The Vertex Linear Arboricity of an Integer Distance Graph with a Special Distance Set

Lian-Cui Zuo^{1,2}*, Jian-Liang Wu¹ and Jia-Zhuang Liu¹
1.School of Mathematics, Shandong University, Jinan, 250100, China
2.School of Science, Jinan University, Jinan, 250002, China

Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces a subgraph whose connected components are paths. An integer distance graph is a graph G(D) with the set of all integers as vertex set and two vertices $u, v \in Z$ are adjacent if and only if $|u-v| \in D$ where the distance set D is a subset of the positive integers set. Let $D_{m,k} = \{1,2,\cdots,m\} - \{k\}$ for $m > k \ge 1$. In this paper, some upper and lower bounds of the vertex linear arboricity of the integer distance graph $G(D_{m,k})$ are obtained. Moreover, $vla(G(D_{m,1})) = \lceil \frac{m}{4} \rceil + 1$ for $m \ge 3$, $vla(G(D_{8l+1,2})) = 2l + 2$ for any positive integer l and $vla(G(D_{4q,2})) = q + 2$ for any integer $q \ge 2$.

Keywords integer distance graph; vertex linear arboricity; path coloring

1 Introduction

In this paper, R, Z, P, N denote the set of all the real numbers, all the integers, all the prime numbers, and all the positive integers, respectively. For $x \in R$, $\lfloor x \rfloor$ denotes the greatest integer not more than x; $\lceil x \rceil$ denotes the least integer not less than x. For a finite set S, its cardinality is denoted by |S|. G is called a *supergraph* of H if H is a subgraph of G (see [2]), denoted by $H \leq G$.

A k-coloring of a graph G is a mapping f from V(G) to $\{1, 2, ..., k\}$. With respect to a given k-coloring, V_i denotes the set of all vertices of G colored with i. If V_i is an independent set for every $1 \le i \le k$, then f is called a proper k-coloring. The chromatic number $\chi(G)$ of a graph G

^{*}e-mail: zuolc@yahoo.com.cn

is the minimum number k of colors for which G has a proper k-coloring. If V_i induces a subgraph whose connected components are paths, then f is called a path k-coloring. The vertex linear arboricity of a graph G, denoted by vla(G), is the minimum number k of colors for which G has a path k-coloring.

Matsumoto [14] proved that for a finite graph G, $vla(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$, moreover, if $\Delta(G)$ is even, then $vla(G) = \lceil \frac{\Delta(G)+1}{2} \rceil$ if and only if G is a complete graph of order $\Delta(G)+1$ or a cycle. Goddard [9] and Poh [15] proved that $vla(G) \leq 3$ for a planar graph G. Akiyama etc. [1] proved $vla(G) \leq 2$ if G is an outerplanar graph. Fang and Wu [8] determined the vertex linear arboricity of complete multiple graphs and obtained an upper bound of Cartesian product of graphs.

If S is a subset of the set of real numbers and D is a subset of the set of positive real numbers, then the distance graph G(S, D) is defined by the graph with vertex set S and two vertices x and y are adjacent if and only if $|x-y| \in D$ where the set D is called the distance set. In particular, if all elements of D are positive integers and S = Z, then the graph G(Z, D) = G(D) is called the integer distance graph and the set D is called its *integer distance set*. The concept of the distance graph was introduced by Eggleton, Erdös and Skilton [6] in 1985. They proved $\chi(G(R,D)) = n+1$ if D is an interval between 1 and δ when $1 \le n-1 < \delta \le n$, $\chi(G(P)) = 4$. They also obtained some results on the chromatic number of $G(D_{m,k})$ where $D_{m,k} = \{1, 2, \dots, m\} - \{k\}$. Recently, Chang, Liu and Zhu [3] determined completely the chromatic numbers of $G(D_{m,k})$. More results on the chromatic number of integer distance graphs, see [6], [7], [10], [16] and [17]. For the vertex linear arboricity of distance graphs, Zuo, Wu and Liu [18] obtained the following results: (1) vla(G(R, D)) = n+1 if D is an interval between 1 and δ when $1 \le n-1 < \delta \le n$; (2) vla(G(D)) = 2 if |D| = 2, or $|D| \ge 2$ and there is at most one even number in D; (3) $vla(G(D)) \leq k$ if there is at most one multiple of k in D.

It is easy to prove that $vla(G(D)) = \lceil \frac{m+1}{2} \rceil$ for $D = \{1, 2, \cdots, m\}$ (see [18]). It is interesting to determine vla(G(D)) when $D = D_{m,k} = \{1, 2, ..., m\} - \{k\}$ where $1 \le k < m!$ In this paper, we will show: (1) $vla(G(D_{m,1})) = \lceil \frac{m}{4} \rceil + 1$ for $m \ge 3$; (2) $\lceil \frac{m+1}{4} \rceil + 1 \le vla(G(D_{m,2})) \le \lceil \frac{m}{4} \rceil + 2$ for $m \ge 6$; (3) $vla(G(D_{m,k})) = \lceil \frac{k}{2} \rceil$ for $m \le k + \lfloor \frac{k}{2} \rfloor - 1$; (4) $\lceil \frac{m+k+1}{4} \rceil \le vla(G(D_{m,k})) \le k(\lceil \frac{m}{4k} \rceil + 1)$ and $vla(G(D_{m,k})) \le d\lceil \frac{m+3k+1}{4d} \rceil$ for $m \ge 3k$ and $d = \gcd(k, m+3k+1)$, the greatest common divisor of k and m+3k+1. In particular, we also obtain $vla(G(D_{8l+1,2})) = 2l+2$ for any positive integer l, and $vla(G(D_{4q,2})) = q+2$ for any integer $q \ge 2$.

