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Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum
number of subsets into which the vertex set V(G) can be partitioned
so that each subset induces a subgraph whose connected components
are paths. An integer distance graph is a graph G(D) with the set
of all integers as vertex set and two vertices u,v € Z are adjacent
if and only if | ¥ — v |€ D where the dista.njce set D is a subset
of the positive integers set. Let Dy = {1,2,--. ,m} — {k} for
m > k 2 1. In this paper, some upper and lower bounds of the vertex
linear arboricity of the integer distance graph G(Dyn,x) are obtained.
Moreover, vla(G(Dm,1)) = [3] + 1 for m > 3, vla(G(Dsi41,2)) =
2! 4+ 2 for any positive integer ! and ‘uta.(G(DqL,z)) = g + 2 for any
integer q > 2. \

Keywords integer distance graph; vertex linear arboricity; path
coloring

1 Introduction

In this paper, R, Z, P, N denote the set of all the real numbers, all the
integers, all the prime numbers, and all the posiﬁive integers, respectively.
For z € R, |z] denotes the greatest integer not more than z; [z] denotes
the least integer not less than z. For a finite set S,‘ its cardinality is denoted
by [S|. G is called a supergraph of H if H is a subgraph of G (see [2]),
denoted by H < G. l

A k-coloring of a graph G is a mapping f f\}om V(G) to {1,2,...,k}.
With respect to a given k-coloring, Vi denotes the set of all vertices of G
colored with 7. If V; is an independent set for every 1 < ¢ < k, then f
is called a proper k-coloring. The chromatic number x(G) of a graph G
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is the minimum number k of colors for which G has a proper k-coloring.
If V; induces a subgraph whose connected components are paths, then f
is called a path k-coloring. The vertez linear arboricity of a graph G,
denoted by vla(G), is the minimum number & of colors for which G has a
path k-coloring.

Matsumoto [14] proved that for a finite graph G, vla(G) < [A(%)ﬂ] ,
moreover, if A(G) is even, then vla(G) = [-A—(%m'l if and only if G is a
complete graph of order A(G) + 1 or a cycle. Goddard [9] and Poh [15]
proved that vla(G) < 3 for a planar graph G. Akiyama etc. (1] proved
vla(G) < 2 if G is an outerplanar graph. Fang and Wu (8] determined the
vertex linear arboricity of complete multiple graphs and obtained an upper
bound of Cartesian product of graphs.

If S is a subset of the set of real numbers and D is a subset of the
set of positive real numbers, then the distance graph G(S, D) is defined
by the graph with vertex set S and two vertices z and y are adjacent if
and only if |z — y| € D where the set D is called the distance set. In
particular, if all elements of D are positive integers and S = Z, then
the graph G(Z,D) = G(D) is called the integer distance graph and
the set D is called its integer distance set. The concept of the distance
graph was introduced by Eggleton, Erdés and Skilton [6] in 1985. They
proved x(G(R,D)) = n+ 1 if D is an interval between 1 and § when
1<n-1<4§ < n, x(G(P)) = 4. They also obtained some results
on the chromatic number of G(Dm k) where Dm i = {1,2,--- ,m} — {k}.
Recently, Chang, Liu and Zhu [3] determined completely the chromatic
numbers of G(Dym ). More results on the chromatic number of integer
distance graphs, see (6}, [7],[10],[16] and [17]. For the vertex linear ar-
boricity of distance graphs, Zuo, Wu and Liu [18] obtained the following
results: (1) vla(G(R, D)) =n+1if D is an interval between 1 and § when
1<n-1<48<n;(2)vla(G(D)) =2if |D] =2, or |D| > 2 and there is
at most one even number in D; (3) vla(G(D)) < k if there is at most one
multiple of k in D.

It is easy to prove that vla(G(D)) = [Z£] for D = {1,2,---,m}
(see [18]). It is interesting to determine vla(G(D)) when D = Dy =
{1,2,...,m} — {k} where 1 < & < m! In this paper, we will show: (1)
vla(G(Dm,1)) = [Z] +1 for m > 3; (2) [%1] + 1 < vla(G(Dpm2)) <
[2]+2 for m > 6; (3) vla(G(Dmu)) = [5] for m < k+ [£] —1; (4)
[2tEL] < 91a(G(Dm,k)) < k(53] + 1) and vla(G(Dm)) < d[Biketl)
for m > 3k and d = ged(k, m + 3k + 1), the greatest common divisor of k
and m + 3k + 1. In particular, we also obtain vla(G(Dgi+1,2)) = 21 + 2 for
any positive integer I, and vla(G(Dsq,2)) = ¢ + 2 for any integer ¢ > 2.
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2 Main results

The following lemma can be found in [18].

