G). If G does not contain a graph F as an
induced subgraph, then we say that G is F-free. We call K4 — e a diamond.
In particular, we say a graph is diamond-free if it is (K, — e)-free.

A total dominating set (TDS) of a graph G is a set S of vertices of G
such that every vertex is adjacent to a vertex in S (other than itself).
Equivalently, S C V is a TDS of G if |[N(v)N S| > 1 for every v € S. Every
graph without isolated vertices has a TDS, since S = V is such a set. A
TDS S of G such that [N(v) N S| = 1 for every v € S is called a perfect
total dominating set (PTDS) of G.

Let f:V — {—1,1} be a function which assigns to each vertex of a graph
G an element of the set {—1,1}. We define the weight of f by w(f) =

2vev f(v), and for § C V we define f(S) = 3 s f(v), 50 w(f) = f(V).
For a vertex v in V, we denote f(IN(v)) by f[v] for notational convenience.
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Zelinka [8] defined the function f to be a signed total dominating function
(STDF) of G if f[v] = 1 for every v € V. The signed total domination
number, denoted ¥{(G), of G is the minimum weight of a STDF on G.
The study of signed total domination in graphs, started by Zelinka [8], is
continued in [2, 3, 6] and elsewhere.

We now define the signed total domatic number of G in an analogous
way to that of the fractional domatic number defined by Rall [7]. We call
aset {f1,...,f4} of STDFs on G such that Z?=1 fi(v) £ 1 for each vertex
v € V a signed total dominating family (STD-family) of functions on G.
The signed total domatic number of G, denoted df(G), is the maximum
number of functions in a STD-family of G. Since every graph G with no
isolated vertex has a STDF (simply assign a weight of 1 to each vertex of
the graph), the signed total domatic number is well-defined for all graphs
G with no isolated vertex (the set consisting of any one STDF forms a
STD-family of G) and d§(G) > 1.

In this paper we investigate the signed total domatic number for special
classes of graphs, including complete graphs, complete bipartite graphs,
and cubic graphs.

2 Basic Properties

In this section, we present some basic properties of the signed total domatic
number. Rall [7] showed that the product of the fractional domatic number
and the fractional domination number is bounded above the order of the
graph. Using an identical proof, we shall prove an analogous result for the
signed total domatic number. The domatic number of a graph G is bounded
above by 6(G) + 1. We show that this bound can be improved slightly for
the signed total domatic number. We show further that the signed total -
domatic number is an odd integer.

Proposition 1 Let G be a graph of order n with §(G) > 1. Then,
(i) ¢¢(G) - % (G) <,
(ii) d§(G) £ 6(G), and
(iii) d3(G) is an odd integer.
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Proof. Let G = (V,E) and let d = d§(G). Let {f1,...,fa} be a STD-
family of G. Then,

d d d
d7@) =@ <Y =YY <Y 1=n

i=1 i=1 veV vEV i=1 veV

This establishes (i). Next, let v be a vertex of minimum degree §(G). Then,

d d d
i=3 1<) 3 fw= Y @< Y 1=86). @)

i=1 i=1 ueN(v) ueN(v) i=1 ueN(v)

This establishes (ii). To verlfy (iii), suppose to the contrary that d is even.
Smce the sum of an even number of odd numbers is even, it follows that
2,=1 fi(u) <0foreveryu€ V. Hence forve V,

d
Y D aw< Y o=o

u€EN(v) i=1 uEN(v)

which is impossible. Hence, d is odd as claimed. O

As an immediate consequence of Proposition 1, we have the following
results. A

Corollary 2 If G is a graph with 1 < §(G) < 2, then d§(G) = 1. In
particular, if G is a cycle or a tree, then d}(G) =1.

3 Complete Graphs

Our aim in this section is to determine the signed total donia.tic nﬁmber of
a complete graph K,. For n > 3 odd, 7§(K,) = 3, while for n > 2 even,
Y¢(Kyn) = 2. We begin with the following lemma.

Lemma 3 Forn 2> 4, dj(K,) > d{(Kn—2).

