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Abstract

We determine all spreads of symmetry of }the dual polar space
HP (2n - l,qz). We use this to show the existence of glued near
polygons of type H?(2n, — 1,4%) ® HP(2n2 = 1,9%). We also show
that there exists a unique glued near polygon of type HZ(2n; —
1,4) ® H?(2ny — 1,4) for all n1,m2 > 2. The unique glued near
polygon of type H?(2n - 1,4) ® Q(5,2) has’ the property that it
contains HP(2n— 1, 4) as a big geodetically closed sub near polygon.
We will determine all dense near (2n + 2)-gons, n > 3, which have
HP(2n—1,4) as a big geodetically closed sub near polygon. We will
prove that such a near polygon is isomorphic to either H2(2n+1,4),
HP(2n-1,4)®Q(5,2) or HP(2n—-1,4)x L for some line L of size
at least three. |

1 Elementary notions and aifn of the paper

In geometry, a near polygon is defined as a partial linear space S = (P, £, 1),
I € P x L, with the property that for every point p € P and for every line
L € L there exists a unique point on L nearest to p. Here distances d(-, -) are
measured in the point graph or collinearity graph’l". If diam(S) denotes the
diameter of I" (or of S), then the near polygon is called a near [2-diam(S)}-
gon. There is a unique near 0-gon (one point, no lines), which we will
denote by ©@. The near 2-gons are precisely the lines. We will denote the
unique line with 7 > 2 points by L;. The class of near quadrangles coincides
with the class of generalized quadrangles (GQ’s) which were introduced
by Tits in [13]. Near polygons themselves were‘ introduced by Shult and
Yanushka in [12] because of their relationship with certain line systems in
Euclidean spaces. In graph theory (see e.g. [2]),‘{ a near polygon is defined
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as a connected graph which satisfies the following properties: (i) every two
adjacent vertices are contained in a unique maximal clique, (ii) for every
vertex z and every maximal clique M, there exists a unique vertex in M
nearest to z. This graph-theoretical definition is however equivalent with
the geometrical one. If a graph I' is a near polygon, then the vertices and
the maximal cliques of I define a near polygon in the geometrical sense. If -
S = (P, L,]) is a near polygon, then its point graph is a near polygon in the
graph-theoretical sense. In the sequel, we will always adopt the geometrical
point of view. The reader should however realize that each definition and
result has an equivalent graph-theoretical version.

A nonempty set X of points in a near polygon & = (P, L,I) is called
a subspace if every line meeting X in at least two points is completely
contained in X. A subspace X is called geodetically closed if every point
on a shortest path between two points of X is as well contained in X.
Having a subspace X, we can define a subgeometry Sx of S by considering
only those points and lines of S which are completely contained in X. If
X is geodetically closed, then Sx clearly is a sub near polygon of S. If
a geodetically closed sub near polygon Sx is a nondegenerate generalized
quadrangle, then X (and often also Sx) will be called a quad. (Recall
that a generalized quadrangle is called degenerate if there exists a point
which is incident with each line.) Sufficient conditions for the existence of
quads were given in [12]. For every point z of S we can define a partial
linear space which is called the local space at = and denoted by L(S, z).
Its points, respectively lines, are the lines, respectively quads, through z
with containment as incidence relation. Every nonempty set X of points is
contained in a unique minimal geodetically closed sub near polygon C(X),
namely the intersection of all geodetically closed sub near polygons through
X. We define C(0) = 0. If X,, ..., Xk are sets of points, then C(X;U---U
Xi) is also denoted by C(X},..., Xk). If one of the arguments of C is a
singleton {z}, we will often omit the braces and write C(-- -, z, - - -) instead
of C(--+, {z},-").

If A and B are two sets of points, then d{A, B) denotes the minimal
distance between a point of A and a point of B. If A = {z}, then we also
write d(z, B) instead of d({z}, B). For every i € N, I’;(A) denotes the set
of all points p for which d(p, A) = ¢. If A = {z}, we also write I';(z) instead
of F,' ({z})

A near polygon is said to have order (s, t) if every line is incident with
exactly s+ 1 points and if every point is incident with exactly ¢+ 1 lines. A
near polygon is called denseif every line is incident with at least three points
and if every two points at distance 2 have at least two common neighbours.
Dense near polygons satisfy several nice properties. By Lemma 19 of [3],
every point of a dense near polygon S is incident with the same number of
lines; we denote this number by ts+ 1. If z and y are two points of a dense
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near polygon then, by Theorem 4 of (3], C(z, y) is the unique geodetically
closed sub near [2 - d(z,y)]-gon through z and y. Since in a dense near
polygon every two points at distance 2 are contained in a unique quad, all
local spaces are linear. Geodetically closed sub near hexagons of a dense
near polygon are called hezes. h