2 Main results

The following lemma can be found in [18].

Lemma 2.1. (1) Let $D = \{m+1, m+2, \cdots, m+h\}$ with $m \geq 0, h \geq 2$, then $vla(G(D)) = \lceil \frac{k+1}{2} \rceil$ for m = 0 and $vla(G(D)) \leq \lceil \frac{m+h}{m+3} \rceil + 1$ for $m \geq 1$. (2) If there is at most one multiple of k in distance set D, then we have $vla(G(D)) \leq k$.

Clearly, vla(G(D)) = 1 if |D| = 1. If $|D| \ge 2$, then $vla(G(D)) \ge 2$ since the graph does not consist of paths only. It is obvious that $vla(G(D_2)) \le vla(G(D_1))$ if $D_2 \subseteq D_1$. In the following, we will study the vertex linear arboricity of $G(D_{m,k})$ for k = 1, k = 2 and $k \ge 3$ respectively. First, we consider the case k = 1. Since $G(D_{2,1}) = G(\{2\})$, $vla(G(D_{2,1})) = 1$.

Theorem 2.2. For each positive integer $m \geq 3$, $vla(G(D_{m,1})) = \lceil \frac{m}{4} \rceil + 1$.

Proof. It follows from Lemma 2.1 that $vla(G(D_{3,1})) = vla(G(D_{4,1})) = 2$. We may assume in the following that $m \geq 5$. Let $n = \lceil m/4 \rceil$. Clearly, $n \geq 2$.

Firstly, we give a (n+1)-coloring f of $G(D_{m,1})$. For any integer i, let $f(4i) = f(4i+1) = f(4i+2) = f(4i+3) = i \pmod{(n+1)}$. Since every four such vertices induce a path (4i+2,4i,4i+3,4i+1) and every connected component of the subgraph induced by vertices received the same color is such a path, f is a path (n+1)-coloring of $G(D_{m,1})$. Hence, $vla(G(D_{m,1})) \leq n+1 = \lceil m/4 \rceil +1$.

Conversely, suppose that $G(D_{m,1})$ has a path n-coloring f. Then f is also a path n-coloring of the subgraph G_m of $G(D_{m,1})$ induced by vertices 0,1,2,...,4n. Since $|V(G_m)|=4n+1$, there must be at least 5 vertices in G_m , say a,b,c,d and e, received the same color α , where $0 \le a < b < c < d < e \le 4n$.

Claim 2.1. m = 4n - 3.

Suppose that $m \geq 4n-2$. If c < d-1, then $ca, cd, ce \in E(G_m)$, that is, vertices a, c, d and e induce a $K_{1,3}$, a contradiction. So c = d-1. If a < b-1, then $ba, bd, be \in E(G_m)$, a contradiction. So a = b-1. Similarly, we have b = c-1, d = e-1. Therefore a+2 = b+1 = c = d-1 = e-2. But under the condition, a, c and e form a cycle of length 3, a contradiction, too. The contradiction proves Claim 2.1.

Claim 2.2. b < 2 and d > 4n - 2, that is, a = 0, b = 1, d = 4n - 1 and e = 4n.

Here we only give the proof of the case b < 2. The case d > 4n - 2 can be settled similarly. Assume, on the contrary, $b \ge 2$.

Suppose $b-a \geq 2$. If $b \geq 3$ or e < 4n, then $e-b \leq 4n-3=m$, that is, $ba, bd, be \in E(G_m)$, a contradiction. So b=2 and e=4n. It follows that a=0. We also have c=b+1=3, for otherwise, if c>b+1, then $ba, bc, bd \in E(G_m)$, a contradiction. If d>c+1, then $ca, cd, ce \in E(G_m)$, a contradiction. So d=c+1=4. But under the condition, $ab, bd, ad \in E(G_m)$, a, b and d induce a cycle of length 3, a contradiction, too.

Suppose b-a=1. Then $a\geq 1$ and $c\geq 3$. If c>b+1 then $ca,cb,ce\in E(G_m)$, a contradiction. If d>c+1 then $ca,cd,ce\in E(G_m)$, a contradiction. If e>d+1 then $da,db,de\in E(G_m)$, a contradiction. So a+2=b+1=c=d-1=e-2, $ac,ce,ae\in E(G_m)$, a contradiction, too. Hence, Claim 2.2. holds.

It follows from Claim 2.1 and Claim 2.2 that c=2 or c=4n-2, for otherwise, if $3 \le c \le 4n-3$, then $ac, bc, ec \in E(G_m)$, a contradiction. At the same time, vertices 2 and 4n-2 receive different colors, for otherwise, vertices 0, 2, 4n-2 and 4n-1 induce a $K_{1,3}$, a contradiction, too.

Without loss of generality, assume that the vertex 4n-2 is colored with α . This implies that except α , any other color just colors four vertices in G_m and these four vertices must be consecutive since the difference of any two such vertices is less than m. That is to say, vertices 2, 3, 4 and 5 receive one color, vertices 6, 7, 8 and 9 receive another color and so on.

Now let us come back to analyze the coloring of vertices 4n+1 and 4n+2 of $G(D_{m,1})$. Suppose $f(4n+1)=\beta\neq\alpha$. Then there exists $l(2\leq l\leq 4n-6)$ such that $f(l)=f(l+1)=f(l+2)=f(l+3)=\beta$. Then vertices l,l+1,l+3 and 4n+1 induce a $K_{1,3}$ since $4\leq 4n+1-(l+3)\leq m$ for any integer $2\leq l\leq 4n-6$, a contradiction. So $f(4n+1)=\alpha$. Similarly, $f(4n+2)=\alpha$.