Proof. By Proposition 1(iii), the signed total domatic number is an odd
positive integer. If df(K,—2) = 1, then the result is immediate. Hence we
may assume that df(K,—2) = d where d > 3. Let G = K,, and let u and
v be distinct vertices of G. Let G’ = G — u —v. Then, G' = K,,_5. Let
{fi, f2,-.., f}} be a STD-family of G’. If n is odd, then v?(K,) = 3, and
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so w(f]) > 3, while if n is even, then 7}(K,) = 2, and so w(f;) > 2 for
alli=1,...,d. Fori =1,...,d, let f;: V(G) — {-1,1} be the function
defined as follows. Let fi(w) = fi(w) if w € V(G) - {u,v}. Fori =
1,...,[d/2], let fi(u) =1 and fi(v) = —1, while for ¢ = [d/2] +1,...,d,
let f;(u) = —1 and f;(v) = 1. Then, {f1, f2,..., fa} is a STD-family of G,
and so d(G) > d = d}(G’). Since G = K, and G’ = K, 2, the desired
result follows. O

We shall prove:

Theorem 4 Forn > 2, di(K,) = |(n+1)/3] — [n/3] + |n/3] if n is odd,
and &3 (K,) = n/2 - [(n+2)/4] + [(n +2)/4] if n is even.

Proof. Let G = K, have vertex set V and let d = df(G). Let {f1,..., fa}
be a STD-family of G. Let g(n) = |(n + 1)/3] — [n/3] + |n/3] and let
h(n) =n/2 - [(n +2)/4] + |(n+2)/4].

Claim 1 Ifn is odd, then d = g(n).

Proof. For n odd, g(n) = n/3 if n = 0(mod3), g(n) = (n —2)/3 if
n = 2(mod3), and g(n) = (n—4)/3 if n = 1(mod3). If n = 3, then
d =1 = g(3) by Corollary 2, and the desired result holds. Hence we may
assume that n > 5. Since n is odd, 7f(K,) = 3, and so w(f;) > 3 for
i=1,...,d. Thus,

d d d
MY w(f) DY A=) filv) <) 1=n,

i=1 i=1veV veV i=1 veV

and so d < n/3. If n = 0(mod 3) (and still n is odd), then n/3 is odd, and
8o, by Proposition 1(iii), d < n/3 = g(n). If n = 1 (mod 3), then (n—1)/3 is
even, and so, by Proposition 1(iii), d < (n — 4)/3 = g(n). If n = 2(mod 3),
then (n — 2)/3 is odd, and so, by Proposition 1(iii), d < (n 2)/3 = g(n).
Hence, d < g(n) for n odd.

To show that d > g(n), suppose ﬁrst that n = 0(mod 3) (and stilln > 5
is odd). Then, n = 3(2k + 1) for some k > 1. Let V},V5,...,Var41 be a
partition of V into 2k + 1 sets each of cardinality 3. Fori=1,2,...,2k+1,
let f;: V — {—1,1} be the function defined by

i+k-1
-1 ifve U Vi
filv) = g=i

+1 otherwise,
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where addition is taken modulo 2k + 1. Then each f; is a STDF of G and
Y2 H f.(v) = 1 for every v € V. Hence, {f1, fo, .. <y Jak+1} is a STD-
family of G, and so d > 2k + 1 = n/3 = g(n). Consequently, d = g(n) if
n =0(mod 3) (and n > 5 is odd).

Suppose, secondly, that n = 2(mod3) (and still n > 5 is odd). Then,
g(n) = g(n—2) = (n—2)/3. By Lemma 3, d = d’(K,.) 2 df(Kpn—2). Since
n—2is odd and n — 2 = 0(mod 3), dj(Kn-2) = g(n — 2) = g(n). Thus,
d > g(n). Consequently, d = g(n) if n = 2 (mod 3).

Suppose, finally, that n = 1(mod3) (and still n > 5 is odd). Then,
g(n) = g(n—4) = (n—4)/3. By Lemma 3, d = dj(K,) > d?(Ky-4). Since
n—4is odd and n — 4 = 0(mod 3), df(Kn-4) = g(n — 4) = g(n). Thus,
d > g(n). Consequently, d = g(n) if n = 1 (mod 3). Thus if n is odd, then
d = g(n), as claimed. O

Claim 2 Ifn is even, then d = h(n).

Proof. For n even, h(n) = n/2 if n = 2(mod4) and h(n) = n/2 — 1 if
n =0(mod4). If n =2, then d = 1 = h(2) by Corollary 2, and the desired
result holds. Hence we may assume that n > 4. Since n is even, ¥{(K,,) = 2,
and so w(f;) > 2 for ¢ = 1,...,d. Thus using a similar argument to that
used in the proof of Claim 1 (to show that d < n/3) we now have d < n/2.
Since d is odd, d < n/2 = h(n) if n = 2(mod4) and d < n/2 — 1 = h(n) if
n = 0(mod 4). Hence, d < h(n) for n even.

