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ABSTRACT |

Given a connected graph G and two vertices u and v in G, Ig[u, v]
denotes the closed interval consisting of u, v and all vertices lying on
some u — v geodesic of G. A subset S of V(G) is called a geodetic
cover of G if I¢(S] = V(G), where I[S] = LJu veslglu,v]. A geodetic
cover of minimum cardinality is called a geodetlc basis. In this paper,
we give the geodetic covers and geodetic bases of the composition of
a connected graph and a complete graph.
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1 Introduction

Let G be a connected simple graph and u,v € V(G), where V(G)
is the vertex set of G. The distance dg(u,v) between u and v in
G is the length of a shortest path P(u,v) in G. Any u — v path of
length dg(u,v) is called a © — v geodesic. For any two vertices v and
v of G, the set Ig|u,v| is the closed interval consisting of u,v and
all vertices lying on some u — v geodesic of G. For convenience, we
write Ig(u,v) = Ig|u, v)\{u,v}.

A subset C of V(G) is convez if for every two vertices u,v € C,
I¢|u,v) € C. For any subset S of V(G), the closure of S is Ig[S] =
Uu,'vGS Ig|u,v]. It can easily be verified that S C I¢[S] and that
I¢[S] = S if and only if S is convex. A geodetic cover of G is a set
S C V(G) such that every vertex of G is contained in Ig[S], that
is, Ig|S) = V(G). A geodetic number g(G) of G is the minimum
order of its geodetic covers, and any cover of order g(G) is called a
geodetic basis. These concepts were introduced in [9]. It was further
investigated in [1], [2], [4], [5], [6] and [7].

A vertex in a graph G is an extreme vertez if the subgraph
induced by its neighbors is complete. The set of extreme vertices in
G is denoted by Ez(G). For convention, we set Fx(G) = V(K)) if
G = K. For other graph theoretic terms, which are assumed here,
readers are advised to see [8].

A subset S of G is a hull set if there exists a non-negative integer
p such that IB[S] = V(G), where I3[S] = S, I}[S] = I¢[S], and
Z[S) = IG[Ig'I[S]]. The smallest cardinality of a hull set in G is the
hull number h(G) of G. 1t is easily seen that every geodetic cover is
a hull set; hence, h(G) < g(G) for any connected graph G. In [3], the
authors determined the hull number of the composition of any two
connected graphs. Although geodetic covers are hull sets, the authors
observed that it is quite difficult to determine the geodetic number of
the composition of any two connected graphs. It is observed further
that for non-extreme geodesic graphs (graphs where the geodetic
bases and minimum hull sets are not the extreme vertices only), the
sequence of iterates {I%|S]}p>0, where S is any minimum hull set
in G, cannot generally be used to obtain the geodetic number of
the composition of graphs. Results would show that a much more
complicated expression for the geodetic number of the composition
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G|[Ky) is obtained in this paper than the one obtained by the authors
for the hull number of the same graph. For some particular cases,
one can easily see the nice relationships between the geodetic number
and the hull number of the composition G[Kp,).

2 Results 1

The composition of two graphs G and H, denoted by G[H], is the
graph with V(G[H]) = V(G) x V(H) and (u,v)(v',v") € E(G[H]) if
and only if either v’ € E(G) or v = v’ and v’ € E(H).

In (3], the authors obtained the followiné results.

Theorem 2.1 Let G be a connected graph and K., the complete
graph of order m. Then h(G[Kn|) = h(G) + (m - 1)|Ez(G)|.

Example 2.2 Consider G = Cs and Cs[KZL] as shown in Figure 1.
Suppose A = {a,c,e}. Observe that A is a rininimum hull set and a
geodetic basis of Cs. By Theorem 2.1, h(Cs[K2]) = 3. Now, it can
be shown that g(Cs[K3|) = 5 (see Figure 3).

c (@,1) (,1) (1) (@1) (¢,1)
b d \ ‘
a e 3,2 (,2) (&:2) (d,2) (e,2)
Cs Cs| K]

Figure 1: The graphs Cs and Cs[K>| with h(Cs) = g(Cs) = 3 and
h(Cs|Ka]) = 3. :

The following observation follows from the above example.

'

Observation 2.3 There exist a graph G and a positive integer m
such that g(G(Kn]) # g(G) + (m — 1)|Ez(G)|.
|
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We shall determine the geodetic number of G[K,,]. We start with
a simple result characterizing the composition G[K,,] with geodetic
number equal to 2.