It follows that $f(4n-2) = f(4n-1) = f(4n) = f(4n+1) = f(4n+2) = \alpha$ which is impossible. This contradiction implies that $vla(G(D_{m,1})) \ge n+1 = \lceil \frac{m}{4} \rceil + 1$.

Second, we consider the case k=2. By Lemma 2.1, $vla(G(D_{3,2}))=vla(G(D_{4,2}))=vla(G(D_{5,2}))=2$. For $m\geq 6$, we have the following result.

Theorem 2.3. For each positive integer $m \geq 6$,

$$\lceil \frac{m+1}{4} \rceil + 1 \le vla(G(D_{m,2})) \le \lceil \frac{m}{4} \rceil + 2.$$

In particular, $vla(G(D_{8l+1,2})) = 2l + 2 = \lceil \frac{8l+2}{4} \rceil + 1$ and $vla(G(D_{4q,2})) = q + 2 = \lceil \frac{4q}{4} \rceil + 2$.

Proof. Firstly, we prove the upper bound. Suppose that m = 8l + j with $4 < j \le 8$ and $0 \le h < 8(\lceil \frac{m}{8} \rceil + 1)$. Let

$$f(h) = \begin{cases} 2u+1, & \text{for } h = 8u, 8u+2, 8u+4, 8u+6, \\ 2u+2, & \text{for } h = 8u+1, 8u+3, 8u+5, 8u+7. \end{cases}$$

For each $t \in \mathbb{Z}$, let $f(8t(\lceil \frac{m}{8} \rceil + 1) + h) = f(h)$. Since the vertices that received same color in one connected component are only vertices 8u, 8u+2, 8u+4 and 8u+6, or 8u+1, 8u+3, 8u+5 and 8u+7, and they induce a path (8u+4, 8u, 8u+6, 8u+2) or (8u+5, 8u+1, 8u+7, 8u+3), f is a path coloring of $G(D_{m,2})$. Therefore $vla(G(D_{m,2})) \leq 2\lceil \frac{m}{8} \rceil + 2 = \lceil \frac{m}{4} \rceil + 2$. Suppose m = 8l+j for $1 \leq j \leq 4$ and $0 \leq h < 8\lceil \frac{m}{8} \rceil$. Let

$$\bar{f}(h) = \begin{cases} 2u+1, & \text{for } h = 8u, 8u+2, 8u+4, 8u+6, \\ 2u+2, & \text{for } h = 8u+1, 8u+3, 8u+5, 8u+7, \end{cases}$$

 $\bar{f}(8l+8) = \bar{f}(8l+9) = \bar{f}(8l+10) = 2l+3$ and $\bar{f}((8l+10)t+h) = \bar{f}(h)$ for any $t \in Z$. Then \bar{f} is a path coloring of $G(D_{m,2})$. Hence, $vla(G(D_{m,2})) \le 2l+3 = \lceil \frac{m}{4} \rceil + 2$.

Secondly, we will prove $vla(G(D_{m,2})) \geq \lceil \frac{m+1}{4} \rceil + 1$. For sake of simplicity, we only give a proof of the case $m=4q\geq 6$, and other cases can be settled similarly. Now $\lceil \frac{m+1}{4} \rceil + 1 = q+2$. Let n=q+1. Assume, to the contrary, that $G(D_{m,2})$ has a path n-coloring f. Consider the subgraph H_m of $G(D_{m,2})$ induced by vertices $0,1,2,\cdots,4n=m+4$. Since $|V(H_m)|=4n+1$, there must be at least 5 vertices in H_m , say a,b,c,d and e, such that $f(a)=f(b)=f(c)=f(d)=f(e)=\alpha$, where $0\leq a< b< c< d< e\leq 4n$.

Claim 3.1. $\min\{d-a, e-b\} > m$.

Suppose $d-a \le m$. Then $ad \in E(H_m)$. If $b-a \ne 2$, then $ab \in E(H_m)$ and $ac \notin E(H_m)$. So c=a+2=b+1 and $bc \in E(H_m)$. Thus $bd \notin E(H_m)$, that is, d-b=2 and then $cd \in E(H_m)$, a,b,c and d induce a cycle of length 4, a contradiction. Hence, b-a=2. It is similar to prove c-b=d-c=2. So d=c+2=b+4=a+6 and then $ac,bd,ad \in E(H_m)$. Since $d=a+6 \ge 6$, e-d < m. It follows from $bd,ad \in E(H_m)$ that e-d=2 and $ae,ce \in E(H_m)$, so vertices a,c,e induce a cycle of length 3, a contradiction. Hence, d-a > m. Similarly, we obtain that e-b > m. Claim 3.1 is proved.

By Claim 3.1, if vertices u, u + 2, u + 4, u + 6 receive the same color β , then any other vertex v which received color β would satisfy $\min\{|v - u|, |v - (u + 6)|\} > m$.

Claim 3.2. There are at most five vertices receiving color α in H_m .

If there are six vertices receiving the same color α , it is not difficult to verify that they would be vertices 0, 1, 2, 4q + 2, 4q + 3 and 4q + 4 = 4n. Then 4q - 1 vertices $3, 4, \dots, 4q + 1 = m + 1$ receive q colors where one color β colors three vertices g, h, l and any other color colors four vertices. Any four vertices with the same color would be u, u + 2, u + 4, u + 6 for

some integer $u \ge 3$. Thus vertices 4n+1, 4n+2, 4n+3 and 4n+4 would be colored β , but these vertices induce a cycle of length 4, a contradiction.

Therefore, there are just five vertices a, b, c, d and e in H_m receiving color α .

Claim 3.3. $\min\{c-a, e-c\}=2$.