Lemma 2.1. (I)LetD {m+1,m+2,---,m+h} withm >0,k >2,
then vla(G(D)) = [&1] form =0 and vla(G(D)) S 24 +1 form > 1.

(2) If there is at most one multiple of k in distance set D, then we have
vla(G(D)) < k.

Clearly, vla(G(D)) = 1if |D| = 1. If | D| > 2, then vla(G(D)) > 2 since
the graph does not consist of paths only. It is obvious that vla(G(D2)) <
vla(G(D1)) if D2 C Dy. In the following, we will study the vertex linear
arboricity of G(Dm ) for k =1, k = 2 and k > 3 respectively. First, we
consider the case k = 1. Since G(D2,1) = G({2}), vla(G(D3,1)) = 1.

Theorem 2.2. For each positive integer m > 3, vla(G(Dpm,1)) = [Z] +1.

Proof. Tt follows from Lemma 2.1 that vle(G(Ds 1)) = vla(G(Ds,1)) = 2.
We may assume in the following that m > 5. Let n = [m/4]. Clearly,
n > 2.

Firstly, we give a (n + 1)-coloring f of G(Dp,1). For any integer i,
let f(4i) = f(4i+1) = f(4i+2) = f(4i+ 3) = i( mod (n + 1)). Since
every four such vertices induce a path (4i + 2,41, 4i 4+ 3,4i 4+ 1) and every
connected component of the subgraph induced by vertices received the same
color is such a path, f is a path (n 4 1)-coloring of G(Dm,1). Hence,
vla(G(Dp,1)) < n+1=[m/4] +1.

Conversely, suppose that G(Dm,1) has a path n-coloring f. Then f is
also a path n-coloring of the subgraph Gy, of G(Dy,1) induced by vertices
0,1,2,...,4n. Since [V(Gm)| = 4n + 1, there must be at least 5 vertices in
Gm, say a,b,c,d and e, received the same color o, where 0 < a<b<c<
d<e<idn.

Claim 2.1. m =4n - 3.

Suppose that m > 4n - 2. If ¢ < d — 1, then ca,cd, ce € E(Gy,), that
is, vertices a,c,d and e induce a K\ 3, a contradiction. So c =d —1. If
a < b-1, then ba,bd,be € E(Gy,), a contradiction. So a = b—1. Similarly,
we haveb=c~1,d=e—1. Thereforea+2=b+1=c=d—-1=e-2. But
under the condition, a,c and e form a cycle of length 3, a contradiction,
too. The contradiction proves Claim 2.1. !

Claim 2.2. b<2andd>4n—2,thatis,a=0,b=1,d=4n—1 and
e=4n. &

Here we only give the proof of the case b < 2' The case d > 4n — 2 can
be settled similarly. Assume, on the contrary, b > 2.
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Suppose b—a > 2. If b > 3 or e < 4n, then e — b < 4n — 3 = m, that
is, ba,bd,be € E(Gn,), a contradiction. So b = 2 and e = 4n. It follows
that @ = 0. We also have ¢ = b+ 1 = 3, for otherwise, if ¢ > b+ 1, then
ba, bc,bd € E(G,,), a contradiction. If d > ¢+ 1, then ca,cd, ce € E(Gm),
a contradiction. So d = ¢+ 1 = 4. But under the condition, ab, bd,ad €
E(Gn), a,b and d induce a cycle of length 3, a contradiction, too.

Suppose b—a = 1. Thenae > 1andc > 3. If ¢ > b+ 1 then
ca,ch,ce € E(Gm), a contradiction. If d > ¢+ 1 then ca,cd, ce € E(Gn),
a contradiction. If € > d + 1 then da, db, de € E(Gr), a contradiction. So
a+2=b+1=c=d-1=e—-2, ac,ce, ae € E(Gn,), a contradiction, too.

Hence, Claim 2.2. holds.