Theorem 2.4 Let G be a connected graph and K,, the complete
graph of order m. Then g(G[Km]) = 2 if and only if either g(G) = 2
andm=1o0rG=K; and m = 2.

Proof. Suppose g(G[Kn]) = 2, say T = {(v1,a), (v2,b)} is a geode-
tic basis of G[Ky,). Consider the following cases:

Case 1. If v; = v, then a # b. This implies that m # 1. Since
Igik)|T] = T = V(G|Kn]), G|Km] = K. Thus, G = K; and
m=2.

Case 2. Let v1 # ve. Further, assume that m # 1. Then there
exist ¢ € V(Kn) such that ¢ # a. Since dg(k,,|((v1,a), (v2,b)) =
dG[Km]((vl)a): (v2,¢)), it follows that (v2,c) ¢ IG[Km][('Ul)a)a (’Uz,b)]-
This contradicts the assumption that Ig|k,,|[T] = V(G[Km]). Thus,
m = 1. Hence, G[Ky,] & G. Since g(G[Kn]) =2, g(G) = 2.

Conversely, suppose either g(G) =2 and m =1 or G = K, and
m = 2. Then g(G[Kn|) = 2. [ |

Let G be a connected graph and A a geodetic cover of G. A
subset B of A with Ez(G) C B satisfies the geodetic interiority
condition (GIC) with respect to A if for every a € B\Fz(G), there
exist z,y € A such that a € Ig(z,y) = Ig[z,y|\{x,y}. A subset B of
A in G satisfying GIC with respect to A is termed as a GIC set with
respect to A. A GIC set with respect to A of maximum cardinality
is called a mazimum GIC set with respect to A. A geodetic cover of
G that is a GIC set with respect to itself is called a GIC set in G.

Example 2.5 Consider the following graph G shown in Figure 2.
Let A = {a,b,¢,d, f}. Clearly, A is a geodetic cover of G. Moreover,
Aisa GIC set in G.

A GIC set B with respect to A is not necessarily a geodetic cover
of G. A geodetic cover of G is not necessarily a GIC set in G. Clearly,
V(G) is a GIC set in G. Further, if Ex(G) is a geodetic cover of G,
then Ex(G) is a GIC set in G.
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Figure 2: A graph G illustrating a GIC set in G.

Theorem 2.6 Let G be a connected graph, A a geodetic cover of G
and B a GIC set with respect to A. Then

T = Ez(G[Km]) U [(B\Ex(G)) x {vo}] U[(A\B) x V(Km)] (1)
is a geodetic cover of G[Ky,) for every vy € I[/(Km).

Proof. Let A be a geodetic cover of G, B a GIC set with
respect to A and vg € V(Kpn). Suppose (z, v) € V(G|Knp]) and (1)
holds. If x € Ex(G), then (z,v) € Em(G[Km] ) €T C Igk,,[T). If
x € B\ Ez(G), then by the interiority condition, there exist w,z € A
such that « € Ig(w, 2). Let

P(w,z) = (w,w1,ws, ... ,1;uk,z]
be a w — z geodesic, where £ = w, (1 < r < k). This implies that
P* = [(w,v0), (w1, %), . . ., (wr-1, %), (x,v),; (Wr41,%0); - .-, (2,v0)]
is a (w,vp) — (2,v0) geodesic. Hence, |
(z,) € Igik,[(w, o), (2, v0)]\{(w, v0), (2,v0) }.

Since (w, v), (2,%) €T, (z,v) € Ig|k,,)[T}. If z € A\B, then by the
definition of T', (z,v) € T C Ig(k.[T]- Nowl let x € I¢[A]\ A. Since
A is a geodetic cover of G, there exist p,q € A such that z € I¢[p, g)-
Let P(p,q) = [p,p1,P2,- -, Pk, q], where x = p, for some 1 < r <k,
be a p — q geodesic. Then

P/((9,9),(4,9)) = [(8:9), (P1,0), ..., (9 0), (@, V)]
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is a (p,v) — (g,v) geodesic containing vertex (z,v). Observe that
(p,v),(g,v) € T because p,q € A. Thus,

(x,v) € Igk,,((P, ), (¢,v)] € Igik..)IT)

In any case, we have V(G[Knm]) C Igik,)[T]- This shows that
Igk,)[T] = V(G[Km))- n

Corollary 2.7 Let G be a connected graph and A a geodetic cover
of G. Then A x V(Kp,) is a geodetic cover of G[Kn).