A geodetically closed sub near polygon F of a near polygon S is called
big if F # 8 and if every point outside F is wllinear with a unique point
w(z) in F. If z € F, then we define m(z) := z. The map = is called
the projection on F. Suppose now that each line of S is incident with
exactly three points. Then for every point = outside F, the line zn(z)
contains a unique third point which we denote by r(z). If z € F, then
we define r(z) := z. The map r is called the reflection about F and is an
automorphism of S. ;

The aim of the paper is to determine all dense near polygons which con-
tain a big geodetically closed sub near polygon isomorphic to the classical
near polygon HP(2n —1,4), n > 3, which we will define in Section 2.3. We
will solve this problem in Section 5. This result, [together with others, will
allow us in [10] to determine all dense near 2n-gons with three points on
each line having the property that there exists a ‘chain FpC Fy C --- C F,,
of geodetically closed sub near polygons such that the sub near 2i-gon F;,
1 €{0,...,n — 1}, is big in the sub near 2(i + 1)-gon Fi,;.

2 Some classes of near polygbns

In this section, we describe three important classes of near polygons. The
constructions given in Sections 2.1 and 2.2 allow us to construct near poly-
gons from other ones.

2.1 Product near polygons

For any near polygons 81 = (P, £1,11) and S = (P, £2,13), a new near
polygon (P, L,I) can be derived from 8; and Sy. It is called the direct
product of §; and Sz and is denoted by 8; x Sa! We have: P = P; x Po,
L = (P1x L3)U(L1 x P2), the point (z, y) of Sy x Sz is incident with the line
(z,L) € P1 x L3 if and only if z = z and y I3 L, the point (z,y) of §; x S,
is incident with the line (M,u) € £; x Py ifandionly if z I; M and y = u.
If 8;, i € {1,2}, is a near 2d;-gon then S; x S; is a near 2(d; + dz)-gon. If
di,ds > 1, then we call S; x 82 a product near %Jolygon. If S; and S, are
dense, then also S; x 83 is dense and ts = ts, Hts, + 1.

Lemma 1 (Lemma 4.5 of [1]) Let F be a big geodetically closed sub near
2(n—1)-gon of a dense near 2n-gon A, n > 2, then the following are equiv-
alent:
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(a) A= F x L for some line L;
® ta=tr+1;

(c) every quad intersecting F in a line is a grid.

Definitions. Since 81 x8; & S2 xSy and 81 X (S2xS3) & (81 xS2) % Ss, also
the direct product §; x Sz x - - - X S, of k > 3 near polygons 83, Ss,...,Sk is
well-defined. If A is a class of near polygons, then we denote by A* the set
{O}UAUB, where B is the set of all product near polygons S; x Sax - - - X Sk,
where k >2and S; € A, i € {1,2,...,k}.

In 8], product near polygons are also called glued near polygons of type 0.
In the following section we define the glued near polygons of type 1.

2.2 Glued near polygons (of type 1)

The construction which we will present in this section was first described
in [5] for the case of generalized quadrangles and in [7] for the general case.
We first give some relevant definitions.

2.2.1 Definitions

If K and L are two lines of a near polygon, then by Lemma 1 of [3], there
are two possibilities. Either there exist unique points k € K and ! € L
such that d(K, L) = d(k, ), or for every point k € K, there exists a unique
point { € L such that d(K, L) = d(k,l). In the latter case K and L are
called parallel. If K and L are parallel and d(K, L) = 1, then we define
{K, L}* as the set of all lines intersecting K and L, and {K, L}*++ as the
set of all lines meeting every line of {K,L}*. If {K, L} and {K, L}*+
cover the same set of points, then the pair { K, L} is called regular.

A spread of a near polygon A is a set of lines partitioning the point set.
If A is the direct product B x L of a near polygon B and a line L, then
the set S = {L.|z is a point of B} with L; := {(z,y)ly € L} is a spread
of A. We call any such spread a irivial spread. A spread of A is called
admissible if every two lines of it are parallel. An admissible spread S of
A is called regular if {K, L} is regular and {K,L}*1 C Sforall K,Le S
with d(K,L) = 1. A spread S of A is called a spread of symmetry if for
every line K € S and for every two points k; and k; on K there exists
an automorphism of A fixing each line of S and mapping k; to ks. Every
spread of symmetry is regular. Every trivial spread is a spread of symmetry.
Spreads of symmetry satisfy the following property.
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Lemma 2 (Theorem 5 of [7]) Let S be a spread of symmetry of a near
polygon A and let F be a geodetically closed sub'near polygon of A. Then
the set Sp of all lines of S which are contained in F is either empty or a
spread of symmetry of F.

