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Abstract i

Starlike graphs are the intersection graphs of substars of a star.
We describe different characterizations of starhke graphs, including
one by forbidden subgraphs. In addition, we ;present characteriza-
tions for a natural subclass of it, the starlike-threshold graphs.
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1 Introduction

Graph classes and intersection graphs are traditional topics in graph theory.
In fact, theses studies have been receiving much attention, recently. For
example, we mention the books by Brandstéidt, Le and Spinrad (1] and by
McKee and McMorris [12]. '

Chordal graphs form one of the most well studied classes of graphs. In
particular, they can be considered as special intersection graphs (Buneman
[2], Gavril [7], Walter [19]). Several subclasses of chordal graphs have been
examined in the literature. In the present paper, we describe characteri-
zations for two other classes of chordal graphs, namely starlike graphs and
starlike-threshold graphs. Starlike graphs were introduced by Gustedt (8],
in the study of the pathwidth problem for chordal graphs. Further, this class
has been considered by Cerioli and Szwarcfiter [3], Hsieh [9], Moscarini et
al. [14], Peng et al. [16]. See also McMorris and Shier [13] and Prisner [17].
Starlike-threshold graphs arise naturally when studying edge clique graphs
of threshold graphs [3]). Furthermore, they generalize threshold graphs in a
similar way as starlike graphs generalize split graphs.

In particular, we also present characterizations by forbidden subgraphs
for these two considered classes. We remark that there are characterizations
of this type for several subclasses of chordal graphs. For example, interval
graphs (Lekkerkerker and Boland [11]), proper interval graphs (Roberts
[18]), strongly chordal graphs (Farber [5]), split graphs (Foldes and Hammer
[6]), threshold graphs (Chvatal and Hammer [4]). More recently, such a
characterization has been also described for directed path graphs (Panda
[15]). Nevertheless, remain open the problems of finding forbidden subgraph
characterizations for both undirected and rooted directed path graphs.

Finally, we also show that starlike-threshold graphs are interval graphs.
Moreover, they admit an interval representation with at most two sizes of
intervals.

All graphs considered are finite and simple. The vertex and edge sets of
an undirected graph G are represented by V(G) and E(G), respectively. A
vertex is universal if it is adjacent to all the other vertices. Two adjacent
vertices which are adjacent exactly to the same vertices of G are called
twins. For C C V(G), say that C is a cligue when C induces a complete
subgraph in G. A mazimal clique is one not properly contained in any
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other. A vertex v is simplicial when the set of ]its adjacent vertices is a
clique, i.e. when N(v) is a clique. If C is a set of vertices, N(C) denotes
the set of all vertices that are not in C and are adjacent to some vertex in
C. An (induced) path with three vertices is an {obstacle in a graph when
all its vertices are non simplicial.

A chordal graph is the intersection graph of a fa.m:ly of subtrees of some
tree. A star S is a tree having one universal vertex, called the center of
S. A star is trivial when it consists of a sole vertex. A subgraph of a star
which is itself a star is called a substar. A sterlike ‘graph G is the intersection
graph of a family of substars S; of a star. In particular, if the vertex sets
V(S;) of the non trivial substars S; can be lmea.rly ordered by inclusion,
then G is a starlike-threshold graph. i

Characterizations for the classes of starlike and starlike-threshold graphs
are described in Sections 2 and 3, respectively.

2 Starlike Graphs

The following proposition describes characterizations of starlike graphs.

Theorem 1 Let G be a graph. The following aﬁirmatwes are equivalent:

(i) G is starlike. ‘

(ii) G admits a clique C, such that every two vertices outside C are
either twins or non adjacent. '

(iii) G contains neither a 2P; nor an obstaclé.