Proof. Let A be a geodetic cover of G. Since B = Ex(G) is a GIC
set with respect to A, the result now follows from Theorem 2.6. W

Corollary 2.8 Let G be a connected graph and A a geodetic cover
of G. If A is a GIC set in G, then Ex(G[Kn))U((A\Ex(G)) x {vo})
is a geodetic cover of G|Kn) for every vo € V(Kp)-

Proof. Use Theorem 2.6, where B = A. ]

Lemma 2.9 [6] Every geodetic cover of a graph contains its extreme
vertices.

In what follows, if T' C V(G[Ky]), then
T; = {z € V(G) : (z,a) € T for some a € V(Kn)}.

Lemma 2.10 Let G be a connected graph and T a geodetic cover of
G|Kp). Then T = Ex(G[Kp])U D, where Ex(G|Kn))ND =0, and
T is a geodetic cover of G.

Proof. Let T be a geodetic cover of G|Kr,). Then by Lemma 2.9,
T = Ez(G[Km]) U D , where Exz(G|Kn|)ND = 0.

Pick v € V(G) and v € V(Ky,). If u € Ty, then u € Ig[Ty]. If
u ¢ Ty, thent = (u,v) ¢ T and thereexist t) = (w,a),t2 = (z,b) €T
such that t € Igk,,|[t1,t2]. Since u ¢ Ty, u # w and u # z. This
implies that de(w,z) = dgk,.)(t1,t2) # 1. Hence, u € Ig|w,z].
Since w,z € Ty, it follows that u € Ig[Tf]. Therefore, Ty is a
geodetic cover of G. |
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Theorem 2.11 Let G be a connected gmph?and T a geodetic cover
of G|Km]. Then Ty is a geodetic cover of G and there exists a GIC
set B with respect to Ty such that

T = Ba(GlKn))U[TAB) x V(Kn) U
{(v,v) €T :u € B\Ez(G),v e V(Kn)}.

Proof. Suppose T is a geodetic cover of G[Km] Then T} is a
geodetic cover of G by Lemma 2.10. Note that Ty x V(Kn) is a
geodetic cover of G[Kp,] by Corollary 2.7.

If T = Ty x V(Km), then choose B = Ex(G) and B is a GIC
set with respect to Ty. If T # Ty x V(Ky,), then Ty x V(Kp,) is
a proper subset of T, that is, Ty x V(Kn) € T. Observe that
Ty # Ex(G). Thus, there exists s € Tf\Ex(G) and there exists
t € V(Km) such that (s,t) ¢ T. Also, since s € Tf\Ez(G) C Ty,
there exists t* € V(Kp,) such that (s,t*) e;T Let S = {(¢,t') €
[(TA\Ez(G)) x V(Km)I\T}. Then S # 0. Define B = Ez(G)U Sy,
where ¢ = {z : (z,v) € S for some v € V(Kp,)}. Note that S ;é (0
Then Ez(G) ¢ B C Ty. Suppose there exists z € B\Fz(G) =
such that z gé Ig(y,z) for all y,z € Ty. Then (z,v) € T for a.ll
v € V(Kpn). This is contrary to the deﬁmtlon of Sy. Hence, B is a
GIC set with respect to T}.

By the definition of B, we get the desnred expression for . W

The following is a consequence of Theorem 2.6 and Theorem 2.11.

Corollary 2.12 Let G be a connected graph and K the complete
graph of order m > 2. Then

9(G[Km]) = (m — 1)|Ez(G)| 1} min L,
where L = {m|A| —(m—1)|B| : A is a geodetic cover in G and B is
a mazimum GIC set with respect to A}.

The next results follow from Corollary 2.12.
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Corollary 2.13 Let G be a connected graph and K,, the complete
graph of order m > 2. If G has no extreme vertices, then

9(GlKm]) = min L,
where L = {m|A|—(m-1)|B| : A is a geodetic cover of G and B is a
mazimum GIC set with respect to A}.

Corollary 2.14 Let G be a connected graph and A a geodetic cover
of G. Then g(G[Km)) < (m —1)|Ex(G)| + m|A|. Further, if Ais a
GIC set in G, then g(G|Kw)]) < (m — 1)|Ex(G)| + |A|.