2.2.2 Construction ‘

Let A, and A2 be two near polygons both with c@nstant line size s+1, and
suppose that their respective diameters d; and dy are at least 2. Let S; =
(L9, ..., L8}, i € {1,2}, be an admissible spread of A;. In S;, a special
line Lg) is chosen which we will call the base line of the spread S;. For
every i € {1,2}, for all j,k € {1,...,a;} and for ;every z € L(i) let pg’,)c(x)

denote the unique point L(') nearest to z. We put <I>(‘2c = pf:)l o pﬁ pg'?,,

For every i € {1,2}, the group Hs,.(L(')) = (@;:)|1 < 3,k < a;) is called
the group of projectivities of L(li) with respect to S,

For every bijection & between L(l) and L(z), we consider the following

graph I" with vertex set L( ) x §1 x S5. Two vertices (z, L(l) ,L_gf)) and

(v, Lf:), L(:)) are adjacent if and only if exactly one of the following three
condltlons is satisfied:
(2) L(l) JASY L(z) L(z) and = # v, ‘

iz ! |

) LP =L, (LY, L) = 1 and ), (z) =

1 !? 11,2

d(L(z) L(2)) 1 and Q)(z) o 0(33) = H(y).

o J1J2 ‘

By [7], the graph I has diameter d; +d2—1 and every two adjacent vertices
are contained in a unique maximal clique (of size s+ 1). Considering these
maximal cliques as lines, we obtain a partial linear space S. If S is a near
polygon, then it is called a glued near polygon of type 1, or shortly a glued
near polygon. (Glued near polygons of type § >2 can also be defined, see
(8], but we will not need them in this paper.) The following lemma gives
necessary and sufficient conditions for S to be a near polygon.

(c) L(l) L(l)

iq ?

Lemma 3 (Theorem 14 of [7]) The partial linear space S is a near poly-
gon if and only if the commutator [IIg, (Lﬁ‘)),e—lns, (ng))e] is the trivial
group of permutations of Lgl).

The following lemma explains why the notion spread of symmetry is im-
portant in the theory of glued near polygons.
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Lemma 4 (Theorem 16 of [7]) IfS is a near polygon and if none of the
spreads Sy and Ss is trivial, then S; and S2 are spreads of symmetry.

If s is equal to 2, then we can say more.

Lemma 5 (Theorems 11 and 16 of [7]) If each line of A; and A3 is
incident with three points and if none of the spreads S, and Sz is trivial,
then S is a near polygon (for an arbitrary choice of the base lines and the
bijection 0 between these base lines) if and only if S) and Sy are spreads of

symmelry.

A near polygon S is said to be of type A; ® A if it can be obtained in
the above-described way from two near polygons A; and As. If there is no
confusion about the spreads S; and S5, the base lines in these spreads and
the map 6, then we will denote S also by A; ® A;. We will also use this
notation for § if all near polygons of type A; ® A are isomorphic. This
latter property is not always satisfied, see for instance [6] for counterexam-
ples. If A; and A7 are dense near polygons, then every glued near polygon
of type A; ® Ay is also dense.

2.2.3 Characterization
If we consider a tuple (Al,Az,Sl,SQ,L(l‘),L?),9) which gives rise to a
glued near polygon .4; ® A2 and if we define

Ti:={{zn LMk eLlP,Les}Me S2.,

T = {{(:z:, LM)zeL",MeS}Le 51} )

then T;, ¢ € {1, 2}, is a partition of .A; ® A; in geodetically closed sub near
polygons isomorphic to .A;. Now, if we have an arbitrary near polygon A,
then with every tuple which gives rise to a glued near polygon isomorphic
to A, there corresponds a pair {T},T>} of partitions of A in geodetically
closed sub near polygons. We denote by A;(.A) the set of all pairs {T}, T2}
arising in this way. If {T), T2} € A,(.A), then:

e all elements of T}, i € {1,2}, are isomorphic;
o every element of T intersects every element of T5 in a line;

e if = denotes an arbitrary point of A and if F;, i € {1,2}, denotes the
unique element of T; through z, then every line through z different
from F; N F, is contained in either F; or Fs.
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These properties will be used in the following chz‘zracterization result.

Lemma 6 (Theorem 10 of (8]) Let A be a dense near polygon and let T
and Ty denote two partitions of A in geodetically closed sub near polygons.
For every point z of S and every i € {1,2}, let F;(z) denote the unique
element of T; through = and put F{(zx) := C(T'1(z) \ F3-i(z)). Suppose that
diam(Fy(z) N Fa(z)) = 1 and Fl(:c) C Fi(z) U Fg(a:) for every point = of
A. Then we have the following:

e If F{(z) = Fi(z) and Fj(z) = Fa(z) for every point = of A, then A
is glued and {T1, T2} € Ay(A).

. If th.ere exists a point z* such that F{(x*) N F(z*) = {z*}, then
1(2*) x Fp(z*). |

o If there exists a point * such that Fz’(z‘) N Fi(z*) = {z*}, then
A2 Fi(z*) x Fj(z*).