It follows from Claim 2.1 and Claim 2.2 that ¢ = 2 or ¢ = 4n — 2, for
otherwise, if 3 < ¢ < 4n — 3, then ac, bc,ec € E(Gn), a contradiction. At
the same time, vertices 2 and 4n — 2 receive different colors, for otherwise,
vertices 0,2,4n — 2 and 4n — 1 induce a K 3, a contradiction, too.

Without loss of generality, assume that the vertex 4n—2 is colored with
«. This implies that except a, any other color just colors four vertices in
G, and these four vertices must be consecutive since the difference of any
two such vertices is less than m. That is to say, vertices 2, 3,4 and 5 receive
one color, vertices 6, 7,8 and 9 receive another color and so on.

Now let us come back to analyze the coloring of vertices 4n + 1 and
4n + 2 of G(Dy,1). Suppose f(dn+ 1) = B # a. Then there exists
1(2 <1< 4n—-6) such that f(I) = f(1+1) = f(I1+2) = f(l+3) = B. Then
vertices /,{+1,{+3 and 4n+1 induce a Ky 3 sinced <4n+1-(I+3)<m
for any integer 2 < I < 4n—6, a contradiction. So f(4n+1) = c. Similarly,
fAn+2)=a.

It follows that f(dn—2) = f(4n—1) = f(4n) = f(dn+1) = f(4n+2) =
o which is impossible. This contradiction implies that vla(G(Dm,1)) 2
n+l=[2]+1 a

Second, we consider the case k = 2. By Lemma 2.1, vla(G(D332)) =
vla(G(Dy,2)) = vla(G(Ds2)) = 2. For m > 6, we have the following result.
Theorem 2.3. For each positive integer m > 6,

ML) 41 < ola(G(D o) < [T +2.

In particular, vla(G(Dgi+1,2)) = 20+ 2 = [42] +1 and vla(G(Daq,2)) =
g+2= I'%i-l +2.

Proof. Firstly, we prove the upper bound. Suppose that m = 8!+ j with
4<j<8and 0<h <8([F]+1). Let

F(h) = 2u+1, forh=28u,8u+2,8u+4,8u+6,
Tl 2u+2, forh=8u+1,8u+3,8u+58u+T7.
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For each ¢ € Z, let f(8¢([R] + 1) + h) = f(h). Since the vertices
that received same color in one connected component are only vertices
8u,8u+2,8u+4 and 8u+6, or 8u+1,8u+ 3,8u+5 and 8u+ 7, and they
induce a path (8u+4, 8u, 8u+6, 8u+2) or (8u+5,8u+1,8u+7,8u+3), fisa
path coloring of G(Dn,2). Therefore via(G(Dp2)) < 2[31+2=[2]+2.

Suppose m =8l+jfor1 <j<4and 0<h < 8[F]. Let

F(h) = 2u+1, forh=_8u,8u+2,8u+4,8u+6,
1 u+2, forh=8u+1,8:u+3,8u+58u+7,

S(81+8) = F(81+9) = f(81+10) = 21+ 3 and f((8!+10)¢t + k) = f(h) for
any t € Z. Then f is a path coloring of G(Dy, 2). Hence, vla(G(Dm2)) <
2A+3=27+2. ‘

Secondly, we will prove vla(G(Dm,2)) 2 [2£L] + 1. For sake of sim-
plicity, we only give a proof of the case m = 4q > 6, and other cases
can be settled similarly. Now [ZH] +1 =g+ 2. Let n = g+ 1. As-
sume, to the contrary, that G(Dm ) has a path n-coloring f. Consider
the subgraph H,, of G(Dp2) induced by vertices 0,1,2,--- ,4n = m + 4.
Since [V(Hm)| = 4n + 1, there must be at least 5 vertices in Hp,, say
a,b,c,d and e, such that f(a) = f(b) = f(c) = f(d) = f(e) = a, where
0<a<b<c<d<e<4n. |

Claim 3.1. min{d — a,e — b} > m. ‘

Suppose d —a < m. Then ad € E(Hyp,). If b—a # 2, then ab € E(H,,)
and ac € E(Hm). Soc=a+2=>b+1and bc € E(H,,). Thus bd & E(Hpn),
that is, d — b = 2 and then ¢d € E(Hp), a,b,c and d induce a cycle
of length 4, a contradiction. Hence, b —a = 2. It is similar to prove
c—b=d~-c=2. Sod=c+2=>b+4=a+6 and then ac, bd, ad € E(H,).
Sinced =a+6 > 6, e —d < m. It follows from bd,ad € E(Hy) that
e—d =2 and ae,ce € E(Hy,), so vertices a, ¢, e induce a cycle of length 3,
a contradiction. Hence, d — a > m. Similarly, we obtain that e — b > m.
Claim 3.1 is proved.