If c-a=3 and $e-c\geq 3$, then $ac, cd\in E(H_m)$ because of $m-3< d-a-(c-a)=d-c\leq (4n-1)-3=4q=m$ by Claim 3.1. Thus $bc, ce\not\in E(H_m)$ and then $ab\in E(H_m)$, that is, b=a+1 and e-c>m. Hence, a=0, b=1, c=3 and e=4n.

If d=4q+3, then 4q vertices $2,4,5,\cdots,4q+2$ receive q colors, and any color just colors four vertices that are h,h+2,h+4,h+6 in $\{2,4,5,\cdots,4q+2\}$ for some $h\geq 2$. Consider vertex $h_1=4n+2$ in $G(D_{m,2})$, by Claim 3.1, h_1 would be colored α since $h_1-(h+6)\leq m$ for any $4q-4\geq h\geq 2$, but $dc,de,dh_1\in E(G(D_{m,2}))$, thus we have a contradiction.

Suppose d=4q+2. Then 4q vertices $2,4,5,\cdots,4q+1,4q+3$ receive q colors. If $f(2)\neq f(4q+3)$, then any four vertices with the same color in $\{2,4,5,\cdots,4q+1,4q+3\}$ would be v,v+2,v+4,v+6 for some integer $4q-3\geq v\geq 2$. Thus $f(4n)=f(4n+1)=f(4n+2)=f(4n+3)=\alpha$ which is impossible. If $2,g_1,g_2,g_3=4q+3$ are colored β , then $g_1g_3\in E(H_m)$ or $g_2g_3\in E(H_m)$, and any other four vertices with the same color would be v,v+2,v+4,v+6 for some integer $4q-5\geq v\geq 4$. So $|\{u|f(u)=\beta,4n+2\leq u\leq 4n+5\}|\leq 1$ and $|\{u|f(u)=\alpha,4n+2\leq u\leq 4n+5\}|\geq 3$. But e and any three vertices in $\{4n+2,4n+3,4n+4,4n+5\}$ would induce a subgraph which contains a cycle, a contradiction, too.

If $d \le 4q + 1$, then d = 4q + 1 by Claim 3.1, so bd, cd, $ed \in E(H_m)$, a contradiction, too.

It is similar to get a contradiction when $e-c=3, c-a\geq 3$. If c-a>3, e-c>3, then $ce, ac\in E(H_m)$ and $bc, cd\notin E(H_m)$. Hence, b=c-2, d=c+2. So $c-a=d-2-a\geq m-1, e-c=e-(b+2)=e-b-2\geq m-1$ because of d-a>m, e-b>m, and then $e-a\geq 2m-2>m+4$ which is impossible since $e\leq 4n=m+4$.

Therefore, we obtain that c - a = 2 or e - c = 2.

Claim 3.4. c = 2 or c = 4q + 2.

Assume, on the contrary, that $3 \le c \le 4q + 1$. Suppose a = c - 2. Then $ab, bc \in E(H_m)$ and $bd \notin E(H_m)$, that is, d - b > m, so b = 2, c = 3, d = 4q + 3, e = 4n and a = 1, and vertex 0 could not be colored α . Hence, three vertices with the color of vertex 0 would be u_1, u_2 , and $u_3 = 4q + 1$ or $u_3 = 4q + 2$, for otherwise, if $u_3 \le 4q$, then vertex 0 will be adjacent to vertices u_1, u_2 and u_3 , a contradiction. Clearly, $u_1u_3 \in E(H_m)$ or $u_2u_3 \in E(H_m)$ because of $\min\{u_1, u_2\} \ge 4$. Without loss of generality, suppose $u_1u_3 \in E(H_m)$. Any other four vertices that received the same

color must be v, v+2, v+4, v+6 for some integer $4q-4 \ge v > 3$. Thus, f(4n+2) = f(4n+3) = f(0), and vertices 4n+2, 4n+3 are all adjacent to u_3 . So vertices $u_1, u_3, 4n+2$ and 4n+3 induce a $K_{1,3}$, a contradiction.

Suppose e=c+2. Then $e\leq 4q+3, d\leq 4q+2$ and $cd, de\in E(H_m)$. Thus $bd\notin E(H_m)$ and then d-b>m (for otherwise, if $d-b=2, bc, be\in E(H_m)$, vertices b, c, d and e induce a cycle, a contradiction), so b=1, c=4q+1, d=4q+2, e=4q+3 and a=0. Then 4q vertices $2,3,4,5,\cdots,4q=m,4q+4=m+4$ receive q colors. If $f(m+4)\notin\{f(2),f(3)\}$, then any four vertices with the same color in $\{2,3,4,5,\cdots,4q=m,m+4\}$ would be v,v+2,v+4,v+6 for some integer $v\geq 2$, but it is impossible for any v with $2\leq v\leq m-2$ such that m=v+4 and m+4=v+6. If vertices $2< g_1< g_2< g_3=4q+4$ are colored β , then $4\leq g_2\leq 4q$, so $g_2g_3\in E(H_m)$. Thus $|\{u|f(u)=\beta,4n+2\leq u\leq 4n+4\}|\leq 2$. Because any other four vertices with the same color would be v,v+2,v+4,v+6 for some integer $v\geq 3$, $|\{u|f(u)=\alpha,4n+2\leq u\leq 4n+4\}|\geq 1$, but c,d,e and any one vertex in $\{4n+2,4n+3,4n+4\}$ would induce a subgraph which contains a cycle, a contradiction. It is similar to get a contradiction if $3< g_1< g_2< g_3=4q+4$ are colored β .

Therefore, Claim 3.4 is proved.