To show that d > h(n), suppose first that n = 2(mod4). Then, n =
2(2k + 1) for some k > 1. Let V4, V2,..., Vory: be a partition of V into
2k+1 sets each of cardinality 2. Fori=1,2,...,2k+1,let f;: V — {-1,1}
be the functlon deﬁned as in the proof of Clalm 1 Then each f; is a STDF
of G and Z,_l fi(v) =1 for every v € V. Hence, {f1, f2,...,fok+1} IS &
STD-family of G, and so d > 2k +1 = n/2 = h(n). Consequently, d = h(n)
if n =2 (mod 4).

Suppose, secondly, that n = 0(mod4). Then, h(n) = h(n —2) = (n —
2)/2. By Lemma 3, d = dj(Ky,) > dj(Kn-2). Since n —2 = 2(mod4),
d{(Kn—2) = h(n —2) = h(n). Thus, d > h(n). Consequently, d = h(n) if
n = 0(mod4). Thus if n is even, then d = h(n), as claimed. O

The desired result now follows from Claims 1 and 2. O
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4 Complete Bipartite Graphs

Our aim in this section is to determine the signed total domatic number of
a complete bipartite graph K, ,. We begin with the following lemma, a
proof of which is along similar lines to that of the proof of Lemma 3 and is
therefore omitted.

Lemma 5 Form > 3 andn > 3, di(Kmn) 2 df(Kmmn—2) and di(Km ) >
d{ (Km—z.n)-

We shall prove:

Theorem 6 Form >n > 1, d{(Kmyn) =n/2—[(n+2)/4]+|(n+2)/4] if
n is even, di(Kmn) = n if n and m are odd, and d}(K,») = min{n,m/2—
[(m+2)/4] + |(m +2)/4]} if n is odd and m is even.

Proof. Let G = K,, , and let d = d}(G). Let X = {zo,%1,...,Tn-1}
and Y = {yo,%,...,¥m—1} be the partite sets of G, and so |X| = n and
|Y| =m. Let {f1,-..,fa} be a STD-family of G. Let h(n) =n/2 - [(n+
2)/4] + [(n+2)/4). If n < 2, then §(G) < 2, and so, by Corollary 2,d =1
and the desired result holds. Hence we may assume that m > n > 3.

Claim 3 If n is even, then d = h(n).
Proof. For n even, h(n) = n/2 if n = 2(mod 4) and h(n) = n/2 -1 if

n = 0(mod 4). For any STDF f of G, and for any y € Y, fly] = f(X) > 2
gsince | X| = n is even. Let y € Y. Then,

d d d
24<Y £X)=) Y f)= ) Y W< Y 1=|X|=n,
i=1 i=1 yeN(y) vEN(y) i=1 vEN(y)

and so d < n/2. Since d is odd, d < n/2 = h(n) if n = 2(mod4) and
d < n/2—1 = h(n) if n = 0 (mod 4). Hence, d < h(n) for n even. To show
that d > h(n), we consider two possibilities.

Suppose first that n = 2(mod4). Let &k = n/2. Then, & > 3 is an odd
integer. For i = 1,2,...,k, let X; be defined by

i(k—1)~1

Xi= U {x‘i}$

i=(G-1)(k-1)
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where addition is taken modulo n. Then, X, X»,..., X} are distinct sub-
sets of X (and so, X; # X for 1 < i < j < k) each of cardinality & — 1.
Suppose m # 0(mod4). Let £ = [m/2]. Then, m = 2¢ if m = 2(mod4)
and m = 2¢ — 1 if m is odd. Further,3<k<£ Fori=1,2,...,k let Y;
be defined by
i(e-1)-1
Yl' = U {yi}s
i=(i-1)(¢~1)

where addition is taken modulo m. Then, Y;,Y5,...,Y; are distinct subsets
of Y (and so, ¥; # Y] for 1 < i < j < k) each of cardinality £ — 1. For
i=12,...,k let fi:V — {-1,1} be the function defined by

-1 ifve X;UY;
filv) =

+1 otherwise.

For each i = 1,2,...,k, fi(X) =2 while f;(Y) =2ifm = 2(mod4) and
Ji(Y) =1if m is odd. Thus, f; is a STDF of G. Moreover, thl fil)=1
for every v € X and, since k is odd, 23-1 fi(v) £ 1forevery v € Y. Hencs,

{fl, f2,..., fx} is a STD-family of G, and so d > k = h(n). Consequently,
= h(n) if n = 2(mod 4) and m # 0 (mod 4).