By Claim 3.1, if vertices u,u + 2,u + 4,u + 6 receive the same color
B, then any other vertex v which received color ﬂ would satisfy min{|v —
uf,[v = (u+6)[} > m. |

Claim 3.2. There are at most five vertices rejceiving color a in Hp,.

If there are six vertices receiving the same coior o, it is not difficult to
verify that they would be vertices 0,1,2,4g+ 2,4¢ + 3 and 49 + 4 = 4n.
Then 4q — 1 vertices 3,4,.-- ,4¢g+ 1 = m + 1 receive ¢q colors where one

color B colors three vertices g, k,! and any other color colors four vertices.
Any four vertices with the same color would be'u,u + 2,4 + 4,4 + 6 for

69



some integer u > 3. Thus vertices 4n +1,4n 4 2,4n + 3 and 4n + 4 would
be colored B, but these vertices induce a cycle of length 4, a contradiction.

Therefore, there are just five vertices a,b,c,d and e in Hy, receiving
color a.

Claim 3.3. min{c—a,e—c} =2.

If c—a =3 and e—c > 3, then ac,cd € E(H,,) because of m — 3 <
d—a—-(c—a)=d—c < (dn—1) — 3 = 4g = m by Claim 3.1. Thus
bc,ce € E(Hy) and then ab € E(Hp,), that is,b=a+1 and e — ¢c > m.
Hence,a=0,b=1,c=3 and e =4n.

If d = 49+3, then 4q vertices 2,4, 5, --- ,4g+2 receive g colors, and any
color just colors four vertices that are k, h+2, h+4, h+6 in {2,4,5,--- , 49+
2} for some h > 2. Consider vertex hy = 4n+2 in G(Dy, 2), by Claim 3.1,
hy would be colored « since hy — (h +6) < m for any 4¢—4 > h > 2, but
dc, de,dhy € E(G(Dnm,2)), thus we have a contradiction.

Suppose d = 4¢ + 2. Then 4q vertices 2,4,5,--- ,4¢g+ 1,49 + 3 receive
q colors. If f(2) # f(4q + 3), then any four vertices with the same color in
{2,4,5,---,4¢+ 1,49 + 3} would be v,v + 2,v + 4,v + 6 for some integer
4g—-3 2 v > 2. Thus f(dn) = f(dn+1) = f(4n+2) = f(4n+3) = a which
is impossible. If 2, g1,92,93 = 49 + 3 are colored 8, then gi1gs € E(Hp)
or gogs € E(Hp), and any other four vertices with the same color would
be v,v + 2,v + 4,v + 6 for some integer 4q— 5 > v 2 4. So |[{u|f(u) =
B,An+2 <u<4n+5} <1 and |[{u|f(u) =a,4n+2 <u < 4n+5}| > 3.
But e and any three vertices in {4n+2,4n+3,4n+4,4n+ 5} would induce
a subgraph which contains a cycle, a contradiction, too.

Ifd <49+1, then d = 4¢+ 1 by Claim 3.1, so bd,cd,ed € E(Hy,), a
contradiction, too.

It is similar to get a contradiction when e — ¢ = 3,c—-a 2 3. If
c—a > 3,e—c > 3, then ce,ac € E(Hy,) and bc,cd ¢ E(Hyp,). Hence,
b=c-2,d=c+2. Soc—a=d-2—a >m-1l,e—c=e—(b+2) =e—-b-2 >
m —1becauseofd—a>m,e—b>m,andthene—a>2m-2>m+4
which is impossible since e < 4n =m + 4.

Therefore, we obtain that c—a=2o0re—c=2.

Claim 3.4. c=2o0orc=4q¢+2.