Proof. Let B be a maximum GIC set with respect to A (B may
be §). Then m|A| — (m — 1)|B| € L. Hence, by Corollary 2.12,
9(G[Km]) < (m—-1)|Ez(G)|+m|A|] - (m—1)|B| < (m—1)|Ez(G)| +
m|A|.

Now, suppose A is a GIC set in G. Then m|A| — (m - 1)|4| =
|A| € L. By Corollary 2.12, g(G[Km]) < (m — 1)|Ex(G)| + |A]. A

The following examples show that strict inequality in
Corollary 2.14 can happen.

Example 2.15 Asin Figure 1, consider G = Cs and m = 2. Clearly,
S = {a,c,e} is a minimum hull set in Cs, where I}, [S] = Ic;[S] =
V(Cs). Hence, I [S] = S is a geodetic cover of Cs. Further, S
is not a GIC set in G. Also, it can be verified that (see Figure 3)
T = {(a,2),(b,1),(c,2),(d,1),(e,2)} is a geodetic basis of Cs[K3].
Hence, by Corollary 2.14, g(Cs[K2]) = |T| = 5 < 2|S| = 6.

@2) (0,2) ©2) 42 (&2)
Cs| K2

Figure 3: The graph Cs[K2] with g(Cs[K2]) = 5.



Observation 2.16 There ezist a graph G and a positive integer m
such that if S is a minimum hull set in G and p is the smallest non-
negative integer with I%[S) = V(G), the iterate I%'(S) is not a GIC
set in G and g(G|Kn)) is not equal to (m — 1)| Ez(G)| + m|I%1[S]|.

Example 2.17 Consider the graph H in Figure 4. Observe that
§' = {t,u} is a minimum hull set in H. Now, I}[5] = {t,u,v,w,z, 2}
and I}[S'] = V(H). Thus, I4[S'] = T' is a geodetic cover (but
is not a geodetic basis) of H. Moreover, T is a GIC set in H.
The other minimum hull set in H is S* = {u, 2z}, where, Ig[S*] =
{v,v,w,2,y,2} and I%[S*] = V(H). Note that Ix[S*| = T* is
a geodetic cover (not basis) of H and is a GIC set in H. Since
|T'| = |T*| = |T|, we have (m — 1)|Ex(H)| + |T| = 7 for m = 2.
In Figure 5, it can be verified that {(u,1), (u,2), (v,1),(z,1),(z,1)}
is a geodetic basis of H[K,]. Thus, g(H([K>]) = 5. Therefore,
g(H[K2]) < (2 - 1)|Ex(H)| +IT| < (2 - 1)|Ez(H)| +2|T).

|
Figure 4: A graph with a geodetic cover shown which is not a basis.

1) @) @) W) (1) @) (21)

£2) @2) @2 W2 (.2) (12) (22)

Figure 5: A graph H[K>] with g(H[K>]) = 5.
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Observation 2.18 There ezist a graph G and a positive integer m
such that if S is a minimum hull set in G, and p is the smallest non-
negative integer with IZ|S] = V(G), the iterate I% '[S) is a GIC set
in G but g(G[Kwm)) is neither equal to (m — 1)|Ex(G)| + m|I% (S]]
nor equal to (m — 1)|Ex(G)| + |I57'[S]|.

Based on Observations 2.16 and 2.18, the sequence of iterates
cannot always be used to determine the geodetic number of the
composition G[{Kn].

Corollary 2.19 Let G be a connected graph. Then
9(G[Km]) < (m - 1)| Ez(G)| + |V(G)|.
In particular, if G has no extreme vertices, then g(G[Kn]) < |V(G)|.

Proof. Let A’ = V(G). Then A’ is a geodetic cover. Since A’ is a
maximum GIC set in G, m|A'| — (m — 1)|A| = |A] = |V(G)| € S,
where S = {m|A|—(m~1)|B| : A is a geodetic cover of G and B is a
maximum GIC set with respect to A in G}. Therefore, by Corol-
lary 2.12, g(G|Km]) < (m — 1)|Ez(G)| + |V(G)|. [ ]

To illustrate Corollary 2.19, consider the following examples.
Example 2.20 In Figure 3, g(Cs[K2]) =5 = |V(C5)|.