Without loss of generality, suppose c=2. Then a=0,b=1 and $d\geq 4q+2$, e=4q+3 or e=4n. If d=4q+3, then e=4n, so 4q vertices $3,4,\cdots,4q+2$ in H_m receive q colors where any of which colors four vertices v,v+2,v+4,v+6 for some integer $v\geq 3$. Hence, vertices 4n+1,4n+2 would be colored α , and they induce a cycle along with d,e,a contradiction. If d=4q+2,e=4q+3, then 4q vertices $3,4,\cdots,4q+1,4n$ receive q colors where any of which colors four vertices. If $3< h_1 < h_2 < 4n$ receive the same color β , then vertices h_1,h_2 are all adjacent to 4n and any other color colors four vertices v,v+2,v+4,v+6 for some integer $v\geq 4$, so vertex 4n+3 receives color α , and it induces a cycle along with d,e, thus a contradiction. If $f(3)\neq f(4n)$, then any color colors four vertices v,v+2,v+4,v+6 for some $3\leq v\leq 4n-6$ in $\{3,4,\cdots,4q+1,4n\}$, but it is impossible for any v with $3\leq v\leq 4n-6$ such that 4q+1=v+4 and 4n=v+6. Similarly, it is not difficult to get a contradiction for d=4q+2,e=4n.

Therefore, $vla(G(D_{4q,2})) \ge \lceil \frac{4q+1}{4} \rceil + 1$. The case $m \ne 4q$ can be settled similarly.

Since $vla(G(D_{4q,2})) \le \lceil \frac{4q}{4} \rceil + 2 = \lceil \frac{4q+1}{4} \rceil + 1$, $vla(G(D_{4q,2})) = q + 2 = \lceil \frac{4q}{4} \rceil + 2$.

In addition, suppose m = 8l + 1 for some integer l and $0 \le h < 8(l + 1)$. Let

$$f'(h) = \begin{cases} 2u+1, & \text{for } h = 8u, 8u+2, 8u+4, 8u+6, \\ 2u+2, & \text{for } h = 8u+1, 8u+3, 8u+5, 8u+7. \end{cases}$$

Then f' can be extended to a path coloring of $G(D_{8l+1,2})$, so we have $vla(G(D_{8l+1,2})) \leq 2\lfloor \frac{8l+1}{8} \rfloor + 2 = \lceil \frac{8l+1}{4} \rceil + 1 = 2l + 2$. But $vla(G(D_{m,2})) \geq \lceil \frac{m+1}{4} \rceil + 1 = 2l + 2$, so $vla(G(D_{m,2})) = 2l + 2 = \lceil \frac{m+1}{4} \rceil + 1$. The proof is completed.

This theorem means that $vla(G(D_{m,2})) = \lceil \frac{m+1}{4} \rceil + 1$ or $\lceil \frac{m}{4} \rceil + 2$ for $m \geq 6$ and $m \neq 4q$. For some small m, we can determine $vla(G(D_{m,2}))$. For example, by Theorem 2.3, $vla(G(D_{6,2})) \geq 3$. But for m = 7, let f(n) = i if $n \equiv 3i, 3i + 1, 3i + 2 \pmod{9}$ for i = 0, 1, 2. Then f is a path coloring of $G(D_{7,2})$. Therefore $vla(G(D_{6,2})) = vla(G(D_{7,2})) = 3$.

Let f(n) = i if $n \equiv 3i, 3i + 1, 3i + 2 \pmod{12}$ for i = 0, 1, 2, 3. Then f is a path coloring of $G(D_{10,2})$. Therefore $vla(G(D_{10,2})) = vla(G(D_{8,2})) = vla(G(D_{9,2})) = 4$ by Theorem 2.3.

Suppose that m = 13. Let f(n) = i if $n \equiv 3i, 3i+1, 3i+2 \pmod{15}$ for i = 0, 1, 2, 3, 4. Then f is a path coloring of $G(D_{13,2})$, so $vla(G(D_{13,2})) = vla(G(D_{12,2})) = 5$ by Theorem 2.3. For m = 11, Theorem 2.3 implies $4 \le vla(G(D_{11,2})) \le 5$ (in fact, it is not difficult to prove that $vla(G(D_{11,2})) = 5$).

Now we consider the case $k \geq 3$.

Theorem 2.4. For any positive integers m, k with $m > k \ge 3$,

$$\begin{array}{ll} vla(G(D_{m,k})) = \lceil \frac{k}{2} \rceil, & \text{for } m \leq \lfloor \frac{3k}{2} \rfloor - 1, \\ \lceil \frac{m+1}{3} \rceil \leq vla(G(D_{m,k})) \leq k, & \text{for } \lfloor \frac{3k}{2} \rfloor \leq m < 3k. \end{array}$$

Let $m = 4kl + j \ge 3k$ for some l and j, $0 \le j < 4k$, then

$$\lceil \frac{m+k+1}{4} \rceil \leq vla(G(D_{m,k})) \leq \begin{cases} k(\lfloor \frac{m}{4k} \rfloor + 1), \text{ for } 0 \leq j < k, \\ k\lceil \frac{m}{4k} \rceil + \lceil \frac{j-k+1}{2} \rceil, \text{ for } k \leq j < 2k, \\ k\lceil \frac{m}{4k} \rceil + \lceil \frac{k}{2} \rceil, \text{ for } 2k \leq j < \lfloor \frac{5k-2}{2} \rfloor, \\ k(\lceil \frac{m}{4k} \rceil + 1), \text{ for } \lfloor \frac{5k-2}{2} \rfloor \leq j < 4k. \end{cases}$$