Assume, on the contrary, that 3 < ¢ £ 4¢g+ 1. Suppose a = ¢ — 2.
Then ab,bc € E(Hy,) and bd ¢ E(Hy), that is, d—b > m,s0b=2,c=
3,d =49+ 3,e = 4n and a = 1, and vertex 0 could not be colored a.
Hence, three vertices with the color of vertex 0 would be u;,u2, and ug =
4q 4+ 1 or uz = 4q + 2, for otherwise, if ug < 4q, then vertex 0 will be
adjacent to vertices u;,u2 and ug, a contradiction. Clearly, ujug € E(Hn)
or uguz € E(H,,) because of min{u,uz} > 4. Without loss of generality,
suppose ujug € E(H,,). Any other four vertices that received the same
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color must be v, v + 2,v 4+ 4, v + 6 for some integer 4¢ — 4 > v > 3. Thus,
fdn+2) = f(4n + 3) = f(0), and vertices 4n + 2,4n + 3 are all adjacent
to u3. So vertices uy,u3,4n+ 2 and 4n + 3 induce a K 3, a contradiction.

Suppose e = ¢+ 2. Then e < 49+ 3,d < 4¢ + 2 and cd, de € E(Hp).
Thus bd & E(H,,) and then d — b > m (for otherwise, if d — b = 2, bc,be &€
E(H,,), vertices b, c,d and e induce a cycle, a contradiction), sob=1,c=
49+1,d = 49+2,e = 49+3 and a = 0. Then 4q vertices 2,3,4,5,--- ,4q =
m,4q + 4 = m + 4 receive q colors. If f(m +4) & {f(2), f(3)}, then any
four vertices with the same color in {2,3,4,5,---,4¢ = m,m + 4} would
be v,v + 2,v + 4,v + 6 for some integer v > 2, but it is impossible for
anyv with2<v<m-2suchthatm=v+4andm+4=v+6. If
vertices 2 < g1 < g2 < g3 = 4q + 4 are colored S, then 4 < g3 < 4q, so
g29s € E(Hy,). Thus |{u|f(u) = 8,4n+ 2 < v < 4n + 4}| < 2. Because
any other four vertices with the same color would be v,v +2,v+4,v+ 6
for some integer v > 3, |{u|f(u) = o,4n+2 < u < 4n+4}| > 1, but ¢, d,e
and any one vertex in {4n + 2,4n + 3,4n + 4} would induce a subgraph
which contains a cycle, a contradiction. It is similar to get a contradiction
if 3 < g1 < g2 < g3 =4q+4 are colored 8.

Therefore, Claim 3.4 is proved.

Without loss of generality, suppose ¢ = 2. Then e = 0,b = 1 and
d>49+2,e=4g+3 ore =4n. If d = 4q+ 3, then e = 4n, so 4¢q
vertices 3,4,--: ,4¢ + 2 in H,, receive g colors where any of which colors
four vertices v,v + 2,v + 4,v + 6 for some integer v 2> 3. Hence, vertices
4n+1,4n+ 2 would be colored «, and they mduce a cycle along with d, e, a
contradiction. If d =49+ 2,e = 4q+3 then 4q vertices 3,4, - -+ ,4¢+ 1, 4n
receive g colors where any of which colors four vertices. If 3 < h1 < hy <dn
receive the same color 5, then vertices k1, hy are all adjacent to 4n and any
other color colors four vertices v,v + 2,v +4, v + 6 for some integer v > 4,
so vertex 4n + 3 receives color o, and it induces a cycle along with d,e,
thus a contradiction. If f(3) # f(4n), then any color colors four vertices
v,v+2,v+4,v+6 for some 3<v <4n—-6in {3,4,--- ,49 + 1,4n}, but
it is impossible for any v with 3 < v < 4n -6 such that 4¢g+1=v+4
and 4n = v + 6. Similarly, it is not difficult to get a contradiction for
d=4q+2,e=4n.

Therefore, vla(G(Dagq,2)) > [-54—] + 1. The case m # 4q can be settled
similarly.