(iv) The set of non simplicial vertices of G i.é a clique.
Proof: j
(i) = (ii): Let G be a starlike graph. By deﬁmt!xon, G is the intersection
graph of substars S; of a star S. Let ¢ € V(S) be the center of S and
v; € V(G) the vertex of G corresponding to S,-.‘ Denote by C the subset
of V(G) corresponding to the subtrees S; containing ¢. Clearly, C is a
clique. We show that C satisfies condition (ii). Choose vj, v € V(G)\ C.
If vjur € E(G) then V(S;) NV(Sk) # 0. On the other hand, we know
that ¢ & V(S;) UV(Sk). Consequently, S; and Si must be trivial stars.
Moreover, S; = Si. Therefore, v; and v are twins

(ii) = (iii): Let G be a graph containing a clique ( C satisfying (ii). We show
that the existence of either a 2P3 or an obstacle leads to a contradiction.
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Suppose G contains a 2P; formed by the paths v;,vj, vk and v, vp, ve.
Because v; and v, are non adjacent, one of them, say v;, is not in C. Sim-
ilarly, we conclude that either v; and vy, say v;, is also not in C. In this
situation, v; and v; are adjacent and not twins, a contradiction. Conse-
quently, G does not contain 2P5’s.

For the second part of the assertion, suppose that G contains an obstacle
v;, Vj, k. Since v; and vy are not adjacent, they can not be both in C. Let
v; € C. Because v; and v; are adjacent and not twins, at least one of them
must belong to C, so v; € C. In the sequel, suppose that v; has a neighbour
vy # v;j. It follows that v, and v; must be adjacent. Because if v, € C
then v; € C implies v,v; € E(G), whereas when v, ¢ C, v, and v; must
be twins, again implying v,v; € E(G). In this situation, v; is a simplicial
vertex, a contradiction.

(iif) = (iv): By hypothesis, G contains neither a 2P; nor an obstacle. By
contradiction, assume that the set C of non simplicial vertices of G is not a
clique. Then we can choose vertices v; and v which are both non adjacent
and non simplicial.

First, consider the situation where v; and v, belong to distinct connected
components of G. Since they are non simplicial, both are centers of Ps’s.
In this case, a Ps containing v; and another containing vx form a 2P;, a
contradiction.

In the sequel, examine the case where v; and v belong to a same con-
nected component. Let P be a shortest path between v; and vg. It follows
that every internal vertex v; of P must be non simplicial. Because, if v;
is simplicial then its neighbours in P would be adjacent, contradicting P
being a shortest path. Since v; and vy are non adjacent, P has length > 3.
A contradiction arises because any three consecutive vertices of P form an
obstacle.

Consequently, C is indeed a clique.

(iv) = (i): By hypothesis G is a graph in which the subset C C V(G) of
its non simplicial vertices form a clique. Define a star S as follows. The
center ¢ of S corresponds to C, while every other vertex s’ of S corresponds
to a maximal clique C' of G — C. Define a family of subgraphs S; of S as
follows. There is a one-to-one correspondence between vertices v; € V(G)
and subgraphs S; of S. Moreover, each S; is formed by the vertices of S
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which correspond to the cliques of G' containing v;. We show that S; is
a star. If the latter is false, it follows that ¢ ¢ V(S;) and S; contains a
pair of non adjacent vertices s',s” € V(S). Then v; is contained in a pair
of distinct cliques ¢',c"” of G. The latter implies that v; is not simplicial.
Consequently, v; € C, contradicting ¢ € V(S;). Hence S; is a star.

It remains to show that G is the intersection‘ graph of the substars S;.
Suppose S; NS; # 0. Then v; and v; are contained in a common clique,
implying v;v; € E(G), and conversely. This completes the proof. =

The equivalence (i) < (iv) of the above theorem is central to next study.

The following theorem describes a characteriz‘ation of starlike graphs by
forbidden subgraphs. l

Theorem 2 A graph G is starlike if and only if G does not contain any of
the siz graphs of Figure 1 as an induced subgrapl‘z.
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Figure 1: The forbidden subgraphs forista,rlike graphs.

Proof: Let G be a starlike graph. By Theorem 1, the set of its non simplicial
vertices form a clique of G. However, u and v are non simplicial and non
adjacent vertices in all the six graphs of Figure 1. Consequently, they can
not be induced subgraphs of G.

Conversely, let G be a graph which does not contain any of the graphs
of Figure 1, as an induced subgraph. Toward a contradiction assume G is
not starlike. By Theorem 1, G contains a pair of vertices vj, Up which are

25




both non adjacent and non simplicial. The latter implies that v, and v; are
centers of two P3’s of G denoted v;,v;, v and va, Vs, Ve, respectively.