Proof. Suppose $m \leq k + \lfloor \frac{k}{2} \rfloor - 1$. Since vertex set $\{0, 1, \cdots, k-1\}$ induces a complete subgraph of order k, $vla(G(D_{m,k})) \geq \lceil \frac{k}{2} \rceil$. Let $f_1(kl+i) \equiv i(mod \lceil \frac{k}{2} \rceil)$ for $l \in \mathbb{Z}$ and $0 \leq i < k$, that is, all vertices in $V_i = \{\cdots, i, \lceil \frac{k}{2} \rceil + i, k+i, k+\lceil \frac{k}{2} \rceil + i, 2k+i, \cdots \}$ receive color i for every $0 \leq i \leq \lfloor \frac{k}{2} \rfloor - 1$ and all vertices in $V_{(k-1)/2} = \{\cdots, (k-1)/2, k+(k-1)/2, 2k+(k-1)/2, \cdots \}$ receive color $\frac{k-1}{2}$ if k is odd. It is clear that V_i induces a path since $2k+i-(\lceil \frac{k}{2} \rceil +i)=k+\lfloor \frac{k}{2} \rfloor > m$, and $V_{(k-1)/2}$ is an independent set if k is odd. So f_1 is a path $\lceil \frac{k}{2} \rceil$ -coloring and it follows that $vla(G(D_{m,k})) \leq \lceil \frac{k}{2} \rceil$. Therefore, $vla(G(D_{m,k})) = \lceil \frac{k}{2} \rceil$.

Suppose that $k + \lfloor \frac{k}{2} \rfloor \le m \le 2k - 1$. By Lemma 2.1, $vla(G(D_{m,k})) \le k$. Let H be the subgraph of $G(D_{m,k})$ induced by vertices $0, 1, 2, \dots, m$.

Then H is a complete k-partite graph $K(2, \dots, 2, 1, \dots, 1)$ with partition sets $X_0 = \{0, k\}, X_1 = \{1, k+1\}, \dots, X_{m-k} = \{m-k, m\}, X_{m-k+1} = \{m-k+1\}, \dots, X_{k-1} = \{k-1\}$. It is obvious that any four vertices of H induce a subgraph which contains a cycle, and any three vertices of H that are exactly contained in three different partite induce a cycle. So $vla(H) = 2k - m - 1 + \left\lceil 2 \frac{m-k+1-(2k-1-m)}{3} \right\rceil = \left\lceil \frac{m+1}{3} \right\rceil$. Therefore, $vla(G(D_{m,k})) \ge vla(H) \ge \left\lceil \frac{m+1}{3} \right\rceil$ for $2k-1 \ge m \ge k + \left\lfloor \frac{k}{2} \right\rfloor$.

Suppose that $2k \leq m < 3k$. We also have $vla(G(D_{m,k})) \leq k$ by Lemma 2.1. Let $X'_0 = \{0, k, 2k\}, X'_1 = \{1, k+1, 2k+1\}, \cdots, X'_{m-2k} = \{m-2k, m-k, m\}, X'_{m-2k+1} = \{m-2k+1, m-k+1\}, \cdots, X'_{k-1} = \{k-1, 2k-1\},$ then $X'_0 \cup X'_1 \cup \cdots \cup X'_{k-1} = \{0, 1, 2, \cdots, m\}$ induces a supergraph H' of a complete k-partite graph $K(3, 3, \cdots, 3, 2, \cdots, 2)$. It is clear that any four vertices of H' induce a cycle. Therefore, $vla(H') = m - 2k + 1 + [2\frac{k-1-(m-2k)}{3}] = \lceil \frac{m+1}{3} \rceil$ and then $vla(G(D_{m,k})) \geq \lceil \frac{m+1}{3} \rceil$.

Suppose that $m=4kl+j\geq 3k$. If $0\leq j< k$ and $0\leq n< 4k(l+1)$, let $f_3(n)=i+kt$ for $n-(i+4kt)=0, k, 2k, 3k, 0\leq i< k, 0\leq t\leq l$, and $f_3(n+4ks(l+1))=f_3(n)$ for every $s\in Z$. It is obvious that f_3 is a periodic path coloring of $G(D_{m,k})$. Therefore $vla(G(D_{m,k}))\leq (l+1)k=k(\lfloor \frac{m}{4k}\rfloor+1)$. If $k\leq j< 2k$, let

$$f_4(n) = \left\{ \begin{array}{ll} i+kt, & \text{for } n-(4kt+i)=0, k, 2k, 3k, \\ 0 \leq i < k, 0 \leq t \leq l, \\ k(l+1) + \lfloor \frac{n-4k(l+1)}{2} \rfloor, & \text{for } 4k(l+1) \leq n \leq m+3k, \end{array} \right.$$

and other vertices be colored periodically, that is, $f_4(n+(m+3k)t) = f_4(n)$ for any $t \in \mathbb{Z}$. Then f_4 is a path coloring, and so $vla(G(D_{m,k})) \leq k \lceil \frac{m}{4k} \rceil + \lceil \frac{m+3k-4k(l+1)+1}{2} \rceil = k \lceil \frac{m}{4k} \rceil + \lceil \frac{j-k+1}{2} \rceil$.

If $2k \le j < 2k + \lfloor \frac{k}{2} \rfloor - 1$, for $0 \le n \le m + 3k$, let

$$f_5(n) = \begin{cases} i + kt, & \text{for } n - (4kt + i) = 0, k, 2k, 3k, \\ 0 \le i < k, 0 \le t \le l, \\ k(l+1) + i, & \text{for } n - i - 4k(l+1) = 0, \lceil \frac{k}{2} \rceil, k, 0 \le i < \lceil \frac{k}{2} \rceil, \end{cases}$$

and other vertices be colored periodically, that is, $f_5(n+(m+3k)t) = f_5(n)$ for any $t \in \mathbb{Z}$. Then f_5 is a path coloring, so $vla(G(D_{m,k})) \leq k \lceil \frac{m}{4k} \rceil + \lceil \frac{k}{2} \rceil$.