2.3 Classical near polygons

If (z, Q) is a point-quad pair of a near polygon &, then by Proposition 2.6
of [12], one of the following possibilities occurs.

e There exists a unique point z’ in Q nearest to z, and d(z,y) =
d(z,z’) + d(z’, y) for every point y € Q. In this case the pair (z, Q)
is called classical. ‘

e The points in @ nearest to = form an ovoid of @, i.e. a set of points
of @ intersecting each line in exactly one point. In this case the pair
(z, Q) is called ovoidal. |

o The generalized quadrangle @ is a dual gridL i.e. a complete bipartite
graph K, ,, with n,m > 2, and the set of points of Q nearest to =
is a proper subset of size at least 2 of one of the two ovoids of Q. In
this case the pair (z, Q) is called thin ovoidal.

'
|

Remark. More generally, we call a pair (z, F)iwith z a point and F a
geodetically closed sub near polygon classical if there exists a unique point
z’ in F such that d(z,y) = d(z,z’) + d(z’, y) for levery point y of F.

Definitions. (a) A near polygon S is called classical if every two points
at distance two are contained in a unique quad and if every point-quad
pair is classical. Clearly, the near 0-gon O, the|lines L; (¢ > 2) and the
nondegenerate generalized quadrangles are classical. The direct product of
classical near polygons is again classical.
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(b) For every polar space P of rank at least 2 a dual polar space PP
can be defined. The points, respectively lines, of PP are the maximal,
respectively next-to-maximal, totally isotropic subspaces of P with reverse
containment as incidence relation.

Cameron ([4]) proved that the class of the classical near 2n-gons, n > 2,
coincides with the class of the dual polar spaces of rank at least 2. We
will now emphasize on the case were each line is incident with exactly
three points. The quadrics Q(2n,2), n > 2, and the hermitian varieties
H(2n—1,4), n > 2, give rise to two classes QP(2n,2) and HP(2n -1, 2)
of dual polar spaces. By the classification of polar spaces ([14]), we known
that the classical dense near polygons with three points on each line are
precisely the near polygons from the set ({L3} U {QP(2n,2) | n > 2} U
{HP(2n —1,4) | n > 2})*. For generalized quadrangles, which are always
classical, we have the following three well-known examples:

e The 3 x 3-grid Lg x L3 of order (2,1).

e The generalized quadrangle QP(4,2) of order 2 (i.e. order (2,2)).
This GQ is isomorphic to W(2), the GQ whose points and lines are the
totally isotropic points and lines of a symplectic polarity in PG(3, 2)
(natural incidence).

e The generalized quadrangle HP(5,4) of order (2,4). This GQ is
isomorphic to Q(5,2), the GQ whose points and lines are the points
and lines lying on an elliptic quadric in PG(5, 2) (natural incidence).

In the sequel, the generalized quadrangles Lg x L3, W(2) and Q(5, 2) will
often occur as quads in other near polygons. We will refer to them as
grid-quads, W(2)-quads and Q(5, 2)-quads, respectively.

3 The near polygon H?(2n —1,4) ® Q(5,2)

Consider the hermitian variety H := H(2n —1,¢?) in IT := PG(2n — 1, ¢?),
n > 2, and let HP? = HP(2n -1, ¢®) denote its associated dual polar space.

Lemma 7 Let L be the linear space whose points are the points of H and
whose lines are the lines of I1 which are not tangent to H. Then the sub-
spaces of L are precisely the intersections of H with subspaces of I1.

Proof. For every set X of points on H, let {(X) denote the subspace of
II generated by all points of X and let X denote the smallest subspace of
L through X. Since (X) N H is a subspace of £, we have X C (X)N H.
We will now prove that X = (X) N H (). This property obviously holds
if m := dim({X)) < 1, and since every intersection of a hermitian variety
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with a plane is either the plane itself, a line in this plane, a unital or a cone’
pB with p a point and B a Baer subline, it also holds if m = 2. So, suppose
that m > 3 and consider a subset Y of X such that dim((Y)) = m — 1.
We may suppose that (Y) N H =Y C X (otherwise use induction). Now
consider a fixed point z in X \ {Y'). For every point =’ of {(X) N H different
from z, the line zz’ intersects (Y) in a point x” and one of the following
possibilities occurs.

o There exists a Baer subline L in (Y) through the point z”. Since
property () holds if m =2, wehave 2’ € (z,Ly\NnH=LU {z} C X.

¢ Every line of (Y') through the point z” is a tangent line. Then z” is
a singular point of (Y) N H. Hence z” € H and z’ € zz"” C X.

In any case, we have ' € X. Since z’ was an arbitrary point of (X) N H
different from z and since = € X, we have (X) N H C X and hence X =
(X)NH. As a consequence the subspaces of £ are precisely the intersections
of H with subspaces of II. |

There exists a bijective correspondence between the geodetically closed
sub near polygons of HP and the subspaces on H. If 7 is a subspace on
H, then the set of all generators of H through 7 determines a geodetically
closed sub near polygon of HP which we denote by ##. We have dlm(1r) +
diam(n®) = n — 1. If m; and 7y are two subspaces on H, then 7r¢ - 1r2 if
and only if wy C .