Suppose m = 0(mod4) (and still » = 2(mod4)). By Lemma 5, d =
d{(Km,n) 2 di(Km-2,n). Since n < m — 2, and since m — 2 = 2 (mod 4)
and n = 2(mod4), d}(Km-2,n) = h(n). Thus, d > h(n). Consequently,
d = h(n) if m = 0(mod4). Thus if n = 2(mod4), then d = h(n), as
claimed.

Suppose, secondly, that n = 0(mod4). Then, h(n) = (n —2)/2 =
h(n—2). By Lemma 5, d = d}(Km,s) = d3(Km n—2)- Since n—2 < m and
n—2 = 2(mod4), df(Kmn-2) = h(n — 2) = h(n). Thus if n = 0(mod 4),
then d = h(n), as claimed. O

Claim 4 Ifn end m are odd, then d = n.

Proof. For any STDF f of G, and for any y € Y, fly] = f(X) > 1 since
|X| = n is odd. Using a similar argument to that used in the proof of
Claim 3 (to show that d < n/2) we now have d < n. To show that d > n,
letk—(n+1)/2a.ndlet£—(m+1)/2 For i = 1,2,...,n, let X; and
Y; be defined as in the proof of Claim 3. Then for each i=12,...,n,
fi(X) = fi(Y) = 1, and so f; is a STDF of G. Moreover, 31 | f,(v) =1
for every v € X and, since nisodd, >}, fi(v) < 1 for every v € Y. Hence,
{f1, f2,.-., fn} is a STD-family of G, and so d > n. Consequently, d = n. O
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Claim 5 Ifn is odd and m is even, then d = min{n, h(m)}.

Proof. Since n is odd, d < n as shown in the proof of Claim 4. Since
|Y| = m is even, f(Y) > 2 for any STDF f of G. Thus using a similar
argument to that used in the proof of Claim 3, d < m/2. Since d is
odd, d < m/2 = h(m) if m = 2(mod4) and d < m/2 — 1 = h(m) if
m = 0(mod4). Hence, d < h(m). Thus, d < min{n, h(m)}. To show that
d > min{n, h(m)}, we consider two possibilities. Let p = min{n, h(m)}.
Then, p is odd.

Suppose first that m = 2(mod4). Let ¥ = (n + 1)/2 and let £ = m/2.
For i = 1,2,...,p, let X; and Y; be defined as in the proof of Claim 3.
Then for each i = 1,2,...,p, fi(X) =1 and fi(Y) = 2, and so f; is a
STDF of G. Moreover, since p is odd, Y ;. fi(v) < 1 for every v € V.
Hence, {f1, f2,..., fp} is a STD-family of G, and so d > p. Consequently,
d = p = min{n, h(m)}.

Suppose secondly that m = 0(mod4). Then, h(m) = (m — 2)/2 =
h(m — 2). By Lemma 5, d = dj(Km 5) > df(Km—2,»). Since n is odd and
m — 2 = 2(mod4), dj(Km-2,n) = min{n, h(m — 2)} = min{n, h(m)} = p.
Hence, d > p. Thus if m = 0(mod4), then d = p = min{n, h(m)}, as
claimed. O

The proof of Theorem 6 follows from Claims 3, 4, and 5. O

5 Cubic Graphs

By Proposition 1, if G is a cubic graph, then d§(G) = 1 or dj(G) = 3. .
A natural problem, then, is to classify cubic graphs according to whether
their signed total domatic number equals 1 or 3.

Example 1. For k > 1 an integer, consider the circulant graph G =
Cex(1, 3k} (i.e., the graph with vertex set {vp,v1,...,Vsk~1} and edge set
{'Uivi-f-j(modﬁk) | t € {0, 1,. ..,6’6 - 1} and jE€ {1, 3k}}). The circulant
C12(1,6) is shown in Figure 1(a). For t € {0,1,2},let V; = {v; |0<i <
6k — 1,4 = t(mod 3)} and let f;: V(G) — {—1,1} be the function defined
by f(v;) = —1if v; € V; and f(v;) = 1 otherwise.

285



V11 ] U1 ® L]
[
V19 v2 ® ®
i Uy U2
vg @ o U3 Ve @ o Ug use U3
Us u4.
vg @ o4
® ®
v7 ® .1)5 Us U4
Ve
(a) The circulant Cj2(1, 6) (b) The prism K>0OCs
Figure 1.