Example 2.21 Given a graph G in Figure 6, the composition G|K>]
is shown in Figure 7. Observe that A = {(v,1), (v,2), (y,1), (,2)}
is a geodetic basis of G[K2]. This implies that g(G[K2]) =4 < 6 =
|Ez(G)| + [V(G)|. Hence, g(G[Kz]) < (2 - 1)|Bz(G)| + [V(G)].

A graph G is an extreme geodesic graph if every vertex in G lies
on a u — v geodesic for some pair u, v of extreme vertices.

Corollary 2.22 Let G be a connected graph. Then m|Ez(G)| <
g(GKn]). Moreover, if G is an extreme geodesic graph, then

9(GKm]) = m|Ex(G)|.
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Figure 6: A graph G, where |V(G)| =5 and |Ex(G)| = 1.

@) @) @) @) ()

2 @2) @2 B (22)

Figure 7: A graph G[Kj] with g(G[Ka]) = 4.

Proof. Suppose S = {m|A|-(m—1)|B|: A is a geodetic cover of G
and B is a maximum GIC set with respect to A}. Since Exz(G) C
B C A, S = {m|A\B|+|B\Exz(G)| +|Ez(G)| : A is a geodetic cover
of G and B is a maximum GIC set with respect to A}. So, we have
|Ez(G)| < min S. Thus, g(G[Kmn]) = m|Ex(G)| by Corollary 2.12.
Now, suppose G is an extreme geodesic graph. Then Ez(G)
is a geodetic cover of G. Since Ez(G) is a maximum GIC set
in G, |Ex(G)| € S. This implies that min'S < |Ez(G)|. Hence,
9(G[Kml]) < m|Ez(G)| by Corollary 2.12. Accordingly, g(G[Km]) =
m|Ex(G)|. ‘ [ ]

The following example follows from Corollary 2.22.

Example 2.23 Let n and m be positive intégers. Then
1. g(Kn|Kp]) =mn forn > 2 and
2. g(Pa[Km]) =2m forn > 3.
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Theorem 2.24 Let G be a connected graph and A a geodetic basis
that is a GIC set in G. Then Ex(G[Km]) U[(A\EZ(G)) x {w}] is a
geodetic basis of G|Kp,] for every v € V(Kn).

Proof. Let A be a geodetic basis that is a GIC set in G and
vo € V(Kpn). Then, by Corollary 2.8,

T = Ez(G[Kn]) U[(A\E2(G)) x {vo}]

is a geodetic cover of G[K,,] . Assume that T is not a geodetic basis
of G[Km]. Let T* be a geodetic basis of G[K|. Then |T*| < [T}, T}
is a geodetic cover of G and there exists a GIC set B* with respect to
T} such that T* = Ex(G[Km])U[(T}\B*) x V(Kn)|U{(u,v) € T*:
u € B*\Exz(G),v € V(Kn)} by Theorem 2.11. Thus,

T' = Ex(G[Km]) U ((Tf\B") x V(Km)] U [(B'\Ez(G)) x {vo}]
is a geodetic cover of G [ij by Theorem 2.6. Hence,
|T'| = m|T}| + (m — 1)(| B=(G)| - [B*]) < |T"|.
Since T* is minimum,
IT*| = m|T7|+(m—-1)(|Ez(G)| - |B*|) < IT| = |A|+(m—1)|Ez(G)|.

This implies that m|T}7| — (m — 1)|B*| < |A|. Since B* C T}, it
follows that |Tf| < |A|. This contradicts the assumption that 4 is a
geodetic basis of G. Therefore, T is a geodetic basis of G[Ky,]. W

The following result is a direct consequence of Theorem 2.24.

Corollary 2.25 Let G be a connected graph and K., the complete
graph of order m. If G has a geodetic basis that is a GIC set in G,
then g(G|Kn)) = 9(G) + (m — 1)|Ex(G)|. In particular, if G has no
extreme vertices, then g(G|Kn]) = 9(G).

Example 2.26 In Figure 8, consider the graph G, where g(G) = 5.
Observe that A = {a,b,¢,d, e} is a geodetic basis of G. Further, A
is a GIC set in G. Thus, by Corollary 2.25, g(G|Kn)) = m + 4. In
can also be shown that g((G\{e})[Kn]) = 4 = g(G\{e}).



Figure 8: A graph G whose geodetic basi$ isa GIC set in G.
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