Theorem 1 IfV is the set of all (n—2)-dimensional subspaces of H which
lie in a nontangent hyperplane Iy, then V¢ := {a®|a € V} is a spread of
symmetry of HP. Conversely, every spread of symmetry is obtained in this
way. ‘

Proof. (a) Every generator of H contains a unique element of V, or equiv-
alently, every point of H? is incident with a umque line of V%, So, V?isa
spread. We can choose our reference system in suf:h a way that H has equa-
tion X in_l = 0 and that II,, has equatnon Xon—1 = 0. The
group G = {0,\ (zo, .- > Ton-2,T2n-1) = (Z0, ..., Ton—2, ATan—1) | ATH! =
1} of automorphisms of II fixes H setwise and IL,° pointwise. So, G deter-
mines a group G of automorphisms of H? which fixes every element of
V%, This group G® acts regularly on each line of V'#, proving that V% is a
spread of symmetry.

(b) Now consider a spread of symmetry S of H and let X denote the
set of the points = of H for which the geodetlcally closed sub near 2(n —1)-
gon % contains a line of S. Take two different pomts z; and z2 in X, then
one of the following possibilities occurs:

55




e |71z N H| = ¢% + 1. Let y denote an arbitrary point of z¥ Nz% =
(z1z2)?. By Lemma 2, the unique line of S through y is contained in
z? and zg and hence in z¥ Nz%. As a consequence, each of the g2 +1

geodetically closed sub near 2(n — 1)-gons through (z;z2)? belongs

to X ¢, or equivalently, each of the g2 + 1 points of z,z2 belongs to

X.

o |z1zo N H| = ¢+ 1. In this case z‘f and zg are two disjoint geo-
detically closed sub near 2(n — 1)-gons of H?. Put 1z N H =
{z1,Z2,...,Zq+1}. Let L denote an arbitrary line of S contained in
z‘f and let @ denote the unique quad through L which intersects each
of the sub near polygons xf’, i€ {2 .,g+ 1}, in a line. Now, let y
denote an arbitrary point of @ N a: . The unique line of § through y
is contained in @ and in :cg and hence coincides with the line anz.
Since QN (zf Uz U U a:g’ﬂ) is a subgrid of Q and since S is a
regular spread, we now see that each line anf’, i€ {1,2,...,9+1},
belongs to S. Hence z,,z2,...,Zq4+1 € X.

As a consequence, the set X is a subspace of £ and hence the intersection
of H with a subspace w. The elements of S are precisely the elements a?,
where a is an (n — 2)-dimensional subspace contained in #N H. [If L € S,
then by Lemma 2, every point of L#~" belongs to X and hence L#™" is
contained in 7 N H. Conversely, let a be an (n — 2)-dimensional subspace
contained in # N H, let z4, ..., z,—; denote n — 1 points of X generating o
and let u denote an arbitrary point of a®. By Lemma 2 the unique line K
of S through u is contained in each geodetically closed sub near polygon :z:"s
and hence coincides with the line ao® = z?n-..Nz?_,] If #N H contains a
subspace 8 of dimension n — 1, then every line through the point 8¢ would
belong to S, which is impossible. As a consequence n — 2 is the maximal
dimension of the subspaces contained in # N H. If z is a singular point of
« N H, then z is contained in all (n — 2)-dimensional subspaces of 7 N H
and so all lines of S would be contained in the geodetically closed sub near
2(n — 1)-gon z*#, a contradiction. So, 7 N H is a nonsingular hermitian
variety of type H(2n — 2, q’) or H(2n — 3, ¢%), but since S must have the
right amount of lines, i.e. we know that N H is of type H(2n -2, qz)
and that 7 is a nontangent leperplane

Lemma 8 Let S be a spread of symmetry of H?(2n ~1,4), n > 2, and
let K denote an arbitrary line of S. Then the group of automorphisms of
HP(2n —1,4) which fixr K and S induces the full group of permutations of
the line K.
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Proof. We choose our reference system in PG(2n — 1,4) in such a way
that

e H(2n —1,4) has equation X3 + X3 + ... -;;-:X%,,_, =0,
e S is the spread determined by the hyperpl:;me Xon—1 =0,

e the line K corresponds with the subspace on H (2n —1,4) generated
by the n — 1 points (€2; + €2:+1), 0 <i <n—2.

The elements (zo, ..., Zon-2, Z2n—1) = (2§, ..., 25, _2,A28,_1), A € GF(4)*
and 6 € Aut(GF(4)), of PI'L(2n,4) determine a group G of six automor-
phisms of H?(2n — 1,4). The group G fixes K and S and induces the full
group of permutations of the line K. } a

