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Abstract

It is well known that a linear code over a finite field with the system-
atic generator matrix [I | P] is MDS (Maximum Distance Separable)
if and only if every square submatrix of P is nonsingular. In this
correspondence we obtain a similar characterization for the class of
Near-MDS codes in terms of the submatrices of P.

1 Introduction

The class of Near-MDS (NMDS)codes [3], [4], [5], [1] is obtained by
weakening the restrictions in the definition of classical MDS codes.
The support of a code C is the set of coordinate positions, where not
all codewords of C are zero. The r-th generalized Hamming weight
d,(C) of a code C is defined to be the cardinality of the minimal
support of an (n,r) subcode of C, 1 < r < k [7], [8], [9]. Near-M DS
(NMDS) codes are a class of codes where for an (n, k) code the i-th
generalized Hamming weight d;(C) is (n — k +1) for i = 2,3,...,k
and d;(C) is (n — k). This class contains remarkable representatives
as the ternary Golay code and the quaternary (11,6,5) and (12,6,6)
codes as well as a large class of Algebraic Geometric codes. The
importance of NMDS codes is that there exist NMDS codes which
are considerably longer than the longest possible MDS codes for a
given size of the code and the alphabet. Also, these codes have good
error detecting capabilities [2].

It is well known that a linear MDS code can be described in terms of
its systematic generator matrix as follows: If [I | P] is the generator
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matrix then every square submatrix of P is nonsingular. In this pa-
per, we obtain a similar characterization for the class of NMDS codes.
Also, using a general property of generalized Hamming weights, we
point out that an algebraic geometric code over an elliptic curve, if
not MDS is necessarily NMDS.

2 Preliminaries

In this section we present the known results concerning NMDS codes
and generalized Hamming weight hierarchy that will be used in the
following sections.

A Near-MDS code can be characterized in terms of either an arbitrary
generator matrix or a parity check matrix of the code as follows [3}:

A linear [n, k] code is NMDS iff a parity check matrix H of it satisfies
the following conditions: ~

e any n —k — 1 columns of H are linearly independent
o there exists a set of » — k linearly dependent columns in H

e any n —k + 1 columns of H are of rank n — k

A linear [n, k] code is NMDS iff a generator matrix G of it satisfies
the following conditions:

e any k — 1 columns of G are linearly independent
o there exists a set of k linearly dependent columns in G

» any k + 1 columns of G are of rank k

Several interesting properties of Hamming weight hierarchy are dis-
cussed in [9] and [8]. A basic property is that the sequence of Ham-
ming weight hierarchy is strictly increasing, i.e.,

d1(C) < da(C) < ... < di(C) = n. 1)

The following result [9] relates the Hamming weight hierarchy of a
code to that of its dual. If C* denotes the dual of the code C, then
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{d:(C) |r=1,2,..k}| {n+1-dr(C) |r=1,2.,n - k}
={1,2,..,n}.

3 Systematic Generator Matrix Characteri-
zation of NMDS Codes

Theorem Let G = [I|P] be the systematic generator matrix of a
linear non-MDS code C over a finite field. Then C is NMDS iff
every (g,9 + 1) and (g + 1, g) submatrix of P has at least one (g, g)
nonsingular submatrix.

Proof: First we prove the ’if part’. We have to show that d;(C) =
n —k and d2(C) = n — k+2. Consider any one dimensional subcode
generated by a minimum weight codeword ¢ of C. In terms of linear
combination of rows of G, let

g
c=) ajr, (2)
j=1

where i; € {1,2,...,k},j = 1,2,...,9 and r;; is the i;-th row of G.
The weight of ¢ within the first k¥ positions is g. We need to show
that the weight in the last n — k positions is (n —k—g) or the number
of zeros in the last n — k positions is g. Let the number of zeros in
the last » — k positions of ¢ be A > g. Choose any g + 1 of these A

positions and let these positions be j1, j2,...,,7g+1. Then
Taji Tage -+ Tigen
Tigjr Tizja -+ Tizjgnr

[aq a ... ag] R e =[00...0]
Tiyjl "'igjz e rigjg+l

Since there is a (g, g) nonsingular submatrix a; = a3 = ...y =0,

which is a contradiction. Hence A < g and d; = n — k. Notice that
this means there can be at most one zero in each row of P.