Since vla(G(Dyq,2)) < |'—9'| +2= [—‘L-] +1, la(G(D4q,2)) =q+2=
[41+2. |
In addition, suppose m = 81+ 1 for some integ?r land 0 < h < 8(I+1).
Let :

, %u+1, forh=8u,8u+2 8u+4,8u+6,
f'(h) =
2u+2, forh=28u+1, 8u+3‘ 8u+5,8u+7.
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Then f’ can be extended to a path coloring of G(Dsiy1,2), so we have
vla(G(Ds141,2)) < 2|8 | +2 = [8EL] +1 = 20 + 2. But v1a(G(Dpn 2)) 2
[ +1 =2l + 2, 50 vla(G(Dpm,2)) = 2l + 2 = [=EL] + 1. The proof is
completed. O

This theorem means that vla(G(Dpm,2)) = [Z£] +1 or [2] + 2 for
m 2> 6 and m # 4q. For some small m, we can determine vla(G(Dp, 2)). For
example, by Theorem 2.3, vla(G(Deg2)) = 3. But for m = 7, let f(n) = ¢
ifn=3¢3i4+1,3i+2( mod 9) for : =0,1,2. Then f is a path coloring of
G(D7z,2). Therefore vla(G(Dg,2)) = vla(G(D72)) = 3.

Let f(n)=1ifn=23:,3i+1,3i+2( mod 12) fori=0,1,2,3. Then f
is a path coloring of G(Djo,2). Therefore vla(G(Djo,2)) = vla(G(Ds2)) =
vla(G(Do 2)) = 4 by Theorem 2.3.

Suppose that m = 13. Let f(n) =i if n = 37,3i+1,3i+2( mod 15) for
1=0,1,2,3,4. Then f is a path coloring of G(D\3,2), so vla(G(Dy32)) =
vla(G(Dj2,2)) = 5 by Theorem 2.3. For m = 11, Theorem 2.3 implies 4 <
vla(G(D11,2)) < 5 (in fact, it is not difficult to prove that vla(G(D11,2)) =
5).

Now we consider the case k > 3.

Theorem 2.4. For any positive integers m,k withm > k > 3,

vla(G(Dm,x)) = [§1, form < |3 -1,
[241] < vla(G(Dmk)) <k, for |3F] <m < 3k.

Let m =4kl 4 5 > 3k for somel and 3, 0 < 7 < 4k, then

k(| &) +1), for0<j <k,
m+k+1 k[ 2] + [E=EEL, for k < 5 < 2k,
r 4 .I gvla(G(Dﬂhk)) S kl.';%] + I‘!ic_'l’ for 2k _<_‘7 < [5’62—2]‘

k([ 2] +1), for |352] < j < 4k.

Proof. Suppose m < k+ |£] — 1. Since vertex set {0,1,--- ,k — 1} induces
a complete subgraph of order k, vla{(G{(Dpn x)) 2 [g]. Let fi(kl+ ) = (
mod |'-'§"|) forl € Z and 0 < i < k, that is, all verticesin V; = {--- , 4, I'%] +
i, k+i,k+[§]+4,2k+1,- -} receive color i for every 0 <i < |£] —1 and
all vertices in Vge_1y/2 = {++- » (k — 1)/2,k + (k — 1)/2, 2k + (k - 1)/2, - --}
receive color 5;—1- if k is odd. It is clear that V; induces a path since
2k+i—([£]+14) = k+ %] > m, and V(k_1),2 is an independent set if k is
odd. So f is a path [£]-coloring and it follows that vla(G(Dm k) < [£].
Therefore, vla(G(Dmx)) = [£].

Suppose that k+ |§] < m < 2k — 1. By Lemma 2.1, vla(G(Dm k)) <
k. Let H be the subgraph of G(Dm,) induced by vertices 0,1,2,:-- ,m.
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Then H is a complete k-partite graph K (2 »2,1,---,1} with partition
sets Xo = {0, k} X1 ={L,k+1}, -+, Xppg = {m k ym}, Xm—ks1 =
{m-k+1}, .-, Xy = {k-1}. It is obvious that any four vertices
of H induce a subgraph which contains a cycle, and any three vertices
of H that are exactly contained in three different partite induce a cycle.
So vla(H) = 2k — m — 1 + [22=ktl=@-l-m)] _ [mil]  Therefore,
vla(G(Dm,x)) > vla(H) > [Z£L] for 2k -1>m>k+ [g ].

Suppose that 2k < m < 3k We also have vla(G(Dm k)) < k by Lemma
2.1. Let Xo = {0,k,2k}, X{ = {1,k+1,2k+1}, - - , X, o, = {m~2k, m—
k,m}, X _2k+1_{m 2k+1,m— k+1},-- Xkl—{k—IZk 1},
then XU XjU---U X[, = {0,1,2,--.,m} induces a supergraph H’
ofa complete k-paxtite graph K (3,3, - ,3, 2,-++,2). It is clear that any
four vertices of H’ induce a cycle. Therefore, via(H') = m — 2k + 1 +
[22=2=G2=29] = [m£1] and then vla(G(Dm)) 2 [2£L].