Theorem 2 For every prime power q and all ny,ny € N\ {0,1}, there
ezists a glued near polygon of type HP(2n; — 1,¢%) @ HP(2n3 — 1, ¢%).
Proof. Let S;, i € {1,2} be a spread of symmetry of H?(2n; - 1, ¢?), and

let Lgi) be an arbitrary base line in S;. By the pv‘oof of Lemma 1, we know

that there exists a group G; = Cg1 of automorﬁhisms of HP(2n; - 1,4?)
fixing each element of S;. In Theorem 10 of [7], the relationship between
the groups G; and Hs‘(Lgi)) is explained. It follows that IIs, (Lg’)) =
s, (L) = Cy41. So, there exists a bijection 0 between L{" and L{?
such that Is, (L{") = 6-'I15,(L{¥)0. With these choices of Sy, Sz, L{V,
L'® and 0, we obtain a glued near polygon of type H? 2m -1,¢) ®
HP(2n3 - 1,4?) by Lemma 3. | n]

Theorem 3 For all ny,n € N\ {0,1}, there ezists a unique glued near
polygon of type HP(2n; — 1,4) ® H?(2ny — 1,4). In particular, for every
n € N\ {0,1}, there exists a unique glued near polygon of type HP(2n —
1,4)®Q(5,2).

Proof. By Theorem 1, all spreads of symmetry of H?(2n;—1,4), i € {1,2},
are isomorphic. We may therefore fix arbitrary spreads of symmetry S; and
Sy in HP(2n; — 1,4) and H?(2ny — 1,4), respeéti\)ely. By [7], every near
polygon which can be obtained for a certain chbice of the base lines can
always be obtained for any other choice of the bafzse lines (by changing the
map @ accordingly). Hence we may also fix arbitrary base lines L(ll) €S
and L(lz) € S2. By Lemma 5, every bijection @ between Lgl) and L(lz), gives
rise to a glued near polygon of type HP(2n, — 1,4)®¢ H D(2n, -1,4). By
reasons of symmetry, all these near polygons are isomorphic if the group of
automorphisms of H?(2n; — 1,4) which fix §; apd the base line Lgl) €S
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induces the full group of permutations on this base line. But this is precisely
what we have shown in Lemma 8. o

Remark. The uniqueness of Q(5,2) ® Q(5,2) was already shown in [1].

The near polygon HP(2n — 1,4) ® Q(5,2) has HP(2n - 1,4) as a big
geodetically closed sub near polygon. In section 5, we will determine all
dense near polygons which have H?(2n — 1,4) as a big geodetically closed
sub near polygon. During the classification, we will use the classification
of dense near hexagons with three points per line.

4 Dense near hexagons with three points on
each line

By [1], there are 11 dense near hexagons of order (2,*). These near
hexagons are listed in the table below using the notation of [9]. We re-
fer to [1] or [9] for a description of the near hexagons Hs, Gs, E;, E,
and Ez. In the table we also mention what the local spaces are. These
local spaces are all isomorphic for the same near hexagon and provide in-
formation about the configuration of quads through a fixed point of the
near hexagon. In QP(6,2), E; or HP(5,4), the local spaces are nonde-
generate projective spaces. In L3 x Lz x La, W(2) x L3, Q(5,2) x L3 or
Q(5,2)® Q(5,2), the local spaces are crosses. An (i, j)-cross C; ; (i,7 > 2)
is the unique linear space on i + 7 — 1 points containing a line of length
i, a line of length j, and (i — 1)(§ — 1) additional lines of length 2. The
local spaces of E; are isomorphic to the complete graph K2 on 12 points
(regarded as linear space). The remaining local spaces are related to sets of
points in projective planes. For every set P of points in a projective plane
PG(2,4q), we define Lp as the linear space whose points are the points of
P and whose lines are the lines of PG(2, ¢) containing at least two points
of P. The local spaces of H3, G3 and [E3 respectively correspond with a set
X of six points of PG(2,2), the union X of three non-concurrent lines in
PG(2,4) and the complement X3 of a hyperoval in PG(2,4).
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| near hexagon S | # points | ¢s | local spaces

LsxLasxLs 27 2 Ca2
W(2) x L3 45 3 | Ca3
Q(5,2) x Lg 81 5|  Cas
Hs 105 51| Lx,

QY(6,2) 135 6 PG(2,2)
Q(si 2) ® Q(51 2) 243 8 c’5,5
G3 405 11| Lx,
E, 729 | 11 Ko

[Eo 759 14 PG(3,2)
K 567 | 14 Lx,

HP(5,4) 891 20 [} PG(2,4)

dense near polygon S of
(2,1), i€ {1,2,4}, then y

Lemma 9 Let z and y denote two poinis of a
order (2,t). If z is contained in a quad of order
is also contained in a quad of order (2,1).

Proof. By connectedness of S, it suffices to prove the lemma, for collinear
points z and y. If Q denotes an arbitrary quad through z, then C(Q,z)
is either the quad Q itself or a hex H. In any case, there exists a quad
through y of the same order as @ (Recall that all local spaces in a hex are
isomorphic). ’ Q

5 HP(2n-1,4) as big geodetlcally closed sub
near polygon

In this section, we will prove the following result)'

Theorem 4 Let S be a dense near 2n-gon, n > ll containing a big geodet-
ically closed sub near polygon F isomorphic to H b (2n —3,4). Then either
S HP(2n-1,4), = HP(2n-3,4)® Q(5,2) lor S = HD(2n 3,4)xL

for some line L of size at least 3.
|

The proof of this theorem happens in several lemmas.