Next, we analyse the possibilities of the subgraphs of G' induced by
the subset H = {v;, v, Yk, Va, Vs, vc}. We know that v;vj, v;ur,vats, Vs¥c €
E(G) while vjvp, vvk,v5v; € E(G). Denote by F the subset formed by
the remaining pairs of vertices of H. We consider the possible inclusion
as edges of G of the pairs belonging to F. We also consider the possible
identification of vertices, except that we know that v;,v;, v are distinct,
Va, b, Ve are also distinct, v; # v,,v,%., and vy # v;,v;,ve. The latter
discussion leads to the three non isomorphic cases, depicted in Figure 2.
In each of these cases, we show that the inclusion in E(G) of any subset
of pairs of F' leads to a forbidden graph of Figure 1. This contradiction
implies that G is indeed starlike.

Vi = Vg
Ve = Ve
Case 1 Case 2 Case 3

Figure 2: Subgraphs containing a pair of non adjacent non simplicial ver-
tices.

Case 1: v; =v, and v = v,.
So F =0 and {v;,vj, vk, v} induces a Cy.

Case 2: v; = v, and vg # v,.

F = {vjv;, vy, vrve}. If v;u. € E(G) then {v;,v;, v, v} induces a Cy.
On the other hand, {vi,v;, vk, vs} induces a C4 when vxvy € E(G). Then
vjv., Uy € E(G). In this situation, {v;,v;, vk, v, vc} induces a Cs or a P
according whether vxv, € E(G) or vxv. € E(G), respectively.

Case 3: v; # v, and v # v..

By inspection, F = {v;v,, ViUs, ViVc, VjVa, VjVc, VkVa, VkVs, VkVc }. First,
observe that v;v, and v;v, can not be simultaneously edges of G, otherwise
{vi, v, vk, vp} would induce a Cy. For a similar reason, v;v, and v;v. also
can not be at the same time in G. Consequently, G contains at most two
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edges of the subset F' = {vjva,v;Vec, ViU, Upp}. Con31der the three possible
alternatives.
Case 3.1: |E(G)NF'|=2.

From the above observation, we know that one of the edges of E(G)NF"
is incident to v; and the other one to vs. Withou’f. loss of generality, we can
restrict to discuss only the alternative vjv,,,vkv;,ie E(G) with vjve,vive €
E(G). It follows that vzv, € E(G), otherwise {v;,vk,vs, v} induces a
Cs. On the other hand, v;v. € E(G) and vxv; € E(G) can not occur
simultaneously, otherwise {v;,v;, vk, vc} mduc&s a C4 The following then
may occur:

Case 3.1.1: vu. € E(G).

Then vxv. € E(G) and this implies that {v;, v, vk, vs, v.} induces a Cs.
Case 3.1.2: vy, € E(G). '

Then v;v. € E(G). If v;v, € E(G) then {v.,v,,vk,va,vb,vc} induces
the graph Hj, while v;v, € E(G) implies that {v,,v,,va,vb,vc} induces a
Ps. !

Case 3.1.3: v, viv: € E(G).

Then {v;,vj, vk, v, v} induces a Ps. ‘
Case 3.2: |[E(G)NF'|=1. A

Without loss of generality, vjva € E(G) a.nd VjVe, iy, Vs € E(G).
Again, v;u. and vv, can not be both edges of G’

Case 3.2.1: vv, € E(G). ,

Then viv. ¢ E(G) and this implies that {vy, vc,v;,v;5, v} induces a Ps.
Case 3.2.2: wv. € E(G).

Then v;v. € E(G) and {v;, vj, V&, Ve, Vs } indui:es a b;.

Case 3.2.3: vy, veve € E(G).

Then vxv, € E(G), otherwise {vx, v;,vs,vs,v.} induces a Ps. Suppose

v;v, € E(G), hence {v;,v;, vk, v, Vs, Vc} induces the graph H;. When

\
v;v, € E(G), it follows that {v;, vj,va,vs, v} induces a P;.

Case 3.3: |E(G)NF'|=

As in Cases 3.1 and 3. 2 at most one of 'v,v‘,,vkvc may be an edge of G
Case 3.3.1: v;v, € E(G).