If $2k + \lfloor \frac{k}{2} \rfloor - 1 \le j < 4k$, for $0 \le n < 4k(l+2)$, let $f_6(n) = i + kt$ for $n - (i + 4kt) = 0, k, 2k, 3k, 0 \le i < k, 0 \le t \le l+1$, and $f_6(n + 4ks(l+2)) = f_6(n)$ for every $s \in \mathbb{Z}$. Then f_6 is a periodical path coloring and so $vla(G(D_{m,k})) \le (l+2)k = k(\lceil \frac{m}{4k} \rceil + 1)$.

Now we begin to prove $vla(G(D_{m,k})) \geq \lceil \frac{m+k+1}{4} \rceil$. Assume, on the contrary, that $vla(G(D_{m,k})) < \lceil \frac{m+k+1}{4} \rceil$. Let $n = \lceil \frac{m+k+1}{4} \rceil - 1$, then $G(D_{m,k})$ has a path n-coloring f. Let G_m be a subgraph of $G(D_{m,k})$

induced by vertices $0, 1, 2, \dots, m + k$, then f is also a path n-coloring of G_m . Note that $|V(G_m)| = m + k + 1$. There must be 5 vertices a, b, c, d and e receiving the same color α , where $0 \le a < b < c < d < e \le m + k$.

Claim 4.1. $\min\{c-a, d-b, e-c\} \ge k$ and $\max\{c-a, e-c\} \le m$. Assume, for example, that c-a < k, then $ab, ac, bc \in E(G_m)$ and a, b, c induce a cycle, a contradiction. So the claim holds.

Claim 4.2. $\min\{d-a, e-b\} > m \text{ and } \max\{b-a, e-d\} < k$.

Suppose that $d-a \le m$, we will prove that d=c+k=b+2k=a+3k. If $d-c \ne k$, then $cd \in E(G_m)$, and $ac \notin E(G_m)$ or $bc \notin E(G_m)$ (for otherwise, a, b, c and d induce a $K_{1,3}$, a contradiction). In the former case, c-a=k and $ab, bc, ad \in E(G_m)$, a, b, c and d induce a cycle of length 4, a contradiction. In the latter case, c-b=k and $cd, bd, ad \in E(G_m)$, a, b, c and d induce a $K_{1,3}$, a contradiction. Hence d-c=k. It is similar to prove that c-b=b-a=k. Thus $ac, bd, ad \in E(G_m)$ and $de \notin E(G_m)$, so e-d=k and $ce, be \in E(G_m)$, a, b, c, d and e induce a cycle of length 5, a contradiction, too. Therefore d-a>m. Similarly, we can obtain that e-b>m. Hence, b-a< k and e-d < k.

We will come to contradictions, whatever the relative position of a and c may be.

Case 1. c-a=k.

Since $ab, bc \in E(G_m)$, bd is not in $E(G_m)$, so d-b>m by Claim 4.2. Thus e-d < k, b < k, and k < d-c < m+k-k=m, so $cd \in E(G_m)$. But $e-c \le m$ and e-c>d-(b+k)=d-b-k>m-k>k, therefore $ce \in E(G_m)$, and then b, c, d and e induce a $K_{1,3}$, a contradiction.

Case 2. c-a>k.

Since b-a < k and $c-a \le m$, $ab, ac \in E(G_m)$ and $bc \notin E(G_m)$, so c-b=k by Claim 4.1. If $bd \in E(G_m)$, then $cd \notin E(G_m)$, so d-c=k since $d-c \le m$. Thus $ad \in E(G_m)$, however, it is impossible by Claim 4.2. If $bd \notin E(G_m)$, then d-b > m, e-d < k < d-c < e-c, so $cd, de, ce \in E(G_m)$ by Claim 4.1. Thus c, d and e induce a cycle of length 3, a contradiction.

By all above arguments, we have $vla(G(D_{m,k})) \geq \lceil \frac{m+k+1}{4} \rceil$. Thus the theorem is proved.

By this theorem, it is obtained that $vla(G(D_{3k-3,k})) = vla(G(D_{3k-2,k}))$ = $vla(G(D_{3k-1,k})) = k$ for any positive integer k. For m = 2k-1, we will get $vla(G(D_{m,k})) \geq \lceil \frac{m+2}{3} \rceil$. Let $\bar{X}_0 = \{0,k,2k\}, \bar{X}_1 = \{1,k+1\}, \cdots, \bar{X}_{k-1} = \{k-1,2k-1\}$. Then vertex subset $\{0,1,\cdots,2k\}$ induces a supergraph of the complete k-partite graph $K(3,2,\cdots,2) = \bar{H}$ and $vla(\bar{H}) = 1 + \lceil \frac{2(k-1)}{3} \rceil = \lceil \frac{2k+1}{3} \rceil$, so $vla(G(D_{2k-1,k})) \geq \lceil \frac{2k+1}{3} \rceil = \lceil \frac{m+2}{3} \rceil$. Therefore, $vla(G(D_{m,3})) = 3$ for $5 \leq m \leq 8$. So the upper bound is sharp.

By Theorem 2.4 and Lemma 2.1, $vla(G(D_{5.4})) = 2$.

Suppose m = 9, let f(n) = 0 if $n \equiv 0, 1, 3 \pmod{12}$, f(n) = 1 if $n \equiv 2, 4, 5 \pmod{12}$, f(n) = 2 if $n \equiv 6, 7, 9 \pmod{12}$ and f(n) = 3 if $n \equiv 8, 10, 11 \pmod{12}$, then f is a path coloring of $G(D_{9,3})$. So $vla(G(D_{9,3})) = 4$ and the lower bound in Theorem 2.4 is sharp.