Lemma 10 Let G be a big geodetically closed su)b near polygon of a dense
near polygon A. Then every geodetically closed s}ub near polygon G’ which
meets G either is contained in G or intersects G in a big geodetically closed

sub near polygon of G'.

Proof. Suppose that G’ is not contained in G al‘ld let z denote a common
point of G and G’. Every point y not contained in G is collinear with a
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unique point ¥’ of G. If d(z,y) < d(z,%'), then the line yy' contains a
point y” at distance d(z,y’) — 1 from z. Since G is geodetically closed it
follows that ¥” € G. But then y'y” C G, contradicting y ¢ G. Hence,
d(z,y) = d(z,%') + 1 and ¥’ is on a shortest path between z and y. In
particular, if y € G’, then since z,y € G’, also y' € G'. Hence, every point
in G’ has distance at most 1 from a point of GNG’. This proves the lemma..

(]

Lemma 11 If not all lines of S are incident with 3 points, then S is iso-
morphic to HP(2n — 3,4) x L for some line L of size at least 4.

Proof. Let K be a line with more than three points. Since every line
disjoint with F contains as many points as its projection on F, K intersects
F in a point z. Suppose that ts > tx + 1, then there exists a line L # K
through = which is not contained in . By Lemma 10, the quad @ :=
C(K, L) intersects F in a line M, so tg > 2. Since tg > 2, every line of Q
is incident with the same number of points, a contradiction, since K has
more points than M. Hence, ts = tx + 1. The lemma now follows from
Lemma 1. O

From now on we suppose that each line of S is incident with exactly three
points.

Lemma 12 The near polygon S does not contain quads isomorphic to
w(2).

Proof. Suppose the contrary, then by Lemma 9, there exists a W(2)-quad
Q@ through a point z of ¥. By Lemma 10, this quad @ intersects F in a line
K. Let L be a line of Q through z different from K and let H = HP(5,4)
be a hex of F through K. Let X denote the set of points of L(H, z) (i.e. the
set of lines of H through z) which are contained in a W(2)-quad together
with L. We will now show that [UNX| € {0, 3} for every line U of L(H, z).
Suppose that [UNX| > 1 and let Qu denote the Q(5, 2)-quad corresponding
with U. Since |U N X| > 1, there exists a W(2)-quad R through L which
intersects Qu in a line. By Section 4, C(Qu, R) is isomorphic to either G3
or E3. In any case, exactly three lines of Qu through z are contained in a
W (2)-quad together with L, or equivalently, [UNX| = 3. Since H contains
exactly five Q(5, 2)-quads through K, we have | X|=1+5-2=11. Hence
X is a set of 11 points in PG(2,4) such that every line meets it in either 0 or
3 points, but such a set does not exist (Otherwise, every point of PG(2,4)
outside X would be contained in % lines meeting X). o

For every line L intersecting F in a point z, let A;, be the set of lines
M of F through z such that C(L,M) = Q(5,2)}. By Lemmas 10 and
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12, C(L,L’) = Q(5,2) for every line L’ # L intersecting F in z. Hence
ts —tr = 3|AL| + 1. As a consequence, |A.| is independent from the
choice of L and equal to a := &s={£=1, _
. !

Lemma 13 A;, is a subspace of L(F,z). ‘[ o

Proof. Let K; and K> be two different lines bf Ap and let K3 be an
arbitrary line through z contained in C(K, K32). Since the hex C(L, K, K2)
has three Q(5, 2)-quads through the same point z and no W(2)-quads, it
must be isomorphic to H2(5,4). Hence, C(L, K3) = Q(5,2) and K3 € AL.
This proves the lemma. ‘ ' o

Lemma 14 a € {0,1,tx + 1}.

|
Proof. We suppose that 2 < a < tr and derive a contradiction.