As in the Case 3.2.1, v, € E(G) and {vs, v, v4,v4,v:} induces a P;.
Case 3.3.2: v, € E(G). ‘

As in the Case 3.2.2, v;v, € E(G) and {v‘,v,,vk,vc,v,,} induces a Pg.

!

27




Case 3.3.3: viv;,,nv; € E(G).

If v;u, € E(G) then {vj,v;,vs, Vs, v} induces a Ps. When v;v, € E(G)
the subset {v;, vj, &, Va, Vs, vc} induces a Fg or a 2F3, depending whether
v € E(G) or not, respectively. m

3 Starlike-threshold Graphs

In this section we describe characterizations for starlike-threshold graphs
and give a property of this class, related to interval graphs.

Theorem 3 Let G be a graph and C the set of simplicial vertices of it.
The following affirmatives are equivalent:

(i) G is starlike-threshold.

(ii) G is starlike and does not contain an induced Py.

(iii) G is starlike and the subsets C N N(v;) can be linearly ordered by
inclusion, where v; € V(G)\ C.

Proof:

(i) = (ii): Let G be a starlike-threshold graph. Then G is the intersection
graph of substars S; of a star S and the vertex sets V(S;) C V(S) of
the non trivial substars can be linearly ordered by inclusion. Denote by
v; € V(G) the vertex of G corresponding to S;. By definition, G is starlike.
Suppose the theorem false. Then G contains a induced path vy, vs, v3, v4.
By Theorem 1, the set of non simplicial vertices of G is a clique. Because
v, and v3 are not simplicial, vo,v3 € C. The latter implies vy,v4 € C.
Consequently, S; and S; are trivial substars, while S; and S3 are not.
Let V(S1) = {1} and V(Ss) = {cs}. Then ¢; € V(Sz) \ V(Ss), while
cs € V(S3) \ V(S2). The latter implies that V(Sz) and V(S3) can not be
linearly ordered by inclusion, a contradiction. Therefore G does not contain
induced Py’s.

(ii) = (iii): By hypothesis G is a starlike graph and contains no induced
P;. Let C be the set of non simplicial vertices of G. Suppose the assertion
false. Then there exist subsets C N N(v;) and C' N N(v;) such that neither
C N N(v;) € CNN(v;) nor CNN(v;) € CNN(w), for v;,v; € V(G) \ C.
We can then choose vy € CN(N(v;) \ N(v;)) and vy € CN(N(v;) \ N(vs)).
By Theorem 1, C is a clique. Consequently, vxv; € E(G). In this situation,
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{vi,vg, v, v;} induces either a Cy or a P, according whether v;,v; are
adjacent or not, respectively. In any case, a contradiction arises, implying
that (iii) holds.

(iii) = (i): Apply a construction similar to that of the proof (iv) = (i) of

Theorem 1. =

Corollary 1 A graph is starlike-threshold if and only if it does not contain
any of the graphs of Figure § as an induced subgjraph.

*r—o—o
*——0—0 *—o—o
Cs Py ' 2P

Figure 3: The forbidden subgraphs for starlike-threshold graphs.

Threshold graphs are interval graphs which afimit an interval represen-
tation whose intervals have at most two distinct sizes [10] (c.f. [12]). By
definition the class of starlike-threshold graphs contains that of threshold
graphs [4]. The following proposition extends thé result of [10] to the more

general class of starlike-threshold graphs.

Corollary 2 Starlike-threshold graphs are interval graphs. Moreover they
admit an interval representation having at most two distinct interval sizes.

|
Proof: It follows from Theorem 3 that the vertices of a starlike-threshold

graph can be partitioned into cliques C, C}, . .., C,, such that C is the set of
non simplicial vertices of G and the vertices of each C; are twins satisfying
N(C) S N(C), for 1 <i<j<a.

In the sequel, we associate an open interval I, to each vertex v € V(G),
as follows:

HvelCi= I, = (i,i+1) v
(i) v € N(C:) \ N(Ci-1) = I, = (i,i + g), where N(Co) = 0.

It is simple to verify that the above family of intervals form an interval
representation for the graph. In addition, at most two interval sizes have
been used. =
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