It is easy to verify that $4 \le vla(G(D_{10,3})) \le 5$ (if we define f(n) = 1 for $n \equiv 0, 1, 3, 14, 16, 17 \pmod{30}$, f(n) = 2 for $n \equiv 2, 4, 5, 18, 19, 21 \pmod{30}$, f(n) = 3 for $n \equiv 6, 7, 9, 20, 22, 23 \pmod{30}$, f(n) = 4 for $n \equiv 8, 10, 11, 24, 25, 27 \pmod{30}$ and f(n) = 5 for $n \equiv 12, 13, 15, 26, 28, 29 \pmod{30}$, then f is a path coloring).

We will give another upper bound of $vla(G(D_{m,k}))$ for $m \geq 3k \geq 9$.

Theorem 2.5. For any $m \geq 3k \geq 9$, $vla(G(D_{m,k})) \leq d\lceil \frac{m+3k+1}{4d} \rceil$ where $d = \gcd(k, m+3k+1)$ is the greatest common divisor of k and m+3k+1.

Proof. Define a circulant graph H on the set $\{0, 1, \dots, m+3k\}$ with generating set $D_{m,k}$, that is, ij is an edge of H if and only if $(j-i) \mod (m+3k+1) \in D_{m,k}$ or $(i-j) \mod (m+3k+1) \in D_{m,k}$. It is enough to find a path n-coloring f of H, where $n = d\lceil \frac{m+3k+1}{4d} \rceil$. Let $w = \frac{m+3k+1}{d}$. Divide the vertex set of H into d subsets such that each subset has w vertices and is of the form $\{i, i+k, \dots, i+(w-1)k\} \mod (m+3k+1)$. Any consecutive four vertices in a subset constitute a linear forest, so each subset can be partitioned into $\lceil \frac{w}{4} \rceil = \lceil \frac{m+3k+1}{4d} \rceil$ linear forests of size 4, except the last one, whose size might be smaller than 4. Therefore, the vertex set of H can be partitioned into $d\lceil \frac{m+3k+1}{4d} \rceil$ linear forests and so H has a path n-coloring f. It is easy to verify that the coloring f can be extended to a path n- coloring f' of $G(D_{m,k})$ by letting f'(y) = f(x), where $x \equiv y \mod (m+3k+1)$. Hence, $vla(G(D_{m,k})) \leq d\lceil \frac{m+3k+1}{4d} \rceil$.

 $vla(G(D_{112,16})) \leq \lceil \frac{161}{4} \rceil = 41$ by Theorem 2.5, and $vla(G(D_{112,16})) \leq 16(\lceil \frac{112}{64} \rceil + 1) = 48$ by Theorem 2.4, so the upper bound of $vla(G(D_{112,16}))$ in Theorem 2.5 is smaller than that in Theorem 2.4. Since $3\lceil \frac{29}{12} \rceil + \lceil \frac{2+1}{2} \rceil = 11$ and $3\lceil \frac{39}{12} \rceil = 12$, the upper bound of $vla(G(D_{29,3}))$ in Theorem 2.4 is smaller than that in Theorem 2.5.

ACKNOWLEDGMENT

The author would like to thank the referees for their helpful comments and suggestions.

References

[1] J. Akiyama, H. Era, S. V. Gerracio and M. Watanabe, Path chromatic numbers of graphs, J. Graph Theory, 13(1989), 569-579.

- [2] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London, 1976.
- [3] G. J. Chang, D. D.-F. Liu and X. D. Zhu, Distance graphs and T-coloring, J. Combin. Theory, Ser. B, 75(1999), 259-269.
- [4] G. Chartrand, H. V. Kronk and C. E. Wall, The point arboricity of a graph, Israel J. Math, 6(1968), 169-175.
- [5] J. J. Chen, G. J. Chang and K. C. Huang, Integer distance graphs, J. Graph Theory, 25(1997), 287-294.
- [6] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring the real line, J. Combin. Theory, Ser. B, 39(1985), 86-100.
- [7] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring prime distance graphs, Graphs and combinatorics, 6(1990), 17-32.
- [8] Y. Fang and J. L. Wu, The vertex linear arboricity of complete multiple graphs and Cartesian product graphs, J. Shandong Institute of Mining and Technology, 18:3(1999), 59-61.
- [9] W. Goddard, Acyclic coloring of planar graphs, Discrete Mathematics, 91(1991), 91-94.
- [10] A. Kemnitz and H. Kolbery, Coloring of integer distance graphs, Discrete Mathematics, 191(1998), 113-123.
- [11] A. Kemnitz and M. Marangio, Chromatic numbers of integer distance graphs, Discrete Mathematics, 233(2001), 239-246.
- [12] A. Kemnitz and M. Marangio, Colorings and list colorings of integer distance graphs, Congr. Numer., 151(2001), 75-84.
- [13] D. D.-F. Liu and X. D. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory, 30(1999) 245-259.
- [14] M. Matsumoto, Bounds for the vertex linear arboricity, J. Graph Theory, 14(1990), 117-126.
- [15] K. Poh, On the linear vertex-arboricity of a planar graph, J. Graph Theory, 14(1990), 73-75.
- [16] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Applied Mathematics, 51(1994),197-209.
- [17] M. Voigt, Colouring of distaince graphs, Ars Combinatoria, 52 (1999), 3-12.
- [18] L. C. Zuo, J. L. Wu and J. Z. Liu, The vertex linear arboricity of distance graphs, submitted.