(a) Suppose first that n = 4, so F = HD(5, t‘i). Let z be an arbitrary
point of F and let L be an arbitrary line through = not contained in F.
Since Ay, is a subspace and 2 < |AL] < 20, there exists a Q(5,2)-quad
Q: through z such that A;, is the set of five lines of Q. through z. Also,
a=25,ts =tr+3a+1=236 and the hex H; := C(L, Q.) is isomorphic to
HP(5,4). If L' is a line through z different from L and not contained in
F, then C(L, L) is isomorphic to Q(5,2) and hence intersects  in a line
of Q.. It follows that every line through z not contained in F is contained
in H. Since H, = HD(5,4), we then have that H, := C(T;(z) \ F). So,
H; and Q; = H; N F only depend on z and not on the line L. If y € Qx,
then H, = H; and Q, = Q. Hence, the quads Q., = € F, partition the
point set of F, and the hexes Hz, z € F, partition the point set of S.
Since F = HP(5,4) is big in S, every hex isomorphic to H2(5,4) is big.
[For, the number of points at distance 0 or 1 from F equals the number
of points at distance 0 or 1 from any hex isomorphic to F.] In particular,
each of the hexes H, is big. The total number ofi quads Q., z € F, equals
%?—S-F = 33. Let X denote the set of 33 pointslof H(5,4) corresponding
to the quads Qz, z € P. If u is a point of X, then we denote the Q(5, 2)-
quad of F corresponding with it by u® (see Section 3) and the unique hex
of § intersecting F in u® by H(u). We will now show that X is a subspace
of the linear space £ defined in Lemma 7. Consider two different points u,
and up in X. Since uf and ug are disjoint, uwjus N H (5,4) is a Baer subline
{u1,u2,u3} and u§ is the reflection of u$ about u$ (in F). The reflection
of H(uy) about H(uz) (in 8) is a hex which meets F in the quad u¢ and
hence coincides with H(ug). As a consequence ug/€ X. This proves that X
is a subspace of the linear space £. Hence, there exists a subspace 7 such
that X = 7 N H(5,4). Since no two points of X are collinear on H(5,4),
we have | X| < |H(2,4)| = 9, contradicting | X| = 33.
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(b) We suppose that n > 5. Let z denote an arbitrary point of 7 and let
L denote an arbitrary line through z not contained in . Since2 < a < tr,
there exist lines K, K3 and K3 through z such that Ky, K2 € AL, K1 # K»
and K3 &€ Ar. Now, the near octagon C(L, K, K2, K3) contradicts (a). O

Lemma 15 Ifa = 0, then S & HP(2n - 3,4) x Ls. If a = 1, then
S HP(2n-3,4)®Q(5,2). fa=tr+1, then S = HP(2n - 1,4).

Proof. If a =0, then ts —tx = 1 and hence S = H?(2n - 3,4) x L3 by
Lemma 1. If @ = tx+1, then no grid-quad intersects F and hence all quads
are isomorphic to Q(5,2) by Lemma 9. Since the generalized quadrangle
Q(5,2) has no ovoids (see e.g. Theorem 3.4.1 of [11]), & must then be
classical and isomorphic to H?(2n—1,4), see Section 2.3. (HP(2n—1,4)is
the only classical near 2n-gon in which all quads are isomorphic to Q(5,2).)

Suppose now that a = 1, then ts = tr + 4. If z is an arbitrary point
of F and if L and M denote two lines through x not contained in F, then
C(K,L) is a Q(5,2)-quad. Hence, every point z € F is contained in a
unique Q(5, 2)-quad Q. which intersects F in a line L,. The intersection
lines Lz, z € F, determine a spread of F and the set T} = {Qz|z € F}
determines a partition of § in quads.

Now, consider a point =z of S not contained in F, let y be the unique
point of F collinear with x, and let A := zy, B, C, D and E be the lines of
Q := Qy through z. Let L be a line intersecting Q in z and consider the hex
H := C(L,Q). The hex H contains a grid-quad C(L, A), no W(2)-quads,
and at least two Q(5, 2)-quads through the line L, = Q N F (namely Q
and H N F). It follows from Section 4 that H £ Q(5,2) ® Q(5,2). Hence,
exactly one line of Q through z, say B, is contained in a Q(5, 2)-quad with
L.

Now, consider a geodetically sub near 2(n — 1)-gon F’ of S containing
Q' ;= C(B, L) and intersecting @ in B. We will show that every quad of
F’ is isomorphic to Q(5,2). Let L, and L2 be two lines of F’ through
z. If Ly # B # La, then the hex H' .= C(A, Ly, L2) contains grid-quads
(namely C(A, L) and C(A, L)), a Q(5,2)-quad (namely C(A, Ly, L2) N F)
and no W(2)-quads and hence must be isomorphic to either Q(5,2) x L3
or Q(5,2) ® Q(5,2), see Section 4. In any case, C(Lj, L2) is isomorphic
to Q(5,2). If L, = B and if Ly is not contained in Q’, then C(L2, M) =
Q(5,2) for every line M # B through z contained in @’. This is only
possible if C(L2, Q") is isomorphic to HP(5,4), see Section 4. Hence, also
C(Li, L2) = C(B, Ly) is isomorphic to Q(5,2). It now follows that every
quad of F’ through z is isomorphic to Q(5,2). By Lemma 9 it then follows
that every quad of F’ is isomorphic to Q(5,2). As before, we then know
that F’ is classical and isomorphic to H?(2n — 3,4). Obviously, F' is
the only geodetically closed sub near polygon through z isomorphic to
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HP(2n -3,4). !

Repeating the above construction for every point z outside 7, we obtain
a partition T> of S in geodetically closed sub near polygons isomorphic to
HD(2n —3,4). We can now apply Lemma 6 and conclude that S is a glued
near polygon of type H?(2n — 3,4) ® Q(5,2). In fSectlon 3 we have shown
that there exists a unique such glued near polygon. a
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