291



To prove that d3(C) = n— k+ 2 consider a two dimensional subcode
generated by two codewords ¢ and d. If the size of the union of
supports of ¢ and d is at least n — k + 2 then we are through. So,
we need to consider the case where the support of both ¢ and d is
within an identical set of n — k41 locations. Let g of these locations
be within the first k£ positions and let

g g9
c= Z ajr;; and d= Bits; - (3)
j=1 =1

Consider an arbitrary linear combination of ¢ and d, i.e.,

g
e=ac+bd= (ac;+bBj)r; (4)

j=1

There are g — 1 zeros in the last n — k positions of e. Let these be
1,425 jg—1. Then we have

Tigr TGz - Tigjgn
r,-zjl Tizjz - 7‘;2]'9_1
[aa1+bﬁ1 aag+bﬁg] . . . =
'I‘,'gjl 7‘,'952 ee rigjg—l
[00 ... 0]

Since every (g,g — 1) submatrix of P has a (g — 1, ¢ — 1) nonsingular
submatrix, without loss of generality we assume the first g — 1 rows
to constitute this nonsingular submatrix and choose a and b such
that aag + bB8; = 0. Then it follows that aa; + bB; = 0 for all
t=1,2,...g-1.

Now, if both oy and B, are nonzeros, then ¢ and d are scalar multiple
of one another which means the code is one dimensional. Hence
dy(C) = n—k+2. (Note that from (1), d2(C) = n —k is not possible
since d;(C) = n — k.) If one of them is zero, say By = 0, then a = 0
and bf; =0 forallt =1,2,...g—1 which is not true. This completes
the proof for the if part.
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To prove the ’only if’ part: For NM DS codes every (k — 1) columns
of the generator matrix are linearly independent. This follows from
the fact that for an [n k] NMDS code the dual code is also NM DS
and that the minimum distance of the dual code is k. Consider a
set of (k — 1) columns of the generator matrix. If all the columns
are from the P part of the generator matrix, then since every (k —1)
columns are linearly independent we have a (k — 1,k —1) nonsingular
submatrix.

If k — g columns (say j1,j2,---Jjk—g) are from I and the rest g — 1
columns from P, then let A denote the (k,k — 1) submatrix consist-
ing of these columns. By suitable row exchanges and appropriate
elementary column operations A can be brought to the form

[ Ogx(k-5)  Agx(z-1) ]
T-g)x(k-g) O(k—g)x(g-1)

Note that the column rank has not changed by these operations and
the submatrix A* is indeed a submatrix of A. Moreover, since the
above matrix has column rank k£ — 1 the submatrix A* has column
rank g — 1 and hence contains a (g — 1,g — 1) nonsingular subma-
trix. Therefore every (g + 1,g) submatrix of P has atleast one (g, g)
nonsingular submadtrix.

To show that every (g,g + 1) submatrix has atleast one (g,g) sub-
matrix we make use of the fact that the minimum distance of the
NMDS code is (n—k). Therefore for NM DS codes every (n—k—1)
columns of the parity check matrix are linearly independent. The
parity check matrix of the code can be written as [P+ I]. Follow-
ing the arguments for the systematic generator matrix we can see
that every (g + 1,g) submatrix of —PL has atleast one (g,g) sub-
matrix which is nonsingular. Therefore every (g,g + 1) submatrix
of P submatrix has atleast one nonsingular (g,g) submatrix. This
completes the proof. (]

4 Discussion

In this correspondence we have extended the well known [I|P] matrix
characterization of MDS codes to the class of Near-MDS codes. This
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characterization of NMDS codes will be helpful to obtain NMDS over
finite fields.
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