Suppose that m =4kl +j > 3k. f0 < j <k and 0 < n < 4k(l + 1),
let fa(n) =i+ kt for n — (i + 4kt) = 0,k,2k,3k,0 <i < k,0 <t <, and
Ja(n+4ks(l+1)) = fa(n) for every s € Z. It is obvious that f3 is a periodic
path coloring of G(Dm,k). Therefore vla(G(Dm k) < (I+1)k = k(| ] +1).

Ifk<j<2k,let

i+ kt, for n — (4kt + i) = 0, k, 2k, 3k,
fa(n)

0<i<k0<t<l,
k(14+1)+ [2=28EED | for 4k(I+ 1) < n < m + 3k,

and other vertices be colored periodically, that is, f4(n+(m+3k)t) = f4(n)
for any ¢t € Z. Then f, is a path coloring, and so vla(G(Dm)) < k[F]+
rm+3k—4k!l+lz+ -I kl— 'I + l'z—k-{- -I

If2k<j<2k+|% J—-l for0<n<m+3k let

i+ kt, for n — (4kt + i) = 0, k, 2k, 3k,
fs(n) 0<i<k0<t<gl,
k(l+1)+4, forn—i-4k(l+1)=0,[%],k, 0<i<[£],

and other vertices be colored periodically, that is, fs(n+(m+3k)t) = fs(n)
for any ¢ € Z. Then fs is a path coloring, 50 vla(G(Dp k) < k[F] + |'"'|

If2k+ |£] —1 < j <4k, for 0 < n < 4k(l +2), let fe(n) = i + kt for
n—(z+4kt) =0,k,2k,3k,0< i <k,0<t <l+1,and fe(n+4ks(l +
2)) = fe(n) for every s € Z Then fs is a periodical path coloring and so
vla(G(Dmi)) € (1+2)k = k([&]+1).

Now we begin to prove vla(G(Dmx)) > [ —+-—+—'| Assume, on the
contrary, that vla(G(Dmk)) < [BEEEL]. Let n = [miktl] _ 1 then
G(Dm i) has a path n-coloring f. Let G, be a subgraph of G(Dm k)
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induced by vertices 0,1,2,--- ,m + k, then f is also a path n-coloring of
Gm. Note that |V(Gm)| = m+ k + 1. There must be 5 vertices a,b, c,d
and e receiving 4the same color a, where 0 S a<b<c<d<e<m+k.

Claim 4.1. min{c—a,d — b,e — ¢} > k and max{c — a,e — c} < m.
Assume, for example, that c—a < k, then ab, ac,bc € E(G,,) and a,b, ¢
induce a cycle, a contradiction. So the claim holds.

Claim 4.2. min{d — a,e — b} > m and max{b—a,e —d} < k.

Suppose that d —a < m, we will prove that d = c+k = b+2k = a+3k.
If d — c # k, then cd € E(Gy,), and ac € E(Gy,) or be € E(Gy,) (for
otherwise, a,b, c and d induce a K 3, a contradiction). In the former case,
¢—a =k and ab,bc,ad € E(Gyp,), a,b,c and d induce a cycle of length 4,
a contradiction. In the latter case, c— b = k and cd, bd, ad € E(Gn), a,b,¢c
and d induce a K3, a contradiction. Hence d — ¢ = k. It is similar to
prove that ¢ — b = b — a = k. Thus ac,bd,ad € E(Gy,) and de € E(Gy),
so e —d =k and ce,be € E(Gn), a,b,¢,d and e induce a cycle of length 5,
a contradiction, too. Therefore d — a > m. Similarly, we can obtain that
e—b>m. Hence,b—a<kande—d<k.

We will come to contradictions, whatever the relative position of a and
¢ may be.

Case 1. c—a=k.

Since ab, bc € E(Gp,), bd is not in E(Gy,), so d — b > m by Claim 4.2.
Thuse—-d < k,b<k,andk<d—c<m+k—k=m,socd € E(G,).
Bute—-c<mande—c>d—-(b+k)=d—-b—k>m—k >k, therefore
ce € E(Gy,), and then b, c,d and e induce a K} 3, a contradiction.