Example 2. For k£ > 1 an integer, consider the prism G = K,0OC3;
(i-e., the graph obtained from two disjoint cycles v, vs,...,vsk, 1 and
U1, Uz, ..., Usk, 41 by adding the edges u;v; for i = 1,2,...,3k). The prism
K>0Cg is shown in Figure 1(b). For ¢t € {0,1,2}, let V; = {us,v; |1 <i <
3k,i = t (mod3)} and let f;: V(G) — {—1,1} be the function defined by
f(v) = -1if v; € V; and f(v;) = 1 otherwise.

In both Examples 1 and 2, V5, V4 and V; is a partition of V(G) into
three perfect total dominating set, and {fo, f1, f2} is a STD-family of G.
Consequently, df(G) = 3. These two examples serve to illustrate infinite
families of cubic graphs G satisfying d}(G) = 3. In both examples, V(G)
can be partitioned into three perfect total dominating sets. We show that
this is true for all cubic graphs with signed total domatic number equal
to 3.

Theorem 7 Let G be a cubic graph. Then, dj(G) = 3 if and only if V(G)
can be partitioned into three perfect total dominating sets.

Proof. We shall follow the notation introduced in the proof of Proposi-
tion 1. Suppose first that d = 3. Then we must have equality throughout
Equation (1) in the proof of Proposition 1. Hence for each v € V and for
eachi=1,2,3,

3

Y fw=1, and (2)
i=1

Y fiw)=1. (3)
ueEN(v)
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Fori=1,2,3,let V; = {v € V| fi(v) = —1}. By Equation (2), V1,V;,V3
is a partition of V. By Equation (3), |[N(v) N V;| =1 for every v € V and
for each i = 1,2,3. Thus, V can be partitioned into three PTDSs.

On the other hand, suppose that V' can be partitioned into three PTDSs
81,52 and S3. Fori =1,2,3, let f;: V — {—1,1} be the function defined by
filv)=-1ifveS; and fi(v) =1if v € V — S;. Then for each v € V and
for each ¢ = 1,2, 3, Equations (2) and (3) are satisfied. Thus, {f1, f2, f3} is
a STD-family of G, and so d$(G) > 3. Consequently, df(G) = 3. O

As a consequence of Theorem 7, we have the following result.

Corollary 8 Let G be a cubic graph of order n. If dj(G) = 3, then
(i) n = 0(mod6), (ii)) G is diamond-free, and (iii) G is 1-factorable.

Proof. We shall follow the notation introduced in the proof of Proposi-
tion 1. Since df(G) = 3, V can be partitioned into three PTDSs V3, V; and
V3 by Theorem 7. Let S = V;.

(i) The set V can be partitioned into |S| 3-element subsets, namely the
sets {N(v) | v € S}. Thus, n = 3|S]. Since n is even, |S| must be even,
whence n = 0(mod 6). Let n = 6s, where s > 1.

(ii) Suppose that G contain a diamond. Let u be a vertex of degree 3in a
diamond in G. We may assume that u € S. Let N(u)NS = {v}. But then
u and v have a common neighbor w, and so |[N(w) N S| > 2, contradicting
the fact that S is a PTDS. Hence, G is diamond-free.

(iii) Each set V;, 1 < i < 3, is a PTDS of G, and so G[Vi] = sK>.
Consider distinct integers i, j and k where 1 < 4,5,k < 3. Since no two
vertices of V; have a common neighbor, each vertex in V; is adjacent to at
most one vertex in V;. However since V; is a TDS of G, each vertex of V;
is adjacent to at least one vertex in V;. Consequently, each vertex of V; is
adjacent to exactly one vertex in V;. Similarly, each vertex of V; is adjacent
to exactly one vertex in V;. It follows that the set [V;, V;] of edges between
V; and V; induce a perfect matching in G[V; U V] (isomorphic to 2s5Kz).
This set of 2s edges of G, together with the set of s edges in G[V4], is a
perfect matching in G. Similarly, the set of edges [V;, Vi] between V; and
Vi together with the set of edges in G[V;] is a perfect matching in G, as is
the set of edge [Vj, Vi] between V; and Vi together with the set of edges
in G[Vi]. These three perfect matchings in G partition the edge set of G.
Thus, G is 1-factorable. O

The necessary conditions in Corollary 8 for a cubic graph to have signed
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total domatic number equal to 3 are not sufficient, even for bipartite cubic
graphs (which are 1-factorable).
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