Case 2. c—a > k.

Since b—a < k and ¢ — a £ m, ab,ac € E(Gy,,) and bc € E(Gn), so
¢—b=k by Claim 4.1. If bd € E(Gy), then cd € E(Gr), sod—c=k
since d — ¢ £ m. Thus ad € E(Gr,), however, it is impossible by Claim
4.2. Ifbd € E(Gm), then d-b > m,e—d <k <d-c<e—c, so
cd, de, ce € E(G,,) by Claim 4.1. Thus c,d and e induce a cycle of length
3, a contradiction.

By all above arguments, we have vla(G(Dm k) > [2f]. Thus the
theorem is proved. 0O

By this theorem, it is obtained that vla(G(Dak—-3,k)) = vla(G(Dak—2,k))
= vla(G(D3k-1,k)) = k for any positive integer k. For m = 2k — 1,
we will get vla(G(Dm ) = [=2]. Let Xo = {0,k,2k}, X1 = {1,k +
1}, .-+, Xk-1 = {k — 1,2k = 1}. Then vertex subset {0,1,---,2k} in-
duces a supergraph of the complete k-partite graph K(3,2,---,2) = H and
via(A) = 1+ [2E-D) = [25£1], 50 vla(G(Dak-14)) 2 [2541] = [2£2].
Therefore, vla(G(Dm 3)) = 3 for 5 < m < 8. So the upper bound is sharp.
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By Theorem 2.4 and Lemma 2.1, vla(G(Ds 4)) = 2.

Suppose m = 9, let f(n) = 0 if n = 0,1,3( mod 12), f(n) = 1 if
n=2,4,5( mod 12), f(n) =2ifn=6,7,9( mod 12) and f(n) =3 ifn=
8,10,11( mod 12), then f is a path coloring of G(Dg 3). So vla(G(Ds 3)) =
4 and the lower bound in Theorem 2.4 is sharp.

It is easy to verify that 4 < vla(G(Dio3)) < 5 (if we define f(n) = 1
for n = 0,1,3,14,16,17( mod 30), f(n) = 2 for n = 2,4,5,18,19, 21(
mod 30), f(n) = 3 for n = 6,7,9,20,22,23( mod 30), f(n) =4 forn =
8,10,11,24,25,27( mod 30) and f(n) = 5 for n = 12,13, 15,26, 28, 29(
mod 30), then f is a path coloring).

We will give another upper bound of vla(G(Dm k)) for m > 3k > 9.

Theorem 2.5. For any m > 3k 2 9, vla(G(Dm ) < d[2E3%+1] yhere
d = ged(k, m+ 3k +1) is the greatest common divisor of k and m+3k+1.

Proof. Define a circulant graph H on the set {0,1,---,m + 3k} with gen-
erating set Dy k, that is, 5 is an edge of H if and only if ( —i) mod (m+
3k+1) € Dy or (i —j) mod (m+3k+1) € Dy . It is enough to find a
path n-coloring f of H, where n = d[t35+1] Jet w = mE3EtL Divide
the vertex set of H into d subsets such that each subset has w veruces and
is of the form {i,i +k,---,i+ (w — 1)k} mod (m + 3k + 1). Any con-
secutive four vertices in a subset constitute a linear forest, so each subset
can be partitioned into [%] = [2£3+1] linear forests of size 4, except the
last one, whose size might be smaller than 4. Therefore the vertex set of
H can be partitioned into d[ 23517 linear forests and so H has a path
n-coloring f. It is easy to verify that the coloring f can be extended to
a path n- coloring f’ of G(Dm i) by letting f'(y) = f(z), where z = y
mod (m + 3k + 1). Hence, vla(G(Dmk)) < d[ﬂi%'—l] O

‘vla(G(Dng 16)) < rlsl] = 41 by Theorem 2. 5, and ‘vla(G(Dug 16)) <
16([4£2] + 1) = 48 by Theorem 2.4, so the upper bound of vla(G(Dug 16))
in Theorem 2.5 is smaller than that in Theorem 2.4. Since 3[21+[Z!] =
11 and 3[23] = 12, the upper bound of vla(G(Dz3)) in Theorem 24 is
smaller than that in Theorem 2.5.
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